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Absolute Continuity of Wasserstein
Barycenters Over Alexandrov Spaces

Yin Jiang

Abstract. In this paper, we prove that on a compact, n-dimensional Alexandrov space with curva-
ture at least −1, the Wasserstein barycenter of Borel probability measures µ1 , . . . , µm is absolutely
continuous with respect to the n-dimensional Hausdoròmeasure if one of them is.

1 Introduction

In this paper, we study the barycenters in Wasserstein space over a compact Alexan-
drov space.

Let M be a compact, n-dimensional Alexandrov space with curvature at least −1.
Denote by P(M) the set of Borel probability measures on M, and by Pac(M) the set
of absolutely continuous Borel probability measures on M.

Deûnition 1.1 AWasserstein barycenter (with equalweights) of µ1 , . . . , µm ∈ P(M)
is deûned as the Borel probability measure on M that minimizes

µ z→
m
∑
i=1

W2
2 (µ i , µ),

whereW2(µ i , µ) denotes the quadraticWasserstein distance from µ i to µ.

_e existence and uniqueness (under mild conditions) ofWasserstein barycenters
are not diõcult to establish; see_eorem4.1. Whenm = 2, for µ0 and µ1, the barycen-
ter µ 1

2
is equivalent to the displacement interpolation [16], which was introduced in

R. McCann’s PhD thesis [15]. Proving that displacement interpolants are absolutely
continuous (with respect to Hausdorò measure of the appropriate dimension) plays
a key role in studying the behavior of functionals along these interpolants. Absolute
continuity of displacement interpolantswas proved inRn inMcCann’s thesis, on Rie-
mannian manifolds in [9], and on Alexandrov spaces in [10].

In the multi-marginal case, the Wasserstein barycenters were considered previ-
ously byAgueh–Carlier [1]when the underlying space is Euclidean. _ey proved that
the barycenter is absolutely continuous with an L∞ density if one of the marginals
is. See also [7,20,21] for other results. Recently, for compact Riemannian manifolds,
Y.-H. Kim and B. Pass [13] proved the absolute continuity of theWasserstein barycen-
ter for probability measures when one of µ1 , . . . , µm is.
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For our purpose, ûrst of all we study the multi-marginal optimal transport prob-
lem. _e existence and uniqueness of the solution is fundamental for our proof.

Let M be an n-dimensional Alexandrov space with curvature at least −1, possibly
non-compact. GivenBorel probabilitymeasures µ1 , µ2 , . . . , µm on M and a cost func-
tion c∶Mm → R, we consider themulti-marginal optimal transportation problem of
Monge. _at is,minimize

(M) ∫
M
c(x1 , F2(x1), . . . , Fm(x1))dµ1(x1)

among (m − 1)-tuples of mappings (F2 , . . . , Fm) such that for each i, Fi ∶M → M
pushes µ1 forward to µ i (o�en denoted by F#µ1 = µ i). _at is, for any Borel subset
A ⊂ M, µ i(A) = µ1(F−1

i (A)).
Let

π i ∶ (x1 , . . . , xm) ∈ Mm z→ x i ∈ M
be the projection operator. _e set of probability measures on Mm , which project to
µ i for i = 1, . . . ,m, is denoted by

Γ(µ1 , . . . , µm) ∶= {γ∣π#γ = µ i}.

_e corresponding Kantorovich formulation of themulti-marginal optimal transport
problem is to minimize

(K) ∫
Mm
c(x1 , x2 , . . . , xm)dγ(x1 , x2 , . . . , xm)

among γ ∈ Γ(µ1 , . . . , µm). When c(x1 , . . . , xm) is lower semi-continuous, an optimal
plan for (K) always exists; see [2]. Note that the minimum may be +∞ when M is
non-compact.

When m = 2, this problem has been studied extensively over the past 25 years.
In recent years, the multi-marginal case m ⩾ 3 of the Monge problem has attracted
increasing attention. However, the structure of solutions for general cost functions is
notwell understood. Gangbo and Swiech [11] proved the existence and uniqueness of
an optimal map for Monge problem for the cost function∑i /= j ∣x i − x j ∣

2 on Euclidean
space. Kim and Pass [14] generalized this result to compact Riemannian manifolds
for cost

c(x1 , x2 , . . . , xm) = inf
y∈M

m
∑
i=1

d2

2
(x i , y).

Our ûrst result is the following existence and uniqueness theorem for the cost

(1.1) c(x1 , x2 , . . . , xm) = inf
y∈M

m
∑
i=1
f i(d(x i , y)) ,

where f i ∶ [0,∞) → R are C1, strictly increasing, strictly convex functions, and the
right derivative f +i (0) = 0 for each i = 1, . . . ,m. _is is a generalization of Kim and
Pass’s result.1

1Kim and Pass [14] proved an existence and uniqueness theorem for costs as in (1.1) in the case of a
compact Riemannian manifold and when the f i ′s are C2 .
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_eorem 1.2 Let M be an n-dimensional Alexandrov space (not necessarily com-
pact) with curvature at least −1. Denote byHn the n-dimensional Hausdorò measure.
Assume µ1 is absolutely continuous with respect to Hn and

inf
γ
{∫

Mm
c(x1 , . . . , xm)dγ ∶ γ ∈ Γ(µ1 , . . . , µm)} <∞;

then the solution γ to (K) is concentrated on the graph of amapping (F2 , . . . , Fm) over
the ûrst variable. _is mapping is a solution ofMonge’s problem (M). And the solutions
of both (K) and (M) are unique.

If y ∈ M attains the inûmumof z ↦ ∑m
i=1 f i(d(x i , z)), thenwe say that y is amean

of x1 , . . . , xm . If in addtion f i = t2/2, y is called a barycenter of x1 , . . . , xm .
_e approach of [14] consists of two parts. Let γ be an optimal measure in (K). In

the ûrst part, Y.-H. Kim and B. Pass showed that if x1 is µ1-a.e., then those m-tuples
(x1 , . . . , xm) ∈ spt(γ) share the samemeans, which is a single point y. A key lemma
in [14] is that any mean y of x1 , . . . , xm is not in the cut locus of x i for each i, so
each function d2/2(x i , ⋅ ) is diòerentiable at y (in fact C2) and∑m

i=1∇y
d2
2 (x i , y) = 0.

In the second part, by this lemma, they showed that for each y there is at most one
corresponding point (x1 , . . . , xm) in the support of γ. _e combination of these two
facts implies the existence and uniqueness of the solution of Monge problem. Our
proof is basically along the lines of [14]. However, on Alexandrov spaces, the means
might not even be regular points (see Example 3.9). To overcome this diõculty, we
use the result by Ohta on barycenters on Alexandrov spaces (see_eorem 3.5).
Denote by γ the unique optimal measure in themulti-marginal problem (K) and

by bc(x1 , . . . , xm) the set of barycenters of x1 , . . . , xm (which, by Lemma 3.3 and_e-
orem 3.10, is unique for γ almost all (x1 , x2 , . . . , xm)). A result of Carlier and Ekeland
[7] implies that ν ∶= bc #γ is the unique barycenter. _is property plays an essential
role in the proof of absolute continuity. Our main result of this paper is the following
theorem, which generalizes a result of [13] on manifolds to Alexandrov spaces.

