Canad. Math. Bull. Vol. 23 (1), 1980

AUSLANDER-REITEN SEQUENCES FOR "NICE" TORSION THEORIES OF ARTINIAN ALGEBRAS

BY

K. W. ROGGENKAMP

Let f be a field and \mathfrak{A} a finite dimensional f-algebra. Auslander-Reiten sequences [AR] play a fundamental rôle in the representation theory of \mathfrak{A} ; in particular, they can be used to construct new indecomposable modules from known ones. For the latter reason I think it worthwile to point out certain torsion theories \mathfrak{T} on the category of \mathfrak{A} -modules, such that the category of \mathfrak{T} -torsionfree modules has Auslander-Reiten sequences; thus giving another construction of indecomposable modules. It should be noted, that these Auslander-Reiten sequences are different from the ordinary ones.

The impetus to the following observations came from discussions with C. M. Ringel [RR2].

Let \mathfrak{T} be a hereditary torsion theory on \mathfrak{A} , generated by the simple \mathfrak{A} -modules S'_1, \ldots, S'_n (cf. [S]); i.e. the \mathfrak{T} -torsionfree modules are the modules $U \in_{\mathfrak{A}} \mathfrak{M}_{\mathfrak{f}}$ —the category of finitely generated left \mathfrak{A} -modules—such that the socle of $U - \operatorname{Soc}(U)$ —has no direct summand in $\{S'_1, \ldots, S'_n\}$. If S_1, \ldots, S_t are the \mathfrak{T} -torsionfree simple \mathfrak{A} -modules, we denote by $E_i = E(S_i)$, 1 = i = t, the injective envelope of S_i . The \mathfrak{T} -torsionfree \mathfrak{A} -modules then can be described as those modules, whose injective envelope decomposes into a direct sum of E_i 's. We denote the full subcategory of the torsion free \mathfrak{A} -modules by \mathfrak{X} . The complete ring of quotients of \mathfrak{A} with respect to \mathfrak{T} is then $\mathfrak{L} = \operatorname{End}_{\operatorname{End}(\mathfrak{B}_{i-1}^t, E_i)}(\mathfrak{B}_{i-1}^t, E_i)$, and we have a natural homomorphism

$$\mathfrak{k}:\mathfrak{A}\to\mathfrak{L}.$$

In order to make our construction work, we have to make the following assumption on:

- (1) (i) $\operatorname{End}_{\mathfrak{A}}(E_i) = \mathfrak{t}_i$ is a skewfield, $1 \le i \le t$, (ii) $\operatorname{Hom}_{\mathfrak{A}}(E_i, E_i) = 0$ for $1 \le i, j \le t, i \ne j$.
- (2) REMARK. The above conditions make sure that
- (i) \mathfrak{L} is a semisimple t-algebra,

(ii) for every $U \in \mathfrak{X}$, the modules of quotients of U with respect to \mathfrak{T} is E(U), the injective envelope of U; in particular, \mathfrak{L} is injective as left \mathfrak{A} -module (cf. [S, p. 202, 2.3]).

Received by the editors July 6, 1978.

On the other hand, given any homomorphism of t-algebras

$$\kappa:\mathfrak{A}\to\mathfrak{L}$$

such that \mathfrak{L} is semisimple and \mathfrak{L} is an injective \mathfrak{A} -module, then this homomorphism is induced by a torsion theory satisfying (1).

(3) EXAMPLE. Let \mathfrak{A} be the tensoralgebra of the graph \rightarrow ; i.e.

$$\mathfrak{A} = \left\{ \begin{pmatrix} \mathfrak{t}_1 & \mathfrak{t}_1 & \mathfrak{t}_1 & \mathfrak{t}_1 \\ 0 & \mathfrak{t}_1 & \mathfrak{t}_1 & \mathfrak{t}_1 \\ 0 & 0 & \mathfrak{t}_1 & \mathfrak{t}_1 \\ 0 & 0 & 0 & \alpha \end{pmatrix} \begin{pmatrix} \mathfrak{t}_2 & \mathfrak{t}_2 & \mathfrak{t}_2 & \mathfrak{t}_2 \\ 0 & \mathfrak{t}_2 & \mathfrak{t}_2 & \mathfrak{t}_2 \\ 0 & 0 & \mathfrak{t}_2 & \mathfrak{t}_2 \\ 0 & 0 & 0 & \alpha \end{pmatrix}, \ \alpha \in \mathfrak{t} \right\}, \ \mathfrak{t}_1 = \mathfrak{t}_2 = \mathfrak{t}.$$

