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Let 9 denote the family of functions

P(z) = 1 + 2 a x z + a2z
2 + •••

regular in £{z: | z| < 1} and with positive real part there. We propose to study,
in this article, the subclass 02a, of & whose functions P(z) have pre-assigned
second coefficient 2a x. In what follows we may assume, without loss in generality,
that ax is real and non-negative. This assumption will be made throughout. As is
well known [2], 0 ^ ax ^ 1. In Theorem 1 we derive a generalization of
Zmorovic's theorem 1, [3]. The result so obtained is then utilized in Theorem 2 to
determine the radius of univalence and starlikeness of the class of functions

T(z) = P(z) - 1 = 2axz + a2z
2 + •••

where P(z) e 0>2ai.

THEOREM 1. Let PB0>
2ai- Then we have on | z\ = r

(1.1)

where

z P ' - ^ l
= 2

This estimate is sharp.

PROOF. We shall first prove (1.1) for the general class 3P. The proof of the
theorem will then be completed by showing the existence of a function belonging
to ^2ai f° r which equality holds in (1.1). We first observe that if <p(z) is regular
and bounded in E, (by the term 'bounded' we shall always mean 'bounded by
one') with 0(0) = 0, then the function
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(1.2)

is likewise bounded in E. Differentiating (1.2) we obtain

(1.3) r(z) = 4>'{z)

Therefore, [2J,

(1.4)

Substituting the value o

(1.5)

Now

(1.6)

Viz) cj>iz)
• • — • - i - / • "

from (1.2) and simplifying, (1.4) yields

r w Piz) + 1

from which we obtain after differentiation

(1.7)
I)2

Substituting (1.6) and (1.7) in (1.5) we get

P 2 - 1 r< '
(1.8) zP' -

P -

2(1 -

This gives (1.1) for P e 0>. For the class ^ 2 a i it i
s readily verified that the function

a.') 'o(z) = l + 2
x y z 2

+ z 2

belonging to (?2ai yields equality in (1.1). Thus the estimate (1.1) holds for
P e 0>

2al a
fld t n e proof of the theorem is complete.

It may be remarked that Zmorovic [3] proved the inequality (1.1) under
the condition that the function Piz) e 0> has the form

where zx and z2 are arbitrary points on | z | = r, m is a positive integer,
Aj S: 0, A2 ^ 0, Xt+ X2 = 1. We have proved (1.1) without this assumption.

THEOREM 2. LetPe0>
2ai- Then the radius of univalence and starlikeness,

r0 of the class of functions
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(2.1)

is given by

Univalence and starlikeness of functions

F ( z ) = P(z) - 1 = 2 a l 2 + a2z
2 + •••

(2.2) rn =
1 + Vl - af

In order to prove the theorem we need the following

LEMMA 1. Let Pe3P2ai. Then on | z | = r<au we have

(2.3)

where x =
2r\ax -

and y =
2r(ax — r) (1 — atr)

This result is sharp in the sense that P — 1 take the value

1 - r2

which are the extremities of the diameter of the circle ALB whose centre is at x
and radius is y.

(2.4)

PROOF. For P e ^ 2 o i , we may write

P-l _
P + l~

where 0(z) is regular and bounded in E, $(0) = 0, </>'(0) = au from which it
follows that, [2]

(2.5)

and this

(2.6)

P
P

yields

P - 1 —

- 1
+ 1

2a t

(1

r + 2a\r2

- r2)(l -

^ r(at - r)
= l-ayr

-2atr
3 + r4

2a,r + r2)

which is equivalent to (2.3). The values A and B are respectively taken by the
functions

and
1 - z 2

1 - z 2

1 - 2axz + z2

This completes the proof of the lemma.

at z = — r

at z = + r.
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LEMMA 2. Let Pe^2ar Then on | z\ = r, 0 < r < 1 we have

(2.7) \P-\-X\ZY

where 2r2(ax + r)2
 nnA Y _ 2r{\ + air){ai + r)

Tnis resw/< is s/iar/> in f/ie sense that P — 1 tafce fne values

A,= -2r(a1 + r) = Irja, + r)
1 + 2 4 ^ 1 -r2

which are the extremities of the diameter of the circle A'L'B' whose centre is at
X and radius is Y.

PROOF. The proof is similar to that of Lemma 1 and follows from the
inequality, [2],

P-l
P+l

where 0(z) is regular and bounded in E, </>(0) = 0, cf>'(0) = au The functions of
Lemma 1 are extremal in this case as well.

PROOF OF THEOREM 2. The function T(z) = P(z) - 1 is regular in E and
from Lemma 1 we see that

P(z) - 1 2(ai - r)
1 -r2

so that T(z) has no zeros in | z j < at except a simple zero at the origin. A necessary
and sufficient condition that T(z) be starlike in I z\ < r0 is that

in | z\ <r0. Since Re —— is harmonic in | z| < a1? it is sumcient to obtain

the radius of the largest circle on which this is non-negative.
Making use of (1.1) we get

(2.9) Re-gLsReg + 1- f-*>'
K J P l - 2 2 | P 1 |

We now have the following extremal problem: Given | z | = r, to find the
minimum of the right side of (2.9) as P runs over the class &>

2a1- From Lemma 1
and 2 we see that we need to find this minimum for P — 1 lying in the region
enclosed by the circles A'L'B' and ALB.
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Putting P - a = £ + iq and denoting the right side of (2.9) by il/^,^) we
obtain

(2.,0) ^ . i

where R = \P-l\.
We now divide the range of £ = Re (P — a) into two parts:

and

(B) 2air < £ < 2 r ( a i ~
1 - r2 = * = (1 - 2fllr + r2)(l - r2)

We shall show that in case (A) the minimum of \j/p(i,Ti) inside the circle {2 + r\2

= Pot* P2 is attained on the diameter r\ = 0. We differentiate (2.10) with respect
to t] and obtain

The expression within the brackets is positive. Hence for each fixed £, the
minimum is attained at rj = 0. Therefore, inside the circle £2 + tj2 = p0

2 (subject
to (A)) the minimum occurs on the diameter r\ = 0.