_eorem 1.3 Let M be a compact, n-dimensionalAlexandrov spacewith curvature at
least −1. Let µ1 , . . . , µm be Borel probabilitymeasures on M. If µ1 is absolutely continu-
ous with respect toHn , then theWasserstein barycenter of µ1 , . . . , µm is also absolutely
continuous with respect to Hn .

In [13], the authors adapted an argument of Figalli–Juillet [10] (who studied the
two measure case on the Heisenberg group and Alexandrov spaces). _ey ûrst ûx
x2 , . . . , xm and prove that themap G from the barycenter y to x1 is Lipschitz contin-
uous. _en for i = 2, . . . ,m, they approximate µ i by ûnite sum of Dirac measures,
obtain uniform estimates for the approximating barycenters and pass to the limit.
_e Lipschitz continuity of G is essential, and their proof relies on the property that
∑

m
i=1

d2
2 (x i , ⋅ ) are C2 near y for all i. Our proof is basically along the same lines as

theirs. However, for Alexandrov spaces, d2(x i , ⋅ ) might not even be diòerentiable
at y. To overcome this diõculty, we use Petrunin’s perturbation method to perturb
the function∑m

i=1
d2
2 (x i , ⋅ ) in order to achieve theminimum at pointswhere it is dif-

ferentiable. _en we use the semi-concavity of d2(x i , ⋅ ) to prove that G is Lipschitz
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continuous. It seems to me that, at least, we cannot use the Lipschitz character of
gradient curves relative to a semiconcave function directly; see Remark 4.4.

Our paper is organized as follows. In Section 2, we will recall the deûnition of
Alexandrov spaces and some properties. In Section 3, we will prove _eorem 1.2 for
compact Alexandrov spaces. In Section 4, we will prove _eorem 1.3. In the appen-
dix, for the completeness of the theory of existence and uniqueness, we will prove
_eorem 1.2 for non-compact Alexandrov spaces.

2 Preliminaries

In this section, we review the deûnition and some properties of Alexandrov spaces
with curvature bounded below. _ese deûnitions and results are mainly taken from
[5,6, 18].

Let (M , d) be a metric space. A rectiûable curve γ connecting two points p, q is
called a geodesic if its length is equal to d(p, q) and it has unit speed. Ametric space
is called a geodesic space if any two points p, q ∈ M can be connected by a geodesic.
Denote by M2

k the simply connected 2-dimensional space form of constant curvature
k. Given three points p, q, r in a geodesic spaceM,we can take a comparison triangle
∆ p̃ q̃ r̃ in M2

k such that
d(p̃, q̃) = d(p, q), d(p̃, r̃) = d(p, r), d(q̃, r̃) = d(q, r).

If k > 0, we add the assumption d(p, q) + d(p, r) + d(q, r) < 2π/
√

k. _e angle
∠̃k pqr ∶=∠p̃ q̃ r̃ is called the comparison angle.

Deûnition 2.1 A geodesic space M is called an Alexandrov space with curvature at
least k if it is locally compact, and for any point x ∈ M, there exists a neighborhood
Ux such that, for any four diòerent points p, a, b, c in Ux , we have

∠̃kabp + ∠̃kbpc + ∠̃kcpa ⩽ 2π.

_e Hausdorò dimension of an Alexandrov space is always an integer. Let M be
an n-dimensional Alexandrov space with curvature ⩾ k. Denote the n-dimensional
Hausdoròmeasure byHn . Given any two geodesics γ(t) and η(s)with γ(0) = η(0) =
p, the angle

∠(γ+(0), η+(0)) ∶= lim
t ,s→0

∠̃kγ(t)pη(s)

is well deûned.
We say η(t) is equivalent to γ(t) if∠(γ+(0), η+(0)) = 0. Denote by Σ′p the set of

equivalence classes of geodesic γ(t) with γ(0) = p. _e space of directions Σp is the
completion ofmetric space (Σ′p ,∠).

_e tangent cone at p, Tp , is the Euclidean cone over Σp ; it is an Alexandrov space
with curvature at least 0. For any two vectors u, v ∈ Tp . _e “scalar product” (see
[26, section 1]) is deûned by

⟨u, v⟩ = ∣u∣∣v∣ cos∠(u, v).
_e distance ∣uv∣ is deûned by the law of cosines

∣uv∣2 = ∣u∣2 + ∣v∣2 − 2∣u∣∣v∣ cos∠(u, v).
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For each point x /= p,we denote by ⇑xp the set of directions at p corresponding to all
geodesics connecting p to x. _e symbol ↑xp denotes the direction at p corresponding
to some geodesic px. Given a direction ξ ∈ Σp , it is possible that there exists no
geodesic γ(t) starting at p with γ+(0) = ξ. However, it was shown in [23] that for
p ∈ M and any direction ξ ∈ Σp , there exists a quasi-geodesic γ ∶ [0,+∞) → M with
γ(0) = p and γ+(0) = ξ.
For p ∈ M, denote by

Wp ∶= {x ∈ M/p ∣ there exists y ∈ M such that y /= x and ∣py∣ = ∣px∣ + ∣xy∣}.

According to [18],Wp has full measure. Since geodesics do not branch inAlexandrov
spaces [6], for any x ∈ Wp , there is a unique geodesic connecting p to x, ⇑xp contains
only one element, and the direction ↑xp is uniquely determined. Recall that the map
logp ∶Wp → Tp is deûned by logp(x) ∶= ∣px∣ ⋅ ↑xp . Setting

Wp ∶= logp(Wp) ⊂ Tp ,

themap logp ∶Wp →Wp is one-to-one. _e exponential map expp ∶Tp → M is deûned
by Petrunin [25] as follows: expp(op) = p and for any v ∈ Tp/{op}, expp(v) is a point
on some quasi-geodesic of length ∣v∣ starting from p along direction v/∣v∣ ∈ Σp . If the
quasi-geodesic is not unique, we ûx some one of them as the deûnition of expp(v).

Next,we introduce λ-concave functions and semi-concave functions. See [26, sec-
tion 1].

Deûnition 2.2 Let M be an n-dimensional Alexandrov space without boundary
and let U ⊂ M be an open subset. A locally Lipschitz function f ∶U ↦ R is called
λ-concave if for any geodesic γ(t) in U , the function f ○ γ(t) − λt2/2 is concave.

A function f ∶M ↦ R is called semiconcave if for any point x ∈ M, there is a
neighborhood Ux ∋ x and λ ∈ R such that the restriction f ∣Ux is λ-concave. Given
a semiconcave function f ∶M ↦ R, its diòerential dp f is well deûned for each point
p ∈ M. Let φ∶R → R be a continuous function. A function f ∶M ↦ R is called φ( f )-
concave if for any point x ∈ M and є > 0, there is a neighborhood Ux ∋ x such that
f ∣Ux is (φ ○ f (x) + є)-concave.
A point p in an n-dimensional Alexandrov space M is said to be regular if its tan-

gent cone Tp is isometric to Rn with standard metric. Denote by Reg(M) the set of
regular points.

Deûnition 2.3 We say that a function u is diòerentiable at x ∈ Reg(M), if there exists
a vector in Tx , denoted by ∇u(x), such that for any geodesic γ(t) with γ(0) = x

u(γ(t)) = u(x) + ⟨∇u(x), γ+(0)⟩ t + o(t).