We choose

$$\boldsymbol{S}_{1} = \begin{pmatrix} \boldsymbol{f}_{1} \\ \boldsymbol{f}_{1} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix} / \begin{pmatrix} \boldsymbol{f}_{1} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix}, \qquad \boldsymbol{S}_{2}, \begin{pmatrix} \boldsymbol{f}_{2} \\ \boldsymbol{f}_{2} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix} / \begin{pmatrix} \boldsymbol{f}_{2} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix},$$

then

$$E(S_1) = \begin{pmatrix} \mathfrak{t}_1 \\ \mathfrak{t}_1 \\ \mathfrak{t}_1 \end{pmatrix} / \begin{pmatrix} E_1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \text{ and } E(S_2) = \begin{pmatrix} \mathfrak{t}_2 \\ \mathfrak{t}_2 \\ \mathfrak{t}_2 \\ \mathfrak{t}_2 \end{pmatrix} / \begin{pmatrix} \mathfrak{t}_2 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

and $\mathfrak{L} = (\mathfrak{l}_1)_3 \Pi(\mathfrak{l}_2)_3$; moreover, $\kappa : \mathfrak{A} \to \mathfrak{L}$ has

$$\operatorname{Im}(\kappa) = \left\{ \begin{pmatrix} \mathfrak{t}_1 & \mathfrak{t}_1 & \mathfrak{t}_1 \\ 0 & \mathfrak{t}_1 & \mathfrak{t}_1 \\ 0 & 0 & \alpha \end{pmatrix} \begin{pmatrix} \mathfrak{t}_2 & \mathfrak{t}_2 & \mathfrak{t}_2 \\ 0 & \mathfrak{t}_2 & \mathfrak{t}_2 \\ 0 & 0 & \alpha \end{pmatrix}, \alpha \in \mathfrak{t} \right\}.$$

(4) **PROPOSITION.** \mathfrak{X} has enough projective and injective objects.

Proof. Let $a = \text{Ker}(\kappa)$, then the projective \mathfrak{A}/a -modules are precisely the projective objects in \mathfrak{X} . In order to construct the injective objects in \mathfrak{X} , we have to make a *detour*.

Let $R = \mathfrak{t}[X]$ be the ring of formal power series over \mathfrak{t} , and let K be the quotient field of R. Then

$$\Gamma = R \bigotimes_{\mathsf{f}} \mathfrak{L}$$

is a hereditary R-order in $A = K \bigoplus_R \Gamma$; moreover, Γ has exactly t nonisomorphic indecomposable lattices, one for each simple \mathfrak{L} -module. Let Λ be the pullback of the diagram

$$\begin{array}{ccc} \mathfrak{A}/\mathfrak{a} \hookrightarrow \mathfrak{A} \\ \mathfrak{A} \longrightarrow \mathfrak{A} \\ \Lambda \longrightarrow \Gamma \end{array}$$

https://doi.org/10.4153/CMB-1980-008-7 Published online by Cambridge University Press

62

If $I = \text{Ker}(\Gamma \to \mathfrak{A})$, then I is a two-sided Γ -ideal and $\Lambda/I \cong \mathfrak{A}/\mathfrak{a}$. Since $I \subset \text{rad}(\Lambda)$, we can lift projective modules, and so Λ has as many non-isomorphic indecomposable projective modules as has $\mathfrak{A}/\mathfrak{a}$. We put $\overline{\mathfrak{A}} = \mathfrak{A}/\mathfrak{a}$. Let I_1, \ldots, I_m be the injective Λ -lattices; i.e. injective objects in ${}_{\Lambda}\mathfrak{M}^0$, the category of left Λ -lattices. Then these are of the form $\text{Hom}_R(Q, R)$, for Q an indecomposable projective right Λ -module.

(6) The modules I_i/II_i , $i \le j \le m$, are the injective objects in \mathfrak{X} .

Proof of (6). The embedding $I_i \rightarrow \Gamma I_i$ induces an embedding

$$I_i/II_i \rightarrow \Gamma I_i/II_i$$

however, $\Gamma I_i/II_i$ is a \mathfrak{A} -module; whence injective over \mathfrak{A} , and so I_i/II_i is in \mathfrak{X} . Using the injectivity of I_i as Λ -lattice, it is easily seen that I_i/II_i is an indecomposable injective object in \mathfrak{X} , if one observes that reduction modulo I is an exact functor (cf. [R2]), and that reduction modulo I is a representation equivalence between ${}_{\Lambda}\mathfrak{M}^0$ and \mathfrak{X} (cf. [RR1]).

