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Abstract

The main results of the paper are the following: 1. Every locally finite affine complete variety admits
a near unanimity term; 2. A locally finite congruence distributive variety is affine complete if and only
if all its algebras with no proper subalgebras are affine complete and the variety is generated by one of
such algebras. The first of these results sharpens a result of McKenzie asserting that all locally finite
affine complete varieties are congruence distributive. The second one generalizes the result by Kaarli
and Pixley that characterizes arithmetical affine complete varieties.
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1. Introduction

For an algebra A = (A, F) a function / : Am ->• A is said to be compatible if it is
compatible with all congruence relations of A. All fundamental operations of A are
compatible by the definition of congruence. Obviously all constant functions and all
projections (the functions of the form (x\,... ,xm) —> xf) are compatible as well.
The functions which can be represented as a composition of fundamental operations,
constant functions and projections are called polynomial functions of the algebra A.
The functions which are compositions of fundamental operations and projections are
said to be term functions of the algebra A. Clearly all polynomial functions are
compatible. An algebra is called hemiprimal (respectively affine complete) if the term
functions (respectively the polynomial functions) are its only compatible functions.
The notion of compatibility applies also to the partial functions. An algebra is called
locally affine complete if all of its partial compatible functions with finite domain are
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polynomial. Note that a partial function is said to be polynomial if it is a restriction
of a polynomial function.

An algebra is called arithmetical if it is both congruence permutable and congruence
distributive (CD). A variety is called CD (respectively arithmetical, affine complete,
locally affine complete) if all its members are so .

The first examples of affine complete varieties were found by Gratzer [3] and Hu
[5]. Gratzer proved that the variety of Boolean algebras is affine complete and Hu gen-
eralized this result showing that every variety generated by finitely many independent
primal algebras is affine complete. The systematic study of affine complete varieties
was initiated in [8]. It was motivated by the fact that the known examples of affine
complete varieties enjoyed a nice structure, similar to that of the variety of Boolean
algebras. Another point was that it was known already that a variety is locally affine
complete if and only if it is arithmetical [11]. Though the notions affine complete and
locally affine complete are incomparable, it still gave some hope that there is some
similarity between affine complete varieties and arithmetical varieties. Later several
aspects of affine complete varieties were studied in [6,7,9]. An excellent survey also
providing more background is [12].

It was proved in [8] that all affine complete varieties are residually finite. However,
so far this result has remained as the only general result holding without restrictions in
any affine complete variety. Several basic properties of those varieties were obtained
in [8] under the assumption of the congruence distributivity. In particular, we proved
the two results listed in the next theorem.

THEOREM 1.1. Let V be a CD affine complete variety. Then

(1) all subdirectly irreducible members of V have no proper subalgebras;
(2) if V is of finite type then it is generated by a finite algebra with no proper

subalgebras and hence is locally finite.

The reasons why this assumption was imposed were purely practical: otherwise we
were unable to handle the compatible functions at the necessary level of generality.
However, even before the paper appeared, it turned out that the requirement about
congruence distributivity was natural. McKenzie proved that every locally finite affine
complete variety is CD. He has never published his proof which uses methods of tame
congruence theory [4]. Recently Kearnes turned our attention to the fact that actually
the McKenzie's proof works in a considerably more general situation. Namely, if
we call an algebra hereditarily affine complete if all its quotient algebras are affine
complete then the following is true.

THEOREM 1.2 (McKenzie). Every finite hereditarily affine complete algebra is CD.

Since a variety is CD if its free algebra in three generators is CD, Theorem 1.2
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implies the original result of McKenzie.

THEOREM 1.3. Every locally finite affine complete variety is CD.

It is easily seen that a locally finite variety with all subdirectly irreducible members
having no proper subalgebras is actually generated by a single finite algebra with no
proper subalgebras. Thus Theorem 1.3 together with Theorem 1.1 implies that every
locally finite affine complete variety is generated by a finite algebra with no proper
subalgebras.

An m-ary function / (with m > 3) on a set A is called a near unanimity function
if f{au ..., am) = a whenever \{i | a, = a}\ > m — 1. A ternary near unanimity
function is a majority function. A term t of type & is said to be a near unanimity term
for a variety V of type & if it induces near unanimity functions on all members of
V. It is well known that a variety admitting a near unanimity term is CD [10]. Even
more is true: every algebra admitting a compatible near unanimity function is CD.

All affine complete varieties known so far admit a near unanimity term. Therefore
it was natural to ask whether this is a general feature or not. Note that the existence
of a near unanimity term is an important property of a variety and it yields not only
congruence distributivity. It is known that a clone on a finite set is finitely generated
provided it contains a near unanimity function. This implies that every locally finite
variety with a near unanimity term is equivalent to a variety of finite type. Another
area where near unanimity functions play an essential role is general duality theory.
For example, every finite algebra with near unanimity term admits a natural duality
[2].

In this paper we prove that every finite hereditarily affine complete algebra admits
a near unanimity polynomial. This result implies that all locally finite affine complete
varieties admit a near unanimity term. Consequently, they are term equivalent to the
varieties of finite type. Moreover, every finite member of any affine complete variety
admits a natural duality.

In view of Theorem 1.1 it is natural to state:

PROBLEM. Given a finite affine complete algebra with no proper subalgebras and
belonging to a CD variety, when does it generate an affine complete variety?