_eRademacher theorem, in the framework of ametricmeasure spacewith a dou-
blingmeasure and aPoincaré inequality for upper gradient,wasproved byCheeger [8].
In [4], Bertrand proved it in Alexandrov space via a simple argument: a locally Lip-
schitz function u is diòerentiable almost everywhere with respect to Hn in M. _e
points where a distance function is diòerentiable have the following property.

https://doi.org/10.4153/CJM-2016-035-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-035-8


1092 Y. Jiang

Lemma 2.4 For any p ∈ M, if f ( ⋅ ) ∶= d(p, ⋅ ) is diòerentiable at x, then there exists
a unique geodesic connecting p to x.

Proof Suppose not; then there exist two geodesics γ1(t), γ2(t) connecting p to x
with γ1(0) = γ2(0) = x. Since f is diòerentiable at x, for i = 1, 2 we have

−t = f ○ γ i(t) − f (x) = ⟨∇ f (x), γ+i (0)⟩ t + o(t).
_is means that

cos∠(
∇ f (x)
∣∇ f (x)∣

, γ+i (0)) = −1,

which is impossible.

We will make frequent use of the following two lemmas.

Lemma 2.5 For any p ∈ M, let f (x) ∶= d(p, x), then the function f is cosh fsinh f -concave
on M/p and d2(p, x) is f cosh fsinh f -concave on M.

Lemma 2.6 Let f ∶M ↦ R be a semiconcave function. If f achieves a local minimum
at x ∈ M, then dx f = 0. If we assume in addition that f is diòerentiable at x, then
∇ f (x) = ox .

Next we introduce the ûrst variation formula, which is important in the proof of
_eorem 1.2; see [5, Corollary 4.57 and Remark 4.5.12].

_eorem 2.7 (First variation formula of arc length [5]) Let M be an n-dimensional
Alexandrov space with curvature at least −1. For any geodesic γ and p ∈ M , p /= γ(0),
the function t → l(t) = d(p, γ(t)) has the right derivative and

lim
t→0+

l(t) − l(0)
t

= − cos∠αmin ,

where αmin is the inûmum (in fact,minimum) of angles between γ and shortest geodesics
connecting γ(0) to p.

Set∠αmin ≜∠(⇑
p
γ(0) , γ

+(0)). Note that for any ↑pγ(0) ∈ ⇑
p
γ(0), since

∠(⇑
p
γ(0) , γ

+(0)) ⩽∠(↑
p
γ(0) , γ

+(0)) ,

we have

lim
t→0+

l(t) − l(0)
t

= − cos∠(⇑
p
γ(0) , γ

+(0)) ⩽ − cos∠(↑
p
γ(0) , γ

+(0))

= −⟨↑
p
γ(0) , γ

+(0)⟩.

(2.1)

Next, we introduce Perelman’s concave function.

Lemma 2.8 (Perelman’s concave function [22, 24]) For any p ∈ M, there exists a
constant r1 > 0 and a function h∶Bp(r1)↦ R such that
(i) h is −1-concave;
(ii) h is 2-Lipschitz (i.e., 2 can be a Lipschitz constant).
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(iii) For each x ∈ Bp(r1), we have

∫
Σx
dxh(ξ)dξ ⩽ 0.

Moreover, if “=” holds, then x is regular.

_e existence of such a concave function and (i), (ii) are due to Perelman [22].
Part (iii) is implicitly claimed in Petrunin’s manuscript [24]. See [29, Lemma 3.3] for
a detailed proof.

We now follow Petrunin in [24] to introduce a perturbation argument; we also
refer the reader to [29]. _e following lemma is used to perturb a non-regular point
to a regular point; it is a particular case of one appeared in [24, p. 10].

Lemma 2.9 Let h be as above. Suppose that u is a λ-concave function on Bp(r1).
For any є > 0, if x ∈ Bp(r1) is a minimum point of function u + єh, then x has to be a
regular point.

Sketch of proof First, we state a property. Let Ω ⊂ M be a domain, suppose f ∶Ω →
R is a semiconcave function, and x ∈ Ω; then

∫
Σx
dx f (ξ)dξ ⩽ 0.

See, for example, [29, Proposition 3.1] for a proof. It follows that

(2.2) ∫
Σx
dxu(ξ)dξ ⩽ 0, ∫

Σx
dxh(ξ)dξ ⩽ 0.

Since x is aminimum point of u + єh, by Lemma 2.6, for any ξ ∈ Σx , we have

0 = dx(u + єh)(ξ) = dxu(ξ) + єdxh(ξ).

It follows that

(2.3) ∫
Σx
dxu(ξ)dξ + є∫

Σx
dxh(ξ)dξ = 0.

Since є > 0, by combining (2.2) and (2.3), we obtain

∫
Σx
dxh(ξ)dξ = 0.

By Lemma 2.8, x is a regular point.

Let u be a λ-concave function on a bounded domain U . Suppose x0 is the unique
minimum point of u on U and u(x0) < minx∈∂U u. It is easy to see that λ > 0. Other-
wise, by Lemma 2.6, we have u(x) ⩽ u(x0) for x ∈ U , which contradicts the fact that
x0 is the uniqueminimum point. Suppose also that x0 is regular. By [6, theorem 9.4],
there exist n points a1 , . . . , an ∈ U such that

g = (d(a1 , ⋅ ), . . . , d(an , ⋅ ))
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maps a small neighborhood BR0(x0)(⊂ U) almost isometrically onto a domain inRn .
_at is, there exists a suõciently small number κ > 0 such that

(2.4) ∣
∥g(x) − g(y)∥

d(x , y)
− 1∣ ⩽ κ for all x , y ∈ BR0(x0), x /= y.

For 1 ⩽ i ⩽ n, denote g i(x) = d(a i , x). By Lemma 2.5, there exists a positive con-
stant λ0 depending only onmin{1⩽i⩽n} d(a i , BR0(x0)), such that g i are λ0-concave on
BR0(x0) for 1 ⩽ i ⩽ n. _ere exists є0 > 0 such that for each vectorV = (v1 , v2 , . . . , vn)
with ∣v i ∣ ⩽ є0 for all 1 ⩽ i ⩽ n, the function

G(V , x) ∶= u(x) +
n
∑
i=1

v i g i(x)

has a minimum point in the interior of U . We can deûne ρ∶ [0, є0]n ⊂ Rn ↦ U by
letting ρ(V) be one of theminimum point of G(V , x). _e following lemma is used
to perturb a regular point to a nearby point; compare the lemma on [24, p. 8].

Lemma 2.10 Let u, x0 , {g i}
n
i=1 and let ρ be as above. _en there exists some є ∈

(0, є0) and δ > 0 such that

d( ρ(V), ρ(W)) ⩾ δ∥V −W∥, ∀V ,W ∈ [0, є]n .

In particular, for arbitrary є′ ∈ (0, є), the image ρ([0, є′]n) has nonzero Hausdorò
measure.

Remark 2.11 In Lemmas 2.9 and 2.10, we assume that u is λ-concave, which is
stronger than Petrunin’s assumption. In [24], Petrunin used a chart with concave
components near a regular point, while in Lemma 2.10, we do not need the compo-
nents to be concave.