EXAMPLE (3) continued. $\Gamma = (R_1)_3 \Pi(R_2)_3$ and

$$\Lambda = \left\{ \begin{pmatrix} R_1 & R_1 & R_1 \\ XR_1 & R_1 & R_1 \\ XR_1 & XR_1 & \alpha \end{pmatrix} \begin{pmatrix} R_2 & R_2 & R_2 \\ XR_2 & R_2 & R_2 \\ XR_2 & XR_2 & \alpha + XR_2 \end{pmatrix}, \alpha \in R \right\} \quad R_1 = R_2 = R.$$

The injective objects in \mathfrak{X} are

$$\begin{pmatrix} \mathfrak{f}_1\\ \mathfrak{f}_1\\ \mathfrak{f}_1 \end{pmatrix}, \begin{pmatrix} \mathfrak{f}_2\\ \mathfrak{f}_2\\ \mathfrak{f}_2 \end{pmatrix}, \begin{pmatrix} \mathfrak{f}_1\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} \mathfrak{f}_2\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} \mathfrak{f}_2\\ \mathfrak{f}_2\\ \mathfrak{f}_2 \end{pmatrix}, \begin{pmatrix} \mathfrak{f}_1\\ \mathfrak{f}_2\\ \mathfrak{f}_2 \end{pmatrix}, \alpha \in \mathfrak{f} \right\}.$$

It should be noted that not all of these modules are injective $\bar{\mathfrak{A}}$ -modules.

(7) DEFINITIONS. (i) An exact sequence of objects in \mathfrak{X} is said to be an Auslander-Reiten sequence

$$\varepsilon: 0 \to M \xrightarrow{\phi} E \xrightarrow{\psi} N \to 0$$
, if

 α .) ε is not split exact,

 β .) M and N are indecomposable,

 γ .) given any homomorphism $\alpha: X \to M(\beta: M \to Y), X(Y) \in \mathfrak{X}$ such that α is not a split epimorphism (β is not a split monomorphism), then there exists $\sigma: X \to E(\tau: E \to Y)$ with $\alpha = \sigma \psi(\beta = \varphi \tau)$.

(ii) \mathfrak{X} is said to have Auslander-Reiten sequences, if given any $N \in \mathfrak{X}$, N indecomposable not projective in \mathfrak{X} ($M \in \mathfrak{X}$, M indecomposable not injective in \mathfrak{X}), then there exists an Auslander-Reiten sequence

$$0 \to M \to E \to N \to 0.$$

5

- By (i) this sequence is uniquely determined up to isomorphism—if it exists. We write $M = \Delta_{\hat{x}}^+(N)$ and $N = \Delta_{\hat{x}}^-(M)$, and define $\Delta_{\hat{x}}^{\pm s}$ inductively.
 - (9) **PROPOSITION.** \mathfrak{X} has Auslander-Reiten sequences.

Proof. We shall use the notation of (4). If N is indecomposable non-projective in \mathfrak{X} , then there exists an indecomposable non-projective Λ -lattice L with $L/IL \cong N$. $_{\Lambda}\mathfrak{M}^{0}$ has Auslander-Reiten sequences [A, R1, e.a.], so we choose one

$$0 \to L' \to L_0 \to L \to 0.$$

Since reduction modulo I is exact and preserves non-split sequences, one sees that

$$0 \rightarrow L'/IL' \rightarrow L_0/IL_0 \rightarrow N \rightarrow 0$$

is an Auslander-Reiten sequence in \mathfrak{X} . A similar construction is done if M is . indecomposable non-injective in \mathfrak{X} . (Observe that the injective objects in \mathfrak{X} are in bijection with the injective Λ -lattices.)

It is possible to give an explicit description of the Auslander-Reiten sequences in \mathfrak{X} , similar to the one given in [R3].

We conclude with some remarks on hereditary f-algebras.