A nice solution was obtained in [8] for the arithmetical case: an arithmetical variety
generated by a finite algebra with no proper subalgebras is affine complete. Note that
in this case we do not require the affine completeness of the generating algebra since
all finite algebras of arithmetical varieties are affine complete [11]. Clearly this result
does not extend to CD varieties. Indeed, as the example of bounded distributive
lattices shows, a finite algebra with no proper subalgebras of a CD variety need not
be affine complete.
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On the other hand, Example 2.2 in [8] shows that non-arithmetical locally finite
affine complete varieties do exist. The idea which was used to construct this example
was extended in [7] and it will also be used in the present work (Theorem 4.1).
We would even say that the present work grew out of the careful analysis of the
aforementioned example, originally constructed by Pixley. Trying to extend the proof
to more complicated cases, we came to the following problem: given a system of
partial functions, one for every quotient algebra of a finite hereditarily affine complete
algebra, when is it possible that all these functions are induced by a single global
compatible function? A solution of this problem is presented in the next section of
this paper. The main results of the paper (Theorems 3.2 and 4.1) are consequences of
results of Section 2.

Thus, trying to answer the above question, we cannot avoid the requirement of
affine completeness of the given algebra. However, this is still not sufficient, since in
[7] we constructed an example of a finite algebra A which is hemiprimal and admits
a majority term but does not generate an affine complete variety. More precisely,
A has a quotient algebra which is not affine complete. So the best we may hope
is that every finite hereditarily affine complete algebra with no proper subalgebras
generates an affine complete variety. The results of the present paper show that even
this conjecture is false. We are able to prove the affine completeness of the variety
only if we add the requirement that all members of the variety which have no proper
subalgebras are affine complete.

2. Compatible function systems

In this section the tools necessary for obtaining the main results are produced.
Throughout the section, A is a set and L is a complete sublattice of the lattice of
equivalence relations of A. It is assumed that L contains A and V, the smallest and
the largest equivalence relation of A, respectively. We are going to consider systems
of partial functions on quotient sets of A. Let us agree that, if not stated otherwise, a
partial function / on A is m-ary, meaning that f : S ->• A where S Q Am. Here the
subset S is a domain of / and denoted by Dom / . The empty functions, that is, the
partial functions with their domain empty, are not excluded.

The elements of Am are denoted by lower-case boldface characters. If no other
specification occurs, then a = (a l 5 . . . , am) where ax,..., am e A. If p e L, then
a/p = {ai/p,..., am/p) e (A/p)m. We write (a, b) e p if a/p = b/p. The smallest
p e L with the property (a, b) e p is denoted by #(a, b). A partial function f on A
is said to be compatible if (/(a), /(b)) e #(a, b) for all a, b e Dom / . Clearly the
compatibility of / is equivalent to the requirement that / preserves all equivalences
p e L, that is, a, b e Dom/ and (a, b) e p implies (/(a), /(b)) e p. A partial
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function / on the quotient set A/p, p e L, is said to be compatible if it preserves all
equivalences of the form a/p where a e L, p < a. Obviously, if p, a e L, p < a,
then a compatible partial function on A/p induces a compatible partial function on
A/a.

Finally, in what follows we shall identify a/pi A • • • A pn and (a /p i , . . . , a/pn) via
the canonical embedding. Hence, (a i /p i , . . . , an/pn) e A/pi A • • • A pn means that
there exists aeA™ such that (a, a,) e p,, i = 1 , . . . , n.

Let now fp be a partial function on A/p for any p e L. Our aim is to prove
that under certain conditions the function system / = (fp)p€L is induced by a single
compatible function on A. Definitely these conditions must include the compatibility
of all fp but somewhat more is needed.

DEFINITION 2.1. For any p e L, let fp be a partial function on A/p. Then / =
(fp)peL is said to be a compatible function system (CFS) if it satisfies the following
two conditions:

for every p,, p2 € L and a'/p, e Dom /A,

/A(a7p,) = *7p, (i = l,2) implies (b\ b2) e p, v p2 v 0(a\ a2);

if /(a ' /p,) = 6'/p,, / = 1,...,«, and there exist a e Am, a, e L, such
that p, < <7, and (a, a') € a,, i = l , . . . , n , then (bl/at,... ,bn/on) €
A/(7i A • • • A CT,,.

REMARK. We do not require in condition (<^) that CT, ̂  CT, if / 9̂  j . However, it is
easy to see that if {38) is satisfied in this special case then it is also satisfied in general.
Indeed, if for example o{ = o = a2 then (a1, a2) G o and by the compatibility of
/ also (bl, b2) e a. Obviously then (b2/o2,..., b"/an) e A/a2 A • • • A an implies
(bl/ou ..., bn/an) e A/CT, A • • • A on.

Let / and g be CFS's on A. We say that g extends f if every gp extends fp,
p e L. In what follows we usually omit the subscript p if this does not cause
ambiguities. Thus, we write / (a /p) instead of fp(a/p) and a/p 6 Dom / instead of
a/p e Dom fp. Also, if we write / (a /p) = b/p then it will always be assumed that
a/p e Dom/.

The next lemma lists the basic properties of CFS's.