Proof AsV → 0,G(V , x)→ u. Since x0 is the uniqueminimumpoint of u,we have
that ρ(V) → x0. We ûx a small positive number є > 0 such that when ∣v i ∣ ⩽ є for all
1 ⩽ i ⩽ n, ρ(V) ∈ B R0

4
(x0). Since ρ(V) is the minimum point of G(V , x), we have

that
G(W , ρ(W)) −G(W , ρ(V))

= G(V , ρ(W)) −G(V , ρ(V)) + (W − V)( g(ρ(W)) − g(ρ(V)))

⩾ (W − V)( g(ρ(W)) − g(ρ(V)))

⩾ −2∥W − V∥d( ρ(W), ρ(V)) ,

(2.5)

the last inequality holding since g is an almost isometry. Denote λ ∶= λ + nєλ0 > 0.
Since g i are λ0-concave for all 1 ⩽ i ⩽ n, G(V , x) is λ-concave. Since ρ(V) is the
minimum point of g(V , x), by Lemma 2.6, for any x ∈ BR0(x0), we have

G(W , x) −G(W , ρ(V))

= G(V , x) −G(V , ρ(V)) + (W − V)( g(x) − g(ρ(V)))

⩽
λ
2
∣xρ(V)∣2 + (W − V)( g(x) − g(ρ(V))) .

(2.6)
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For any 0 < R < R0
2 , there exists x ∈ BR0(x0) with d(x , ρ(V)) = R and

(W − V)( g(x) − g(ρ(V))) ⩽ −
∥W − V∥∥g(x) − g(ρ(V))∥

2

⩽ −
∥W − V∥R

4
.

(2.7)

Since G(W , x) ⩾ G(W , ρ(W)) for any x ∈ BR0(x0), by combining (2.5), (2.6), and
(2.7), we have

λ
2
R2 −

R∥W − V∥

4
⩾ −2d( ρ(W), ρ(V))∥W − V∥.

Set N = 4nє
R0λ

+ 1, choose

R =
∥W − V∥

10λN
⩽

nє
10λN

⩽
R0

10
.

We get that

d(ρ(W), ρ(V)) ⩾
1

80λN
(1 − 1

5N
)∥W − V∥.

Let δ = 1
80λN

(1 − 1
5N ), and we complete the proof.

3 Existence and Uniqueness of the Solution of Multi-marginal
Optimal Transport Problem

_e dual problem to (K) is to maximize

(D)
m
∑
i=1
∫

M
u i(x i)dµ i(x i)

among all m tuples (u1 , . . . , um) of functions, with u i ∈ L1(µ i) and
m
∑
i=1

u i(x i) ⩽ c(x1 , . . . , xm)

for µ1-a.e. x1 ∈ M,. . . , µm-a.e. xm ∈ M
We say that an m-tuple (u1 , . . . , um) is c-conjugate if, for all i = 1, . . . ,m, we have

(3.1) u i(x i) = inf
x j∈M , j/=i

[ c(x1 , . . . , xm) −∑
j/=i

u j(x j)] .

_e following theorem is well known. In fact, it holds on more general settings;
see [12, 19,27,28] for further discussion.

_eorem 3.1 If

inf
γ
{∫

Mm
c(x1 , . . . , xm)dγ ∶ γ ∈ Γ(µ1 , . . . , µm)} <∞,

then there exists a c-conjugate solution (u1 , . . . , um) to (D) and themaximum value in
(D) is ûnite. If γ is an optimal measure in the Kantorovich problem, we have

(3.2)
m
∑
i=1

u i(x i) = c(x1 , . . . , xm)
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γ-almost everywhere.

In this section, in order to make our argument more clear and understandable,
in this section, we only prove _eorem 1.2 for compact Alexandrov spaces, which is
enough for our use. _e non-compact case, the proof ofwhich follows the same steps
as that of the compact case, is le� to the appendix.

So in this section, we suppose that M is a compact, n-dimensional Alexandrov
space with curvature ⩾ −1. _e following two lemmas are standard.

Lemma 3.2 _e cost function c(x1 , . . . , xm) is Lipchitz. Suppose u1 is given by (3.1).
If u1 is not identically inûnity, then u1 is Lipschitz.

Proof For any (x1 , . . . , xm), (x′1 , . . . , x′m) ∈ Mm . Let y be a mean of x1 , . . . , xm .
Since f ′i is increasing for each i, any x i , y ∈ M,

f ′i (d(x i , y)) ⩽ f ′i (diamM) ≜ L i <∞.

By the deûnition of c, we have

c(x′1 , . . . , x′m) − c(x1 , . . . , xm) ⩽
m
∑
i=1
f i(d(x′i , y)) −

m
∑
i=1
f i(d(x i , y))

⩽
m
∑
i=1

∣ f i(d(x′i , y)) − f i(d(x i , y)) ∣

⩽
m
∑
i=1

L id(x i , x′i) ⩽ m
m
∑
i=1

L i

¿
Á
ÁÀ

m
∑
i=1
d2(x i , x′i).

_us, c is m(L1 + ⋅ ⋅ ⋅ + Lm)-Lipschitz.
Since c is bounded on Mm , if there exists a point z ∈ M such that u1(z) = −∞, then

there exists a sequence (xk
2 , . . . , xk

m) ∈ Mm−1 such that∑m
j=2 u j(xk

j )→ +∞ as k →∞.
For any x1 ∈ M, choose this sequence in (3.1), and we can get u1 ≡ −∞. If there exists
a point z ∈ M such that u1(z) = +∞, then for any m − 1 tuple (x2 , . . . , xm),

−
m
∑
j=2

u j(x j) = +∞;

thus, u1 ≡ +∞. So if u1 is not identically inûnity, it is ûnite.
In the casewhere u1 is ûnite, for all є > 0, there exists (x2,є , . . . , xm ,є) ∈ Mm−1 such

that
u1(x1) ⩾ c(x1 , x2,є , . . . , xm ,є) −

m
∑
j=2

u j(x j) − є.

For x′1 /= x1,

u1(x′1) − u1(x1) ⩽ c(x′1 , x2,є , . . . , xm ,є) − c(x1 , x2,є , . . . , xm ,є) + є
⩽ L1d(x1 , x′1) + є.

By the arbitrariness of є, we have that u1 is L1-Lipschitz.

Since u1 ∈ L1(µ1), we have that u1 is not identically inûnity; then u1 is Lipschitz,
hence µ1-a.e. diòerentiable. For any x1 ∈ M, by the compactness of M, there exists
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(x2 , . . . , xm) ∈ Mm−1 such that∑m
i=1 u i(x i) = c(x1 , . . . , xm). _e next lemma implies

that for µ1-a.e. x1, thosem-tuples (x1 , . . . , xm) ∈ spt(γ) share the samemeans, which
is a single point.

Lemma 3.3 If x1 ∈ Reg(M) is a point where u1 is diòerentiable, then for any
(x2 , . . . , xm) ∈ Mm−1 such that ∑m

i=1 u i(x i) = c(x1 , . . . , xm), c is diòerentiable with
respect to x1 at (x1 , . . . , xm) and
(3.3) ∇x1 c(x1 , . . . , xm) = ∇u1(x1).

_emean is uniquely determined by ∇u1(x1):

(3.4) y =
⎧⎪⎪
⎨
⎪⎪⎩

x1 , if ∇u1(x1) = 0,
expx1

(−( f ′1 )−1(∣∇u1(x1)∣)
∇u1(x1)

∣∇u1(x1)∣
) if ∇u1(x1) /= 0.