Putting // = 0 in (2.10) we have the following problem: To find the minimum
of

(2.13)

If £, ^ — 2axr/(l — r2), then a + ^ — 1 is negative and so

1 T rt2 — i?2 1 2r2 1 4-

[ + ( + i + J^] * h
from which we see that the minimum of l(O( = h(O)l is given by the smallest
numerical value of a + S, — 1. Substituting i — — 20^/(1 - r2) in (2.13) we
obtain

if

- 2 a , r + r 2 ) ( l - r 2 ) '

then a + £ - 1 is positive. In this case
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(2.15) 2 *- a + Z~

r , 2r2 1 - 3r2

( 1 - r 2 ) ( a + £ - 1 ) l - r 2

Since a + £ - 1 > 0, the minimum of /(£) (= /2(0) occurs for the smallest numeri-
cal value of a + £, — 1. Putting

in (2.15) we obtain

/ (F\ 2 r ( f l ' ~ r ) 2r2(l-2air + r2) 1 - 3r2

: z w 1 - 2fltr + r2 (1 - r2) • 2r(ax - r) l - r 2

From (2.14) and (2.16) we see that

(2.17) 12(O ^ lt(O

if

an - 2r + atr
2 ^ 0, that is, if r ^ at /(I + , / l - a\)

In case (B) let us assume that every value on the circumference of the circle
ALB is taken by some P — 1, Pe0>2ai, for some z, \z\ = r <av We see then
from (2.11) that for each fixed <*, the minimum of the right side of (2.9) occurs for
points on the circumference of the circle ALB. Therefore, for the admissible range
of £, the minimum occurs on the circumference of the above circle. Also, from
(2.3) we see that any point on the circumference of the circle can be written as

P - 1 = x + ye>B 0 S 0 < 2%

so that our problem reduces to minimizing the expression:

(2.18)

-'4 | JTx )(1 +x + ycos0)*
\\-r2)4Tx I J

where we have made use of the fact that

(2.19) x 2 - y 2 + 2 x = 0

Differentiating (2.18) with respect to 6 we obtain

(2.20) %=- ±-ysin6 [l - 4 ( 4"2 _ - J2x) (1 + x + .
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We propose to show that the expression within the brackets retains a positive
sign at least when | z\ = r < aj(l + Jl-a2).lt will then follow that the minimum
of \ji can occur only when 0 = 0 or 0 = n, that is, at A or B. In other words, the
minimum of t// in case (A) and case (B) is the same i f | z j = r < a 1 / ( l + v ' 1 - a2).

To show that the expression within the brackets retains a positive sign, let us
put

1 / Ar
2

2

then
30 1 / 4r2 \

dU 4 \l-r2)j2x '

( 2r2 \
x - _ -2 1 • (x2 + y2 + 2xycos6)~i

Since

the extrema of $ occurs for 0 = 0, n (if al = 1, Q> s 1). For 0 = 0,

0 = 0 = a i - 2 r - a i r 2 + afr + r3

For 0 = n

$ = $ =

" (a1-r)(l-2a1r + r2)
and we will show that when r < at /(I + 7 1 - a?) both $ 0 and On are positive.
The numerator of

O0 = at-2r + a^r2 - 2ajr2 + a\r + r3

^ at - 2r + axr
2 - 2axr

2 + a\r + a\r3

= (at -2r + axr2)(l - axr) > 0 if r < ax /(I + V^"-^f)

If at = 1, it is easy to see that OK = 1. Otherwise the numerator of On is a mono-
tonic decreasing function of r. Putting r = alt the numerator becomes
«i — a? > 0. Therefore if r < aj{\ + Jl - a2) < au <j>K is also positive.

Finally, if P — 1 omits a larger set of values than the interior of the circle
ALB, this omitted set of values will include the interior of the above circle but not
the points A and B and so the minimum/max will again occur at A or B.

Summing up, we have proved that for j z\ = r < atl(l + y/l - a1)

r 2 ? n Re z P ' > ai~2r + air2

( • 1} X P~=T = ^^W^)

https://doi.org/10.1017/S1446788700009551 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009551


R. S. Gupta [8]

Also the right side of this inequality is non-negative for

Therefore T(z) is starlike in \z\ < r0. That T(z) may not be starlike in a
larger circle may be shown by considering the function

for which RezP' / (P - 1) vanishes on |zj = r0. Thus the estimate (2.2) for the
radius of starlikeness is correct. Since the derivative of P0(z) vanishes for
\z\ = ro = a1j(l + y/l — a\), we see that r0 is also the radius of univalence of
the class T(z) = P(z) - 1, P e &2ttl. This completes the proof of the theorem.

It may be pointed out that the radius of univalence of F(z) follows immediately
from a result of Landau [1] who showed that a function <p (z) = atz + •••
which is regular and bounded in E is univalent in the disc

(2.22) I zl <

N
Since we may write T(z) = P(z) - 1 = 2</>/(l - <f>) where Pe0»2ai, <f> is regular
and bounded in E and <f> (0) = 0, c£'(0) = au the univalence of T(z) in thedisc(2.22)
follows from the univalence of <f> in the same disc. Of course, insofar as starlikeness
is concerned the situation for T(z) and 4> (z) would be quite different because of
the intervention of the linear transformation.
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