LEMMA 2.2. Let f be a CFS on A. Then

(i) all fp, p e L, are compatible;
(ii) if P < <?. a/p, a/cr e Dom / and f(a/p) = &/p fte/t /(a/cr) = 6/CT;
(iii) i /a /p i , . . . , a/pn, a/px A • • • A pn e Dom / then

( / (a /p , ) , . . . , /(a/pn)) = / ( a /p , A • • • A pn).

https://doi.org/10.1017/S1446788700000720 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000720


146 Kalle Kaarli [6]

PROOF. The first two properties are direct consequences from Definition 2.1, (s
The third property follows from the second one: if / (a/pi A • • • A pn) = b/p\ A • • • A pn

then by (ii), ( / ( a /p , ) , . . . , / ( a / p j ) = (b/pu ..., b/pn) = b/p{ A • • • A pn.

A CFS / is said to be global if all ffi are global functions, that is, Dom fp = (A/p)m

for every p e L. It follows from Lemma 2.2 that a global CFS is completely
determined by /A.

The second claim of Lemma 2.2 asserts that if a/p e Dom / and we wish to extend
/ so that a/a is in the domain of the extension, then there is at most one way to do
so. Similarly, the third claim asserts that if a /p , , . . . , a/pn e Dom / and we wish to
extend / so that a/p] A . . . A pn is in the domain of the extension, then again there is
at most one way to do this. Hence, when trying to prove that a given CFS has a global
extension, it is essential first to prove that it has an extension which is closed in the
sense of the next definition.

DEFINITION 2.3. A compatible function system / is said to be closed if the follow-
ing two conditions are satisfied:

C^) a/p e Dom f,p<a implies a/a e Dom / ;
{2)) a/p, a/a e Dom/ implies a / p A c r e D o m / .

It is useful to notice that the conditions (sf\ &) and {23) actually imply (38).
Indeed, let / be a function system on A which satisfies the aforementioned three
conditions and let a, a', b', p, and a, be as in condition (£%). Then, because of (^)
and {2>), ai/ffi, . . . , an/an and a/a{ A • • • A an are in Dom / . Hence, by Lemma 2.2,

(bl/au ..., bn/an) = ( / ( a , / a , ) , . . . , / ( a n / a j )

= / (a /a! A • • • A an) e A/o\ A • • • A an.

Now we prove that a CFS has a closed extension provided the lattice L is dis-
tributive.

LEMMA 2.4. For every CFS / there exists a CFS which extends f and satisfies

PROOF. Let / be a CFS on a set A and define g = (gp)peL as follows:

I there exist r 6 L and C/T e Dom /

such that r < p, (a, c) € p and / ( C / T ) = b/x.

It follows directly from condition (s/) for / that all gp are well-defined. Obviously g
extends / and satisfies
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Let g(a'Ip^ = b'/pi, i = 1,2. Then there exist r, e L and C'/T,- e Dom / such
that T, < pi, (a ' ,c ') € p, and / ( c ' / r ; ) = ^ ' / T , , i = 1,2. Obviously #(c ' ,c2) <
p, Vft V0(a ' , a2) and the compatibility of / implies (fo1, ft2) e ri v r2 v 0 ( c \ c2) <
Pi v p2 v # (a \ a2). Hence g satisfies (srf).

It remains to prove that g satisfies (38). Suppose that g(a ' /p,) = b'/pi, pt < a,
and (a, a') e a,, / = 1 , . . . , n. Then there exist r, e L and c'/^, £ Dom / such that
T, < Pi, (a', c') e p, and / ( c ' / r , ) = fe'/Ti. ' = 1, • • • , « • Now obviously (a, c') e a,-,
j = 1 , . . . , n, and since / satisfies ( ^ ) , (b]/ax,..., i»"/an) 6 A/CT, A • • -ACT,,. Hence,
g satisfies ( ^ ) , too.

LEMMA 2.5. If the lattice L is distributive then for every CFS f on A there exists
a CFS which extends f and satisfies

PROOF. Let / be a CFS on A and define g = {gp)peL as follows:

there exist p\,..., pn e L with p\ A • • • A pn = p
g(a/p) = b/p

[and / ( a / A ) = 6/A. / = 1, . . . , « •

First check that all gp are well-defined. Suppose that there exist p\,..., pk, au ...,
ax e L and b, c e A such that px A • • • A pk = p = ox A • • • A <r; and

/ ( a / p , ) = b/p,, /(a/cr;) = C/CT,, I = 1 , . . . , jfc, j = l,...,l.

Since p[ A • • • A pk A&\ A • • • Ao/ = p and / satisfies {SB), (b/px,..., b/pk, c/ox, ...,
c/oi) e A/p; let it be equal to d/p. Then (b, d) e p, and (d, c) e Oj, i =
1 , . . . , k, j — I,... ,1. Hence both (b, d) and (d, c) are in p , implying &/p = c/p.