(10) If \mathfrak{A} is a hereditary f-algebra and \mathfrak{T} a torsiontheory satisfying (1), then $\mathfrak{A}/\mathfrak{a}$ is again a hereditary f-algebra; in fact, \mathfrak{a} is the torsion submodule of \mathfrak{A} , and so \mathfrak{a} is the maximal left \mathfrak{A} -ideal which has composition factors only in $\{S'_1, \ldots, S'_n\}$. In order to see that $\mathfrak{A}/\mathfrak{a}$ is hereditary, let $P/\mathfrak{a}P$ be a projective $\mathfrak{A}/\mathfrak{a}$ -module, and let U be an $\mathfrak{A}/\mathfrak{a}$ -submodule of $P/\mathfrak{a}P$. We form the pullback

$$\begin{array}{c} P \longrightarrow P/\mathfrak{a} F \\ \uparrow & \downarrow \\ Q \dashrightarrow U \end{array}$$

Then Q is a projective \mathfrak{A} -module, and it remains to show that $\mathfrak{a}Q$ is its torsion submodule. But $\mathfrak{a}Q$ is the kernel of the map

$$Q \to \mathfrak{L} \oplus_{\mathfrak{A}} Q,$$

our torsion theory being perfect, and so aQ = aP, and U is a projective \mathfrak{A}/a -module.

Modifying the proof of [AP] one thus obtains (cf. [R3]);

(11) Let \mathfrak{A} be a hereditary t-algebra and \mathfrak{T} a torsion theory satisfying (1), then the following are equivalent for the category \mathfrak{X} :

(i) \mathfrak{X} has a finite number of non-isomorphic indecomposable objects.

(ii) For every indecomposable object $U \in \mathfrak{X}$ there exists an $s \in \mathbb{N}$ with $U \cong \Delta_{\mathfrak{X}}^{-s}(P)$, where P is indecomposable projective in \mathfrak{X} .

Finally we turn to the situation where \mathfrak{A} is the tensoralgebra of a t-species with valued graph \mathfrak{S} .

(12) We say that an oriented graph G with valuation and without oriented loops is *reducible*, if there exists an edge $a \xrightarrow{(1,1)} b$ such that the graph $G \setminus \langle a \xrightarrow{(1,1)} b \rangle$ which is obtained from G by removing the edge $a \xrightarrow{(1,1)} b$ is the disjoint union $G' \cup A_s$ of some graph G' and a second graph of type A_s , in such a way that a is a sink in G' and b is a sink in A_s . We then denote by $G_{a=b}$ the graph obtained from G by identifying a and b and omitting the edge between them, and we say that $G_{a=b}$ is obtained from G by reduction.

(13) Let \mathfrak{A} be the tensoralgebra of a t-species for \mathfrak{S} ; then $\mathfrak{A}/\mathfrak{a}$ is the tensoralgebra of a t-species corresponding to a graph G. The following statements are equivalent:

(i) \mathfrak{X} has a finite number of non-isomorphic indecomposable objects,

(ii) G can be reduced (by the process described in (12)) to a Dynkin diagram. This statement is proved in [RR2] under nearly the same hypotheses.

References

[A] Auslander, M., Existence theorems for almost split sequences, Oklahoma Ring theory conference, March 1976.

------, Representation theory of Artin algebras I, II, Comm. Algebra, 1, 177-268 (1974), 1, 239-294 (1975).

- [AP] Auslander, M. and I. M. Platzeck, Representation theory of hereditary Artin algebras, Preprint 1976.
- [AR] Auslander, M. and I. Reiten, Representation theory of Artin algebras III, Comm. Algebra 3, 239–294 (1975).
- [DR] Dlab, V. and C. M. Ringel, Indecomposable representations of graphs and algebras, Memoir Am. Math. Soc. 173, 1976.
- [R1] Roggenkamp, K. W., The construction of almost split sequences for integral group rings and orders, Comm. Algebra 5, 1363–1373.
- [R2] —, Some examples of orders of global dimension two, Math. Z. 154, 225–238 (1977).
 , Orders of global dimension two, Math. Z. 160, 63–67, (1978).
- [R3] ——, Indecomposable representations of orders of global dimension two II, to appear J. Algebra.
- [RR1] Ringel, C. M. and K. W. Roggenkamp, Diagrammatic methods in representation theory of orders, to appear J. Algebra.
- [RR2] ——, Indecomposable representations of orders of global dimension two I, to be published.
 [S] Stenström, B., Rings of quotients, Grundl. Math. 217, Springer-Verlag 1975.

MATHEMATISCHES INSTITUT B UNIVERSITAT STUTTGART 7 STUTTGART 1, POSTFACH 560, WEST GERMANY

1980]

65