Proof Let γ(t) be a geodesicwith γ(0) = x1. For any (x2 , . . . , xm) ∈ Mm−1 such that
∑

m
i=1 u i(x i) = c(x1 , . . . , xm),

c(γ(t), x2 , . . . , xm) − c(x1 , . . . , xm) ⩾ u1(γ(t)) +
m
∑
i=2

u i(x i) −
m
∑
i=1

u i(x i)

= u1(γ(t)) − u1(x1)

= ⟨∇u1(x1), γ+(0)⟩ t + o(t).

(3.5)

Let y be amean of x1 , . . . , xm . _en

c(γ(t), x2 , . . . , xm) − c(x1 , . . . , xm)

⩽ f1(d(γ(t), y)) +
m
∑
i=2
f i(d(x i , y)) −

m
∑
i=1
f i(d(x i , y))

= f1(d(γ(t), y)) − f1(d(x1 , y)) .

(3.6)

If y /= x1, for any ↑yx1 ∈ ⇑
y
x1
, by (2.1), we have

f1(d(γ(t), y)) − f1(d(x1 , y)) ⩽ −⟨ f ′1 (d(x1 , y))↑yx1 , γ
+(0)⟩ t + o(t).

If y = x1, since f +(0) = 0, then

f1(d(γ(t), y)) − f (d(x1 , y)) = f (t) − f (0) = o(t),
which coincides with the above inequality.

_us, we have
⟨∇u1(x1) + f ′1 (d(x1 , y))↑yx1 , γ

+(0)⟩ ⩽ 0.

Applying the above argument to a sequence of geodesics starting at x, whose direc-
tions converge to −γ+(0), we get

f ′1 (d(x1 , y))↑yx1 = −∇u1(x1).

Together with (3.5) and (3.6), we can get that c( ⋅ , x2 , . . . , xm) is diòerentiable at x1
and (3.3).

_us, we have

(3.7) f ′1 (d(x1 , y)) = ∣∇u1(x1)∣.
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If∇u1(x1) = 0, since f ′1 is strictly increasing from 0, then y = x1. If∇u1(x1) /= 0, then

(3.8) ↑
y
x1 = −

∇u1(x1)

f ′1 (d(x1 , y))
= −

∇u1(x1)

∣∇u1(x1)∣
.

_us, we have (3.4).

Remark 3.4 If y /= x1, from (3.7) and (3.8), we can see that there exists a unique
geodesic connecting x1 to y.

In [17], Ohta obtained a crucial property of the means; see [17, Lemma 4.6 and
_eorem 4.11]. We adapt the original statement for our use.

_eorem 3.5 (Ohta [17]) Let M be an Alexandrov space and let y ∈ M be a mean
of x1 , . . . , xm ∈ M. _en for each i, there exists a unique geodesic connecting y to x i . If
y = x i for some i, we just let ↑x i

y = oy . Moreover, ↑x1
y , . . . , ↑xmy are contained in a subset

H ⊂ Ty which is isometric to a Hilbert space, and

(3.9)
m
∑
i=1
f ′i (d(x i , y))↑x i

y = 0.

Remark 3.6 Ohta’s original theorem corresponds to the case where f i(t) = t2
2 .

Following the proof of [17, Lemma 4.6 and_eorem 4.11], it is not hard to prove the
above theorem.

Corollary 3.7 ([17, Corollary 4.12]) Suppose that, at a point y ∈ M, no pair of direc-
tions ξ, η ∈ Σy satisûes∠(ξ, η) = π. _en y cannot be amean.

Next we list two typical examples.

Example 3.8 Let M be the Euclidean cone over a circle of length l ∈ (0, 2π). _en
the origin of the cone cannot be a barycenter.

Example 3.9 Let S be the spherical suspension over a circle of length l ∈ (0, 2π). Let
M be the Euclidean cone over S with origin p. _en Σp = S, so p is not a regular point.
Let ξ, η ∈ S with ∠(ξ, η) = π. _en the two rays starting at p along the directions ξ
and η form a geodesic through p. _us, p is a barycenter of any two points on this
geodesic with the same distance to p.

Next we show that given amean y ∈ M, the m tuple (x1 , . . . , xm) ∈ spt(γ) can be
uniquely determined.

_eorem 3.10 Suppose x = (x1 , . . . , xm) and x = (x 1 , . . . , xm) are both in spt(γ)
and there exists y ∈ M that is both themean of x1 , . . . , xm and x 1 , . . . , xm . _en x = x.

Proof First, we recall a basic fact about multi-marginal optimal transport, known
as c-monotonicity. If x , x′ ∈ spt γ for an optimal γ, set x′ = (x1 , . . . , x i , . . . , xm) and
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x′ = (x 1 , . . . , x i , . . . , xm). _en

(3.10) c(x′) + c(x′) ⩾ c(x) + x(x).

We will show that x i = x i . We have

c(x′) + c(x′) ⩽∑
j/=i
f j(d(x j , y)) + f i(d(x i , y)) +∑

j/=i
f j(d(x j , y)) + f i(d(x i , y))

=
m
∑
j=1
f j(d(x j , y)) +

m
∑
j=1
f j(d(x j , y)) = c(x) + c(x).

In view of (3.10), the above inequalities are equalities, and we have

c(x′) =∑
j/=i
f j(d(x j , y)) + f i(d(x i , y)).

_at is, y is also amean of x1 , . . . , x i , . . . , xm . By (3.9), we have
m
∑
i=1
f ′i (d(x i , y))↑x i

y = 0 =∑
j/=i
f ′j (d(x i , y)) + f ′i (d(x i , y))↑x i

y .

Hence, we obtain
f ′i (d(x i , y))↑x i

y = f ′i (d(x i , y))↑x i
y .

If y = x i , then ↑x i
y = oy or d(x i , y) = 0; in either case, y = x i . If y = x i , we have

y = x i . If y /= x i and y /= x i , then

↑x i
Y = ↑x i

y and f ′i (d(x i , y)) = f ′i (d(x i , y)) .

Since f ′i is strictly increasing, we have d(x i , y) = d(x i , y). So x i = x i .

Next, we prove_eorem 1.2 for the compact case.

Proof For any optimal measure γ, we need to show that for µ1-a.e. x1, there is a
unique (x1 , x2 , . . . , xm) ∈ spt(γ). If not, then there exists a Borel subset A ⊂ M with
µ1(A) > 0, such that for x1 ∈ A, there are no (x1 , x2 , . . . , xm) ∈ spt(γ). _at is,
A ×Mm−1 ∩ spt(γ) = ∅. However, γ(A ×Mm−1) = µ1(A) > 0, contradiction. So we
have existence.

Since u1 is Lipschitz, it is diòerentiableHn-a.e. Since µ1 is absolutely continuous
with respect to Hn , we have u1 is diòerentiable µ1-a.e. _us, at µ1-a.e. x1, u1 is diòer-
entiable and there exists (x1 , x2 , . . . , xm) ∈ spt(γ).
For such a point, by Lemma 3.3, all the m-tuples (x1 , x2 , . . . , xm) ∈ spt(γ) have

the same uniquemean y. While by_eorem 3.10, there is only one (x1 , x2 , . . . , xm) ∈
spt(γ) such that y is themean of (x1 , x2 , . . . , xm). _us, we have the uniqueness. We
deûne themap (x2 , . . . , xm) = (F2(x1), . . . , Fm(x1)), it is well deûned µ1-a.e.