The next step is to show that g is a CFS. Let g (a ' /p ) = bx /p and g(a 2 /a ) = b2/a.
Then there exist p], ..., pk,O\,.. ,,ol 6 L such that p = px A- • -Apk,a = ox A- • -ACT/
and / ( a ' / p , ) = fr'/p,, / ( a 2 / a ; ) = &2/CT,, I = l , . . . , / t , 7 = 1 , . . . , / . Since /
satisfies (&/), (b\ b2) e p, V crj v ^ ( a ' , a 2 ) for all / and j . Applying the distributivity
of L, we get (bl, b2) € p v a v 0(a1, a2), which means that g satisfies (,s/) as well

Now we prove that g satisfies {SB). Suppose that g(a.'/p,) = b'/pt, pi < <r, and
(a, a') e CT, , /' = 1 , . . . ,« . Then by definition of g, there exist ptj € L such that
A = A; A7 a n d / ( a ' /A j ) = &'/A./, i = 1, • • •, n, j = 1, . . . , * . (Since repeating
Pij are not excluded, we may assume that every p, is a meet of the same number k
equivalences p,v.) Obviously (a, a') e a, v p,7 for every i and 7. Since / satisfies
(3B\ we have

v p n , . . . , fe'/^i v Pu. • • •. &"M. v p n l , . . . , fe"/an v pni) € A/ /\(Oi v p 0 )
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This means that there is d e A such that (d, b') e CT, V p,7 for all i = 1,... ,n,
j — 1 , . . . , k. Due to the distributivity of L then also (d, b') e at, i — 1 , . . . , n,
implying (bx/ax,..., b"/an) e A/CT, A • • • A <jn.

It remains to prove that g satisfies (2>). Suppose that g(a/p) = b/p and g(a/a) —
c/cr. Then, by definition of g, there exist px,..., pk,ou ... ,ot e L such that
p = Px A • • • A pk, a = CTi A • • • A cr, and /(a/p,) = b/p,, f(a/aj) = C/OJ, i =
1, . . . ,&, ; = 1 , . . . , / . Since / satisfies

u ..., b/pk, c/ax c/a,)

= ( / ( a /p , ) , . . . , / (a / f t ) , / ( a / a O , . . . , /(a/a,)) e A/p A a.

Hence there exists d e A such that /(a/p,) = <i/p,, /(a/o,) = rf/cr;, / =
1 , . . . , k, j = 1 , . . . , / . Since p A CT = px A • • • A pk A ê  A • • • A <7/, this implies that
a/p ACT e Domg.

PROPOSITION 2.6. Tfrte lattice L is distributive then every CFS on A has a closed
extension.

PROOF. By Zorn's lemma every CFS has a maximal extension. Due to Lemmas
2.4 and 2.5, the latter must be closed.

3. Near unanimity terms

Now we apply the results of the preceeding section to show that locally finite affine
complete varieties admit a near unanimity term. The next theorem is fundamental in
this respect but it has another application as well.

THEOREM 3.1. Let A be a finite hereditarily affine complete algebra, L = Con A
and let f = (/p)pez, be a CFS on A. Then f has a global extension and therefore is
induced by some polynomial function of A..

PROOF. Our proof uses induction on the length of L. If L is trivial then the assertion
is trivial. By Theorem 1.2, L is distributive. Hence in view of Proposition 2.6 there
exists a closed CFS g on A which extends / . Since A is finite we may assume that
g is a maximal closed CFS which extends / . If DomgA = A then we are done.
Otherwise there must exist an atom a of L such that Dom gfi =£ (A//i)m where fi is the
pseudocomplement of a. By the induction hypothesis there is a polynomial function
q of A which induces all gp with a < p.
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Now define h = (hp)p<=L as follows. First pick an element a0 € Am such that
a°//3 ^ Dom g and put then hp = gp if p ^ ft, and

Thus, Dom hp = Dom gp if p ^ p1 and Dom /i^ = Dom g^ U {a0//*}- We are going
to prove that h is a CFS. Then by Proposition 2.6 it admits a closed extension which
contradicts the maximality of g. As a first step, we show that h satisfies (&/).

Let h(a!/p^ = b'/p,, i = 1,2. Obviously the only non-trivial case is a'/Pi £
Domg and a2/p2 € Domg. Then p, = p\ a1//? = ao/y6 and fc'/p1 = q(a°)/p. If
a < p2 then fo2/p2 = <7(a2)/p2 and since ^ is a polynomial,

(1) ( i ' , f c 2 ) e A V f t v e ( a ' , a 2 ) .

If a •£ p2 then fa < P and the closedness of g yields a2//? e Domg. Since
a'//S ^ Domg, we have (a1, a2) £ /J. The other consequence of the closedness of g
is that a2/p2 v a e Dom g. Hence the condition (.e )̂ for g implies

fc2/p2 v a = g(a2/p2 v a) = q(a2)/p2 v a

and then, by the compatibility of g,

(2) (b',2>2) e p ! v p 2 v a ' 2

However, ^(a1, a2) ^ ^ and therefore a < 8(a\ a2). Hence, (2) implies (1) and we
are done.

Finally, we have to prove that h satisfies (^) . Suppose that /i(a'/P;) = b'/pt,
Pi < &t, and (a, a') e at,i = 1 , . . . , n. Since g satisfies (^) , we may assume without
loss of generality that there is at least one i such that p, = fi and a' = a0. The case
with all a'/p, equal to a°//J is trivial: then

(fc'/o-i,..., b"/an) = ?(ao)/CTi A - A f f , e A/cr, A - A C T , .

We first handle the case with n = 2, a'/Pi = a°/P and a2/p2 e Domg, and then
show that the general case reduces to this one.

If a < CT2 then fe'/Pi = 9(a'/Pi) implies fe'/CTi = ?( a ' l ° \ ) an(^ due to the
closedness of g,

& > 2 = g(a2/a2) = q(a2/a2) = q(a2)/a2 = q(a)/a2.

Hence (i'/cri» b2/a2) = q(a)/ox A a2 e A/a] A a2.
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If a ^ a2 then CT2 < fi < <J\. Hence (bl/o\, b2/a2) e Ajox A o2 is equivalent to
(bl,b2) € a{. Since h is a CFS, we have

{b\b2) e p , V f t v6»(a',a2) < CT, v6»(a',a2).

However, (a, a1) € at and (a, a2) e CT2 imply (a1, a2) e <Ti and we are done.
Now consider the general case. Assume that a'/p, = a0//* if i — 1 , . . . , k,

a' I Pi e Dom g if / = & + 1 , . . . , n and denote X\ = ax A • • • A ak, r2 = ok+\ A • • • A on.
Since g satisfies {38),

A/z2.

We apply what was proved above for n = 2 to the situation with

a0, a, a, b\ b, p, T2, XU T2 in place of a1, a2, a, b\ b2, px, p2, ou a2,

respectively. This is possible, since (a ' , a) e CT, for every i = 1 , . . . ,& implies

(a°,a)er,.
Hence there exists d e A such that (bl/t\, b/x2) = d/x\ A r2. Then obviously

(d, Z?1) e r, < CT,, i = 1 , . . . , k, and in view of (b, bj) e aj, (d, b) e x2 implies
(d, bj) e oj for j = k + I,..., n. Thus (bl/au ..., b"/an) = d/a} A • • • A an and

we are done.

THEOREM 3.2. Every finite hereditarily affine complete algebra admits a near un-
animity polynomial.

PROOF. If \L\ < 2 then there is nothing to prove. Let \L\ = m > 3 and define
/ = (fp)p€L as follows: fp — 0 if p ^ A and / A is the partial w-ary near un-
animity function on A = A/A with domain consisting of all vectors of the form
(a,... ,a,b,a,... ,a) where a, b e A and b may have an arbitrary position. Obvi-
ously / satisfies (s/).

To check condition {38) suppose that / ( a 1 ) = bl,..., / (a" ) = b" and ay,..., an e
L are distinct equivalences such that for some a e Am, (a, a') e ahi = \,... ,n. If
some CT, is equal to A then it follows from {&/) that {b' ,bj) e o) for every j = \,... ,n
implying {bl/au ..., bn/an) = b' e A. Thus we may assume that A does not occur
among CT,, / = 1 , . . . , n, implying n < m. Hence by the definition of a near unanimity
function, there must exist j e { 1 , . . . , m) such that b' = a1- for all i = 1 , . . . ,« . Then
( f c ' / C T , , . . . , b"/crn) = {a)/au ..., aj/an) = {aj/au ..., Oj/an) = aj/a^ A • • • ACT,, e

A/CT; A • • • A On.
Thus / is a CFS and by Theorem 3.1 it must be induced by some polynomial

function of A. This completes the proof.
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Hemiprimal algebras are exactly affine complete algebras all of whose constant
functions are term functions. It is easy to see that a hemiprimal algebra is hereditarily
affine complete if and only if it is hereditarily hemiprimal, that is, all of its quotient
algebras are hemiprimal. Therefore we have the following corollary from Theorem
3.2.

COROLLARY 3.3. Every finite hereditarily hemiprimal algebra admits a near unan-
imity term and hence generates a CD variety.

We are especially interested in the algebras A having no proper subalgebras. In
that case hemiprimality is equivalent to the existence of at least one constant term
function. Of course, the hemiprimality is very restrictive condition and it would be
pleasant to weaken it in Corollary 3.3. Note that all hemiprimal algebras are rigid,
that is, they have only the identity automorphism. In general, given a unary term
function t of A, the set t(A) is a union of F-orbits where F = Aut A. The extremal
case is if t (A) is a F-orbit. In [9] we called a finite algebra A weakly diagonal if it
has no proper subalgebras and admits a unary term with this extremal property. The
following theorem generalizes Corollary 3.3. The proof follows the idea which was
first used in [6].

THEOREM 3.4. Every weakly diagonal hereditarily affine complete algebra which
has no proper subalgebras admits a near unanimity term and hence generates a CD
variety.

PROOF. Let A be a finite weakly diagonal, hereditarily affine complete algebra
which has no proper subalgebras. By Theorem 3.2, A admits a near unanimity poly-
nomial and since A has no proper subalgebras, we may assume that this polynomial
has the form t(x\,..., xm, a) where m > 3, t is an (m + l)-ary term and a e A.
Since A is weakly diagonal, there is a unary term u such that u(A) is an orbit under
the action of F = Aut A. Because A has no proper subalgebras, we may assume that
u(A) = Fa.