It remains to prove the uniqueness of the optimal measure γ. Suppose there exists
another optimal minimizer γ. By the above argument, it is concentrated on a graph,
denoted by (F2 , . . . , Fm). By linearity of the Kantorovich functional, 1

2γ +
1
2γ is also

optimal andmust be concentrated on a graph. _is implies that

(F2 , . . . , Fm) = (F2 , . . . , Fm)

for µ1-a.e. x ∈ M. _us, we complete the proof.
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Remark 3.11 In [14], by assuming f i to be C2, the authors proved that themean y
is not in the cutlocus of x1 , . . . , xm We only assume that f i ∈ C1, since our argument
does not rely on this property.

4 Barycenters in Wasserstein Space Over Alexandrov Spaces

In this section, we prove _eorem 1.3. Recall the basic setting: M is a compact,
n-dimensionalAlexandrov spacewith curvature at least−1, µ1 , . . . , µm are Borel prob-
ability measures, µ1 is absolutely continuous with respect to Hn .

We present below an existence and uniqueness theorem, which is due to Pass and
Kim.

_eorem 4.1 ([13, _eorem 3.1]) Let M be a compact, n-dimensional Alexandrov
spacewith curvature at least−1, let µ i be Borel probabilitymeasures on M. If at least one
of them is absolutely continuous with respect to Hn , then there exists a uniqueWasser-
stein barycenter.

Since µ1 is absolutely continuouswith respect toHn , there exists a uniqueWasser-
stein barycenter. _e corresponding cost function we consider in this section is:

c(x1 , . . . , xm) = inf
z∈M

m
∑
i=1

d2

2
(x i , z).

In this case, the means are also called barycenters. We adopt some notation from
[13]: bc(x1 , x2 , . . . , xm) denotes the set of barycenters of x1 , . . . , xm . For each Borel
set E ⊂ M, and m − 1 points x2 , . . . , xm , let

bc(E , x2 , . . . , xm) ∶= ⋃
x1∈E

bc(x1 , x2 , . . . , xm).

Let γ be the unique optimal measure in the multi-marginal problem (K). Since
the barycenter is unique for γ-a.e. (x1 , . . . , xm), this gives a γ-a.e. one-to-one map
bc∶ spt γ ↦ M. A result of Calier and Ekeland [7, proof of Proposition 3] implies that
ν ∶= bc #γ is the uniqueWasserstein barycenter.

Now ûx x2 , . . . , xm , set bc(E) ∶= bc(E , x2 , . . . , xm); then bc(M) is the set of bary-
centers in M. For each y ∈ bc(M), there exists x1 ∈ M such that y ∈ bc(x1). By (3.9),
we know that x1 is uniquely determined. _en we can deûne a map G∶bc(M) ↦ M
by letting G(y) = x1, which can be seen as the inverse of bc.

Lemma 4.2 G∶bc(M)↦ M is continuous.

Proof For any y ∈ bc(M), let u = G(y). For any sequence bc(M) ∋ yk → y, let
uk = G(yk). If uk ↛ u, by the compactness of M, there exists a subsequence of uk
(still denoted by uk for simplicity) such that uk → v /= u. Since x1 ↦ c(x1 , . . . , xm) is
Lipschitz,

c(uk , x2 , . . . , xm)Ð→ c(v , x2 , . . . , xm).
Note that

c(uk , x2 , . . . , xm) =
d2

2
(uk , yk) +

m
∑
i=2

d2

2
(x i , yk)→

d2

2
(v , y) +

m
∑
i=2

d2

2
(x i , y);
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then y ∈ bc(v), which contradicts to the fact that G(y) is unique. _us, we have
proved that G is continuous.

Denote by D the diameter of M. Our main result is the following theorem.

_eorem 4.3 G is Lipschitz with a Lipschitz constant CD only depending on D.

To make our argument more understandable, we ûrst explain the idea of our
proof. Given two points y1 , y2 ∈ bc(M), let u = G(y1) and v = G(y2). To sim-
plify our explanation, we assume that y1 , y2 are regular points and d2(u, ⋅ ), d2(v , ⋅ ),
d2(x2 , ⋅ ), . . . , d2(xm , ⋅ ) are diòerentiable at y1 , y2. Note that this assumption does
not hold for all barycenters. We do not even know whether such a point exists. Let

f1 ∶=
d2

2
(u, ⋅ ) +

m
∑
i=2

d2

2
(x i , ⋅ ), f2 ∶=

d2

2
(v , ⋅ ) +

m
∑
i=2

d2

2
(x i , ⋅ ).

By Lemma 2.6, we have ∇ f1(y1) = 0,∇ f2(y2) = 0.
_en on Ty2 , we obtain

Ð→uv =Ð→y2v −Ð→y2u = −∇y2
d2

2
(v , ⋅ ) − (−∇y2

d2

2
(u, ⋅ ))

= ∇y2
d2

2
(u, ⋅ ) +∇ f2(y2) −∇y2

d2

2
(v , ⋅ ) = ∇ f1(y2).

(4.1)

Since d(u, v) ⩽ LD ∣Ð→uv∣ (see Lemma 4.5 below), if we can prove

∣∇ f1(y2)∣ ⩽ Cd(y1 , y2)

for some constant C only depending on D, then we are done. To estimate ∣∇ f1(y2)∣,
we use the λ-concavity of distance functions. By Lemma 2.5, f i is λD-concave for each
i, where λD ∶= mD cosh D

sinh D . Let

z2 = expy2(−d(y1 , y2)
∇ f1(y2)

∣∇ f1(y2)∣
);

then we have

(4.2) f1(z2) − f1(y2) ⩽ −d(y1 , y2)∣∇ f1(y2)∣ +
λD
2
d2(y1 , y2).

Since f1(z2) ⩾ f1(y1), we have

(4.3) f1(y2) − f1(z2) ⩽ f1(y2) − f1(y1) ⩽
λD
2
d2(y1 , y2).

_e second inequality holds, since ∇ f1(y1) = 0. By combining (4.1) and (4.2) with
(4.3), we have

∣Ð→uv∣ = ∣∇ f1(y2)∣ ⩽ λDd(y1 , y2).

Remark 4.4 One may think that we can approximate the barycenters by regular
points. However, we do not know whether the subset bc(M) ∩ Reg(M) is dense in
bc(M). One may wonder whether we can use the Lipschitz character of gradient
curves relative to a semiconcave function (see [26]). However, G(y) is not on the
gradient curve of ∑m

i=2 d2/2(x i , ⋅ ) starting from y ∈ bc(M). It seems to me that at
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least we cannot use gradient curve directly. So we use Petrunin’s method to perturb
f1 , f2 such that they achieve aminimum at a “good” point.

Now we begin our proof.

Proof We divide the proof into two steps:

Step 1. Perturb the functions to achieve the minimums at points where the square of
distance functions are diòerentiable.