Now it is easy to prove that t{x\,..., xm, u(xi)) is a near unanimity term. Indeed,
take arbitrary x, y € A and let u(x) = ya, u(y) = 8a where y, 8 e F. Then

t (x, ...,x,y,x,...,x, u(x)) = t(x, ...,x,y,x,...,x, ya)

= y(t(y~lx, ...,y~lx,y~ly,y~lx,...,y~lx,a)) = y(y~lx) =x

and

x,...,x,u(y))=t(y,x,...,x,8a)

= 8(t(8-ly, 8~lx,..., 8~lx, a)) = 8(8-lx) = x.
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The following result sharpens Theorem 1.3.

THEOREM 3.5. Every locally finite affine complete variety admits a near unanimity
term.

PROOF. Let V be a locally finite affine complete variety and let A,-, J e / , be all
subdirectly irreducibles of V. By [8, Corollary 3.2], none of the A, have proper
subalgebras. Now, if A is a subalgebra of I~T€/ A, generated by any single element,
A obviously generates V. On the other hand, A is finite because V is locally finite.
Therefore A can be selected so that it has no proper subalgebras.

Let F | be the free algebra in one generator of V. Recall that the elements of F,
are the unary term functions on A. By Theorem 3.2, Fi admits a near unanimity
polynomial. This means that there exist an (m + p)-ary term t and unary terms
w\,... ,wp such that

(3) t(u(x),..., u(x), v(x), u{x),..., u(x), Wi(x),..., wp(x)) = u(x)

for every two unary terms u and v and for every position of v. Note that (3) is the
equality of functions. Thus it holds when replacing the variable x by arbitrary a e A.

We claim that t(x\,..., xm, u; i ( j t i ) , . . . , wp{x\)) is then a near unanimity term for
V. We have to prove the following two equalities for arbitrary a, b e A:

(4) t(a, ...,a,b,a,... ,a, wt(a),..., wp(a)) = a;

(5) t(b,a,...,a,wi(b),...,wp{b)) = a.

(Note that in (4), b is not in the first position.) Since A has no proper subalgebras, we
can find unary terms u and v such that u(a) = a and v(a) = b. Hence in view of (3)
we have

t(a,... ,a,b,a,... ,a, w{(a),..., wp(a))

= t(u(a),..., u(a), v(a), u(a),..., u(a), w\(a),..., wp(a))

= u(a) = a

proving (4). Likewise, choosing the terms u and v so that u(b) — b and v(b) = a, we
get the equality (5).

This completes the proof.

4. On finite algebras generating affine complete varieties

We return to the problem we raised in the introduction: given a finite algebra A
which has no proper subalgebras and generates a CD variety V, when is V affine
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complete? Obviously A has to be hereditarily affine complete but as we shall see
soon, it is still not enough. First we prove that every algebra B e V which contains A
as a subalgebra, is affine complete.

THEOREM 4.1. Let V be a CD variety generated by a finite hereditarily affine
complete algebra A which has no proper subalgebras. Then all algebras B G V
which have a subalgebra isomorphic to A are affine complete.

PROOF. By J6nsson's lemma, Var A is contained in SPHA. Thus, let B G SPHA
and suppose that A is contained in B as a subalgebra. Since A has no proper subal-
gebras, B is subdirect in J~[,e/ A, where A, are quotient algebras of A; let

A, = A/T,, r, G L = Con A, i e /.

We denote the members of f ] i e / A, as families (a,/T,),€/ where a, G A. It is easily
seen that the embedding B < f] . e / A, can be chosen so that every a e A considered
as an element of B is represented as (a/T,),€/.

Consider an arbitrary compatible function / on B. Because of the compatibility,
the function / factors as / = (/•),<=/ where / is an w-ary compatible function on A,,
i e I.

Now introduce some notation based on an enumeration of f(Am):

f(Am) = {su...,sp},

Sj = (Sj/T,)i€/, S'j G A, j = 1, . . . , p,

s1' = Oj , . . . , sp , i e I.

For every p G L = Con A define an (m + p)-ary partial function gp on A/p as
follows:

Domg, = ( A / p ) m x { s 7 p | / elp],

gp(a/p, s'/p) = / ( a / p ) where Ip = {i G / | xt = p}.

First check that all gp are well-defined. Indeed, suppose that i ^ j , xt• = p = r, and
s'/p = sVp and let / (a) = / ( a , , . . . , am) = su. Then / ( a / p ) = s'Jp = s'Jp =
/;(a/p).

We show now that g = (gp)peL is a CFS. Let a1 = (a{,..., al
m), a2 = (a 2 , . . . , a2)

be arbitrary elements of Am, i, y e / and
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It follows from the definition of g that (a1
 /TJ,SJ/TJ) e Domg. Letg(al/Xj,sJ/Xj) =

fj(a]/Xj) = b/Xj. By compatibility of / ; we have immediately

(6) (b\b) e Xj v6>(a',a2).

On the other hand, if /(a1) = su then

(7) bl/xi = fi(a
]/xi) = si

u/xi,

(8) b/xj = fj(al/Xj) = Si/xj.

Obviously (s'u,s
J
u) e 9(s',sjy, hence by (7) and (8),

(9) (b,b]) e x,:\zxj - V 0 ( s \ sJ).

Now (6) and (9) imply (&', b1) e T, V r, v 0(a', a2) v 0(s', s;') meaning that g satisfies

GO-
The next step is to prove that g satisfies (3§) as well. Let p, e L and (a'/A, ^/Pi) €

Dom g, / = 1, . . . , r. This means that for every / e {1,..., r} there is i, e I such that
Pi = Xj, and c' = s". Let

g(a!/ph C ' /A) = y-,(a'/A) = ^ 7 A , / = 1, . . . , r.

Suppose that there are a = (a i , . . . , am) e Am, c = (cj, . . . , cp) e Ap and at e L
such that

By the definition of g, all (a/p(, c'/p,) are in Domg. Let g(a/p/? C ' /A) = d'/ph

I = 1 , . . . , r. Since / , is compatible, (a, a') e a/ implies

(10) (b',d')eah l=l,...,r.

On the other hand, if / (a) = su then ^'/A = fu (a/A) = 5l'/P/ and consequently

(11) ( i O ^ i , / = l , . . . , r .

Because c7 = s" and (cf,c)eah we also have

(12) (cu,s'')eah l=\,...,r.

Now (10), (11) and (12) imply (cu, b
1) e at for every / = 1, . . . , r and we are done.

It remains to show that / is a polynomial function. By Theorem 3.1, g is induced by
some (m + p)-ary polynomial q of A. We prove that the function / = f(x\,..., xm)
coincides with the m-ary polynomial function q(xt,..., xm, sx, ..., sp). To do that,
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it is enough to verify that they induce the same function on each A,, / e / . Take
arbitrary a\,..., am e A and compute:

{q{au . . . , a m , s u . . . , sp))j = gTi(aJXj,..., am/rh s j / r , , . . . , s'p/Xi)

= fiiai/ti, ...,am/Xi) = (f(au...,am))j.

The proof is complete.

COROLLARY 4.2. If A is a weakly diagonal hereditarily affine complete algebra
which has no proper subalgebras then Var A is affine complete.

PROOF. By Theorem 3.4, Var A is CD. Also it is easy to see (cf. [9, Lemma 2.1])
that if A is weakly diagonal then every B e Var A contains a subalgebra isomorphic
to A.

Since every algebra of a locally finite variety contains a subalgebra which has no
proper subalgebras, we have the following characterization of locally finite affine
complete varieties.

COROLLARY 4.3. A locally finite variety V is affine complete if and only if the

following conditions are satisfied:

(1) Vis CD;
(2) V is generated by an algebra which has no proper subalgebras;
(3) all algebras in V which have no proper subalgebras are affine complete.

Recall that it was noticed in [12] that if V satisfies the conditions (1) and (2)
then it is affine complete whenever all its finite members are. Thus Corollary 4.3
significantly sharpens this result. Now, if we want to check whether a given locally
finite CD variety is affine complete, we need to locate its members which have no
proper subalgebras. The next proposition will be useful in this respect.

PROPOSITION 4.4. Let V be a locally finite variety which has an algebra with no
proper subalgebras. Then V contains an algebra L with the property that A € V has
no proper subalgebras if and only if it is a homomorphic image ofL,. The algebra L
is unique, up to isomorphism, and it can be characterized as a minimal subalgebra of
the free algebra Fi in one generator of V.

PROOF. All algebras of V which have no proper subalgebras are homomorphic
images of the finite algebra Fi, so we have only finitely many of them. Clearly any
minimal subalgebra in their direct product can be chosen as L. The uniqueness of L
is obvious.
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Our final claim follows by applying some elementary semigroup theory. We can
think of elements of F! as unary term functions on the generating algebra of V. Thus
the set Fx is a monoid under the composition of functions and every algebra in V can
be regarded as an act over that monoid. An algebra A has no proper subalgebras if and
only if it has no proper Fi-subacts. Minimal left ideals of the monoid F\ are exactly
universes of minimal subalgebras of¥\. Now, if / is any minimal left ideal of Fy and
A is an algebra in V with no proper subalgebras then la = A for every a e A. Hence
the size of A is not greater than the size of / implying that the subalgebra I < Fj is
isomorphic to L.

5. Examples

Recall that a ternary function p on a set A is a Pixley function if

p ( x , v , v) = p ( x , y , x ) = p ( y , y , x ) = x

for all x, v 6 A. An important example of Pixley function is the so-called {ternary)
discriminator d defined by d(x, x,z) = z and d(x, y, z) = x if x ^ y. It is well
known that every algebra admitting a compatible Pixley function is arithmetical.
Moreover, a variety is arithmetical if and only if there exists a Pixley term, that is, a
ternary term determining a Pixley function on every member of the variety.

We shall use the abbreviation 'FACS algebra'introduced in [9] for referring to finite
arithmetical affine complete algebras with no proper subalgebras.

In [6] we considered the following algebra A = {A; F): A = {a, b, c, d], F —
{/, g, h), g and h are unary operations defined by

g(a) = g(b) = b, g(c) = g(d) = d, h(a) = h(b) = c, h(c) = h(d)=a

and / is a 4-ary operation defined by the following conditions:

(1) f(x, y, z, a) and f(x, y, z, b) are Pixley functions in x, y, z;
(2) / is compatible with the equivalence 6 determined by the partition A = {a, b) U

{c, d] and induces the discriminator on A/9;
(3) ifu; € {c,d} or \{x,y,z}\ = 3 then f{x, y, z, w) e {a,d}.