Now given any two points y1 , y2 ∈ bc(M), let u = G(y1) and v = G(y2). We
suppose that y1 , y2 /= u, v , x2 , . . . , xm . For i = 1, 2, by Lemma 2.9, there exists a neigh-
borhood U i ∋ y i ; we can choose Perelman’s concave function h i deûned on U i . Let

f1(z) =
d2

2
(u, z) +

m
∑
i=2

d2

2
(x i , z) and f2(z) =

d2

2
(v , z) +

m
∑
i=2

d2

2
(x i , z).

By Lemma 2.5, f i is λD ∶= mD cosh D
sinh D -concave for each i. Let f i(z) = f i(z)+d

2(y i , z).
_en for any r > 0 with Br(y i) ⊂ U i , there exists Cr > 0, such that when z ∈

U i/Br(y i), f i(z) − f i(y i) ⩾ Cr . Since h i is 2-Lipschitz, we can choose a suõciently
small є > 0 with 0 < є < r

100 , such that f i + єh i achieves a strict minimum at some
point y i ∈ Br(y i). By Lemma 2.9, y i is a regular point.

Nowwe choose a coordinate systemnear y1 by semiconcave functions g1 , g2 , . . . , gn
and another coordinate system near y2 by semiconcave functions gn+1 , . . . , g2n . De-
note by Y ⊂ M the set of points where

d(u, ⋅ ), d(v , ⋅ ), d2(u, ⋅ ), d2(v , ⋅ ), d2(x2 , ⋅ ), . . .

d2(xm , ⋅ ), d2(y1 , ⋅ ), d2(y2 , ⋅ ), g1 , . . . , g2n ,

are all diòerentiable. By Rademacher’s theorem,Hn(Y) = Hn(M). By Lemma 2.10,
there exist small positivenumbers a1 , . . . , a2n with 0 < a i <

r
100n such thatH i achieves

aminimum at y∗i ⊂ Y ∩ Br(y i), where

H1 ∶= f 1 + єh1 +
n
∑
i=1
a i g i and H2 ∶= f 2 + єh2 +

2n
∑

i=n+1
a i g i .

_en by Lemma 2.4, there exists a unique geodesic connecting y∗2 to u, a unique ge-
odesic connecting y∗2 to v.

Note that

∇ f1(y∗2 ) −∇ f2(y∗2 ) = ∇y∗2
d2

2
(u, y∗2 ) −∇y∗2

d2

2
(v , y∗2 )

= −↑uy∗2
− (−↑vy∗2

) =Ð→uv ,

(4.4)

whereÐ→uv ∶= ↑vy∗2 − ↑
u
y∗2
∈ Ty∗2 .

Step 2. Estimate ∣Ð→uv∣ and prove that G is Lipschitz.
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Note that H i is semi-concave in Br(y i), by Lemma 2.6,we have∇H i(y∗i ) = 0. For
i = 1, 2, let

w1 ∶= −∇y∗1 d
2(y1 , y∗1 ) − є∇h1(y∗1 ) −

n
∑
i=1
a i∇g i(y∗1 ),

w2 ∶= −∇y∗2 d
2(y2 , y∗2 ) − є∇h2(y∗2 ) −

2n
∑

i=n+1
a i∇g i(y∗2 ).

_en we have
(4.5) ∇ f i(y∗i ) = −w i .
By combining this and (4.4), we obtain

(4.6) Ð→uv = ∇ f1(y∗2 ) +w2 .
Note that by (2.4), we know that g i is 2-Lipschitz for all 1 ⩽ i ⩽ 2n. _en we have

(4.7) ∣w i ∣ ⩽ 2r + 2є + 2n r
100n

⩽ 3r.

Next we estimate ∣∇ f1(y∗2 )∣. Suppose ∣∇ f1(y∗2 )∣ /= 0 and

z∗2 = expy∗2
(−∣y∗1 y∗2 ∣

∇ f1(y∗2 )
∣∇ f1(y∗2 )∣

) .

Since f1 achieves a local minimum at y1, we have
(4.8) f1(z∗2 ) − f1(y∗1 ) = f1(z∗2 ) − f1(y1) + f1(y1) − f1(y∗2 ) ⩾ f1(y1) − f1(y∗1 ).

Since f 1 + єh1 achieves a local minimum at y1, we have

(4.9) f1(y1) + d
2(y1 , y1) + єh1(y1) ⩽ f1(y1) + єh1(y1).

Since H1 achieves a local minimum at y∗1 , we have

(4.10) f1(y∗1 ) + d2(y1 , y∗1 ) + єh1(y∗1 ) +
n
∑
i=1
a i g i(y∗1 ) ⩽

f1(y1) + d
2(y1 , y1) + єh1(y1) +

n
∑
i=1
a i g i(y1).

Let
c1 = d2(y1 , y∗1 ) + єh1(y∗1 ) − єh1(y1) +

n
∑
i=1
a i g i(y∗1 ) −

n
∑
i=1
a i g i(y1);

then we have

(4.11) ∣c1∣ ⩽ r2 + 2єr + 2n r
100n

⩽ r.

By combining (4.8), (4.9), and (4.10), we obtain
(4.12) f1(z∗2 ) − f1(y∗1 ) ⩾ c1 .
Since f1 is λD-concave, we have

f1(y∗2 ) − f1(y∗1 ) ⩽ ⟨∇ f1(y∗1 ), ↑
y∗2
y∗1
⟩d(y∗1 , y∗2 ) +

λD
2
d2(y∗1 , y∗2 )

= −⟨w1 , ↑
y∗2
y∗1
⟩d(y∗1 , y∗2 ) +

λD
2
d2(y∗1 , y∗2 ),

(4.13)
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the equality following from (4.5).
By combining (4.12) with (4.13), we obtain

(4.14) f1(z∗2 ) − f1(y∗2 ) ⩾ c1 + ⟨w1 , ↑
y∗2
y∗1
⟩d(y∗1 , y∗2 ) −

λD
2
d2(y∗1 , y∗2 ).

On the other hand, since f1 is λD-concave,

(4.15) f1(z∗2 ) − f1(y∗2 ) ⩽ −d(y∗1 , y∗2 )∣∇ f1(y∗2 )∣ +
λD
2
d2(y∗1 , y∗2 ).

By combining (4.14) with (4.15), we obtain

∣∇ f1(y∗2 )∣ ⩽ λDd(y∗1 , y∗2 ) − ⟨w1 , ↑
y∗2
y∗1
⟩ +

c1
d(y∗1 , y∗2 )

.

_is inequality, together with (4.6) imply that

∣Ð→uv∣ ⩽ λDd(y∗1 , y∗2 ) + ∣w1∣ + ∣w2∣ +
c1

d(y∗1 , y∗2 )
.

By combining (4.11) with (4.7), we have

∣Ð→uv∣ ⩽ λDd(y∗1 , y∗2 ) + 6r + r
d(y∗1 , y∗2 )

.

By the following lemma, we have

∣uv∣ ⩽ LD ∣Ð→uv∣ ⩽ LD( λDd(y∗1 , y∗2 ) + 6r + r
d(y∗1 , y∗2 )

)

⩽ LD[ λDd(y1 , y2) + (2λD + 6 + 2 1
d(y1 , y2)

) r] ,

where LD is a constant depending only on D.
By the arbitrariness of r, we have ∣uv∣ ⩽ LDλDd(y1 , y2).
Let CD = LDλD . If y2 = x i for some 2 ⩽ i ⩽ m, we just remove the term d2

2 (x i , z)
from the function f1(z), f2(z). If y = u (y = v), we remove the term d2

2 (u, z)
( d

2

2 (v , z)) from f1(z) ( f2(z)). In these cases, f1 is (m − 1)D cosh D
sinh D -concave; thus, in

particular λD-concave. _en we can repeat the same argument as above and get the
same result.