It is easy to see that 6 is the only non-trivial congruence of A.
This algebra was constructed as a counter-example to Pixley's conjecture that

every FACS algebra generates an arithmetical variety. Note that a finite arithmetical
algebra is affine complete if and only if it admits a Pixley polynomial. Thus all finite
arithmetical affine complete algebras are hereditarily affine complete.

Later Pixley conjectured (private communication) that maybe FACS algebras still
generate affine complete or at least CD varieties. Moreover, concerning the above
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example A he thought that even if Var A does not happen to be affine complete, maybe
we do get an affine complete variety if we add a suitable majority function to the set
F. There is only one way of defining a majority function m on A so that the structure
of A will not change too drastically: we require that m is compatible with 9 and
m(x, y, z) e [a, d) if \{x, y, z}\ = 3. The resulting algebra {A; f, g, h, m) will be
denoted by A*. Clearly A and A* have the same congruences.

We are going to show that none of the varieties V = Var A and V* = Var A* is
affine complete. In fact V is not even CD.

It is clear from the definition that the 2-element algebras A/9 and A*/9 have a
non-trivial automorphism. Let B c A2 be a graph subuniverse determined by this
automorphism. Clearly

B = A2\9 = {(a, d), (b, d), (a, c), (b, c), (c, b), (d, b), (c, a), (d, a)}.

We also consider the set C = {(a, d), (b, d), (a, c), (d, b), (c, a), (d, a)} which is B
without (b, c) and (c, b).

Obviously, g(B) c C and h{B) c C. Also it is easy to see that f(B4) c C.
Indeed, if xt, y, e A, i = 1, 2, 3,4, and

/((*i, yi). to, yi), (*3, y3), (x*, * ) ) e {(6, c), (c Z>)}

then ;c4, 3>4 G {a, b], hence (A:4, y4) ^ fi.
Thus the equivalence p determined by the partition B = C U {(b, c), (c, b)} is a

congruence of B and the quotient algebra B/p is term equivalent to a pointed set.
Consequently the variety generated by B/p is not congruence distributive.

In what follows we need to know unary term functions of A*. By the lemma
of Baker and Pixley [1], the term functions of a finite algebra with a majority term
are characterized as those which preserve all subuniverses of the direct square of this
algebra. Therefore we first find out all subuniverses of A2. Suppose that a subuniverse
5 of A2 contains a diagonal element. Then, since A has no proper subalgebras, the
whole diagonal is contained in 5. Hence, S is a subuniverse of (A+)2 where A+ is the
algebra obtained from A by adding constants as new fundamental operations. Clearly
A+ is a hemiprimal arithmetical algebra. It is known that the only subuniverses of the
square of a finite hemiprimal arithmetical algebra are congruences. Thus in our case
S e {A, 9, V}. Using unary operations g and h we see that every subuniverse of A2

generated by (x, y) e 9 intersects A. Hence, the subuniverses of A2 which are not
congruences must be contained in B.

Since f(B4), g(B), h(B) c C, the C, C U {(b, c)}, C U {(c, b)} and B are subuni-
verses. On the other hand, the scheme

(a, d) - ^ (b, d) -U (c, a) -?-* (d, b) - ^ (a, c) -^\ (d, a) - A (a, d)
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shows that C is a minimal subuniverse. (Here fh is a composition of / and h defined
by (/*)(*) = /(*(*), h(x), h(x), h(x)).)

Thus

A, 6, V, C, CU{(b,c)}, CU{(c,b)}, B

is the list of all subuniverses of A2. It is easy to check that the majority function m
preserves all these subsets of A2, hence this is also the list of all subuniverses of (A*)2.

It is an easy exercise to check that there are exactly 15 unary functions on A which
preserve these 7 subsets of A2. Only one of them is bijective (the identity map), 8
functions have 3 as the size of their range and the remaining 6 functions map A onto
2-element subsets {a, c], {b, d} or {a, d}. In view of Proposition 4.4, these 6 functions
must form a minimal subalgebra of F*. Indeed, clearly a minimal left ideal of the
monoid F\ must consist of functions of the minimal possible range. Since our variety
contains a 6-element algebra C* with no proper subalgebras, the free algebra F* must
contain at least a 6-element minimal subalgebra.

Now we show that C* is not affine complete. Since V* is CD, C* has exactly 3 non-
trivial congruences: two kernels of projections C* —>• A* and their join. Obviously
the function a given by the scheme

(a, d) <A+ (d, a), (b, d) <-%> (c, a), (d, b) «-% (a, c)

is compatible with all of them. However, as we shall soon see, a is not a polynomial
of C* since there is a subuniverse of (C*)2 which contains the diagonal but is not
preserved by a.

We represent the elements of C2 as quadruples (x, y, z, w) = ((x, y), (y, w))
where x, y,z, w e A and (JC, y), (z, w) e C. Consider the subuniverse D of (C*)2

generated by (a, c, b, d). Applying all 15 unary term functions to this quadruple, we
see that D contains the diagonal. Though not important for our purposes, we mention
that \D\ = 15 and thus D* is isomorphic to the free algebra F*. Since there is only one
bijective term function, for every (x, y, z, w) e D either (x, y, z, w) = (a, c, b, d) or
\{x, y, z, w}\ < 3. Hence, a(a, c, b, d) = (d, b, c,a) £ D yielding a(D) % D.
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