_e following lemma is well known; see [5, proposition 10.6.10] for a proof.

Lemma 4.5 Let M be a compact, n-dimensional Alexandrov space with curvature
at least −1. For any three points p, q, r ∈ M such that there exists a unique geodesic
connecting p to q(r). If curvature ⩾ k > 0, we add assumption d(p, q) + d(p, r) +
d(q, r) < 2π

√
k
. Let P = op ,Q = ∣pq∣↑qp , R = ∣pr∣↑rp in TpM. _en there exists a constant

LD only depending on the diameter D such that d(q, r) ⩽ LD ∣QR∣.

Remark 4.6 If M has curvature ⩾ 0, then LD can be 1; i.e., the exponential map in
non-expanding. In this case, for any p ∈ M, the function d2/2(p, ⋅ ) is 1-concave, then
λD = m, thus CD = LDλD = m. _is constant is sharp, since in Rn with the standard
metric, d(u, v) = md(y1 , y2).
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Now we prove_eorem 1.3.

Proof of_eorem 1.3 Since we have proved that G is Lipschitz, we can follow the
same lines of the proofs of [13, Lemmas 5.3 & 5.4 and_eorem 5.1, p. 26], and ûnally
prove_eorem 1.3.

Nextwe give a proposition that highlights the relationship between the barycenter
and the optimal maps in _eorem 1.2.

Proposition 4.7 Under the assumption of_eorem 1.3, the optimal maps Fi are of the
form G i ○G−1

1 , where G−1
1 is the optimal map pushing µ1 forward to ν for the quadratic

cost d2(x i , y), and G i is the optimal map pushing ν forward to µ i .

_e proof is quite similar to the proof of [14, Proposition 5.1]. Just note that since
we have proved the absolutely continuity of Wasserstein barycenter, G i are optimal
maps pushing ν to µ i .

A Existence and Uniqueness: the Non-compact Case

In this appendix, we prove _eorem 1.2 for non-compact Alexandrov spaces. _e
proof is similar to that of [4, theorem 4.2]. We refer the reader to [3, thm 6.2.4] for a
detailed proof in the Euclidean case. Recall that a point x ∈ M is a Lebesgue point of
a function f if

lim
r→0

1
Hn(Br(x)) ∫Br(x)

f (y)dHn(y) = lim
r→0

−∫
Br(x)

f (y)dHn(y)

exists and coincides with f (x). We also have a Lebesgue diòerentiation theorem for
Alexandrov spaces. If f ∶M → R is a locally integrable function, then Hn-a.e. x ∈
M are Lebesgue points. Since for any measurable subset U ⊂ M, the characteristic
function χU is locally integrable,

(A.1) lim
r→0

Hn(U ∩ Br(x))
Hn(Br(x))

= 1 for Hna.e .x ∈ U ;

that is,Hn-a.e. x ∈ U have density 1 in U .
Since the potential function u i may not be locally Lipschitz, we use the approxi-

mate diòerential of amap. We recall the deûnition in this setting.

Deûnition A.1 ([3, 4]) We say that f ∶M → R has an approximate diòerential at
x ∈ Reg(M) (denoted by ∇̃ f (x)) if there exists a function g∶M → R which is dif-
ferentiable at x such that the set { f /= g} ∶= {x ∈ M ∶ f (x) /= g(x)} has density 0
at x.

Next, we prove_eorem 1.2 for the non-compact case.

Proof By _eorem 3.1, we have the existence of an optimal measure γ and a c-con-
jugate solution (u1 , . . . , um) to (D) with u i ∈ L1(µ i) for each 1 ⩽ i ⩽ m that sat-
isûes (3.2). Set S ∶= π1(spt(γ)); then µ1(S) = 1 and for any x1 ∈ S, there exists
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(x2 , . . . , xm) ∈ Mm−1 such that

(A.2)
m
∑
i=1

u i(x i) = c(x1 , . . . , xm).

Now ûx a point p ∈ M, for any k ∈ N+, deûne functions

uk
1 (x1) ∶= inf

x2 , . . . ,xm∈Bk(p)
[ c(x1 , . . . , xm) −

m
∑
i=2

u i(x i)] .

By an argument similar to Lemma 3.2, we can prove that c(x1 , . . . , xm) is locally Lip-
schitz on Mm and uk

1 is locally Lipschitz on M. Denote by

Uk ∶= {x1 ∈ M ∶ uk
1 is diòerentiable at x1};

then we have µ1(Uk) = 1 for each k.
For any x1 ∈ S, choose an m − 1 tuple (x2 , . . . , xm) satisfying (A.2) and a k0 suõ-

ciently large such that x2 , . . . , xm ∈ Bk0(p). _en for k ⩾ k0, we have

c(x1 , . . . , xm) −
m
∑
i=2

u i(x i) ⩾ uk0
1 (x1) ⩾ uk

1 (x1) ⩾ u1(x1) = c(x1 , . . . , xm) −
m
∑
i=2

u i(x i).

It follows that uk
1 (x1) = u1(x1) for any k ⩾ k0. Set Vk = {x1 ∈ S ∶ uk

1 (x1) = u1(x1)};
then we have Vk ⊂ Vk+1 and ⋃∞k=1 Vk = S. It follows that

(A.3) lim
k→∞

µ1(Vk) = µ1(
∞

⋃
k=1

Vk) = µ1(S) = 1.

Set
Wk ∶= {x1 ∈ Vk ∶ x1 has density 1 in Vk}.

If Vk /= ∅, then by (A.1), µ1(Wk) = µ1(Vk). By (A.3), we have

1 ⩾ µ1(
∞

⋃
k=1

Wk) ⩾ lim
k→∞

µ1(Wk) = lim
k→∞

µ1(Vk) = 1.

It follows that µ1(⋃
∞
k=1 Wk) = 1.

Set
A = (

∞

⋂
k=1

Uk) ∩ (
∞

⋃
k=1

Wk) ∩ S;

then µ1(A) = 1.
For any x1 ∈ A, there exists k ∈ N+ such that x1 ∈ Wk . By Deûnition A.1, u1 has

approximate diòerential at x1, and ∇̃u1(x1) = ∇uk
1 (x1). By a similar argument as the

proof of lemma 3.3, we can get that themean y is uniquely determined by x1 and

y =
⎧⎪⎪
⎨
⎪⎪⎩

x1 , if ∇̃u1(x1) = 0,
expx1

(−( f ′1 )−1(∣∇̃u1(x1)∣)
∇̃u1(x1)

∣∇̃u1(x1)∣
) if ∇̃u1(x1) /= 0.

Note that _eorem 3.10 also holds on non-compactAlexandrov spaces; it follows that
the m-1 tuple (x2 , . . . , xm) with (x1 , . . . , xm) ∈ spt(γ) is uniquely determined by y,
hence by x1 ∈ A. Following the last part of the proof of_eorem 1.2 for the compact
case, we can get that _eorem 1.2 also holds on non-compact Alexandrov spaces.
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