Laws in finite strictly
 simple loops

Sheila Oates Macdonald

It is shown that a finite loop with no proper nontrivial subloops has a finite basis for its laws.

1. Introduction

As was mentioned in the survey paper [5] the question of whether a finite loop has a finite basis for its laws appears to be a test case for the conjecture that a finite algebra belonging to a variety all of whose algebras have modular congruence lattices has a finite basis for its laws. So far the only result known is that of Evans [4] which shows that a finite commatave Moufang loop has a finite basis for its laws. The main result of this paper is:

THEOREM. A finite loop which has no proper nontrivial subloops has a finite basis for its lows.
(Such a loop will be called a strictly simple loop.)
2. Definitions and preliminary results

Critical algebra and Cross variety of algebras are defined as in [5]. If \underline{V} is a variety, then $\underline{w}^{(n)}$ denotes the variety defined by the laws of $\underset{\sim}{V}$ involving at most n variables.

If $\underline{\underline{V}}=\operatorname{var}(A)$ where A is a finite algebra then a result of Birkhoff [1] shows that $\underline{\underline{V}}^{(n)}$ is finitely based. Thus if we can find an n such that $\underline{\underline{V}}^{(n)}$ has the other two attributes of a Cross variety, namely

Received 4 June 1973.
locally-finiteness and only finitely many (non-isomorphic) critical algebras we will have that \underline{V}, as a subvariety of a Cross variety, is itself Cross.

We now consider the special case in which A is a finite strictly simple loop. Such a loop is necessarily monogenic. Since the result is well known for cyclic groups of prime order we can assume A has a trivial centre. Definitions and properties of loops used here may be found in Bruck [2].

3. The variety $\underline{\underline{V}}$

LEMMA 3.1. A finitely generated loop in $\underline{\underline{V}}$ is isomorphic to a direct product of a finite number of copies of A.

Proof. Let B be such a loop; then B is a homomorphic image of a subloop of a direct product of a finite number of copies of A (Birkhoff [1]). Thus it is sufficient to prove that subloops and homomorphic images of finite direct products of copies of A again have the same form.

First we consider subloops. Let

$$
B \leq A_{1} \times \ldots \times A_{r}
$$

where $A_{i} \simeq A$, and proceed by induction on r; the result is clearly true if $r=1$ since A has no proper nontrivial subloops. The projection of B on each factor is either A or 1 and the intersection of B with each factor is either A or I. If the intersection with any factor is 1 then B is isomorphic to its projection on the remaining factors and so has the stated form and if the intersection of B with all factors is A then $B=A_{1} \times \ldots \times A_{r}$.

Now suppose $B \simeq G / N$ where $G=A_{1} \times \ldots \times A_{r}$ and $N \unlhd G$. To show B has the required form it is sufficient to show that N is the direct product of some of the A_{i}, since B will then be isomorphic to the direct product of the remaining factors. This will follow if we can show that N has nontrivial intersection with any factor on which it has nontrivial projection. So suppose $N \leq A \times D$ and that N contains a pair (a, d) with $a \neq 1$. Since every inner mapping of A yields an inner
mapping of $A \times D$ we have that $(\alpha \theta, d)$ is in N for all θ in $I(A)$. Since A has no centre and $a \neq 1$ there exists a θ such that $a \theta=a^{\prime} \neq a$ and then $(a, d) \backslash\left(a^{\prime}, d\right)=\left(a \backslash a^{\prime}, 1\right)$ is in N, so that $N \cap A$ contains the nontrivial element $a \backslash a^{\prime}$.

DEFINITION 3.2. Let H be a subloop of a loop G, then the centraliser of H in $G, C_{G}(H)$ is defined by $C_{G}(H)=\left\{x \mid x h=h x, x\left(h_{1} h_{2}\right)=\left(x h_{1}\right) h x_{2}\right.$, $\left.\left(h_{1} x\right) h_{2}=h_{1}\left(x h_{2}\right),\left(h_{1} h_{2}\right) x=h_{1}\left(h_{2} x\right), \forall h, h_{1}, h_{2} \in H\right\}$.

Note that in general $C_{G}(H)$ is not a subloop. However, if $H=G$ then it reduces to the centre of G.

LEMMA 3.3. The centraliser of any subloop of a finite loop G in \underline{V} is a normal subloop of G.

Proof. Let $H \leq G=A_{1} \times \ldots \times A_{r}, A_{i} \simeq A$. Then H has projection 1 or A on every A_{i}. Clearly $C_{G}(H)$ will contain the direct product of those factors on which H has projection 1 . On the other hand the projection of any element of $C_{G}(H)$ on a factor on which H has projection A must lie in the centre of A, and so must be \mathbf{l}. It follows that $C_{G}(H)$ is the direct product of those factors on which H has projectic 1 , and so is certainly a normal subloop of G.

LEMMA 3.4. $\underline{\underline{V}}$ satisfies an antiassociative low $x \cdot p(x)=1$ where $p(x)$ is a commutator-associator word.

Proof. This follows immediately from Theorem 4.1 in Evans [3] since $\underline{\underline{V}}$ contains no nontrivial groups.
4. The variety $\underline{\underline{\gamma}}^{(n)}$

Let $n \geq 6$ and consider $\underline{\underline{V}}^{(n)}$.
LEMMA 4.1. $\underline{\underline{V}}^{(n)}$ contains no nontrivial groups.
Proof. Since $n \geq 1, \underline{\underline{V}}^{(n)}$ satisfies the antiassociative law of Lemma 3.4 and so contains only the trivial group.

LEMMA 4.2. A finitely-generated loop in $\underline{\underline{v}}^{(n)}$ is generated by a finite number of loops isomorphic to A.

Proof. Let $G=\left\langle x_{1}, \ldots, x_{p}\right\rangle ;$ then $\left\langle x_{i}\right\rangle \in \underline{\underline{V}}$ (since $n \geq 1$) and so $\left\langle x_{i}\right\rangle$ is a direct product of a finite number of loops isomorphic to A. The totality of all such loops is clearly finite and generates G.

LEMMA 4.3. Let $G \in \underline{\underline{V}}^{(n)}$ and $H \leq G$, then $C_{G}(H) \leq G$.
Proof. Let $h_{1}, h_{2} \in H, c_{1}, c_{2} \in C_{G}(H)$ and $x, y \in G$. Then $L=\left\langle h_{1}, h_{2}, c_{1}, c_{2}, x, y\right\rangle \in \underline{\underline{\mathrm{V}}},($ since $n \geq 6$). Now $c_{1}, c_{2} \in C_{L}\left(\left\langle h_{1}, h_{2}\right\rangle\right)$ and, by Lemma 3.3 , this is a normal subloop of L, so that $\left\langle c_{1}, c_{2}\right\rangle, c_{1} \theta, c_{2} \theta$ are in $c_{L}\left(\left\langle h_{1}, h_{2}\right\rangle\right)$ for all inner mappings θ of L, in particular, for $\theta=R(x) R(y) R(x y)^{-1}$, $L(x) L(y) L(y x)^{-1}$ and $R(x) L(x)^{-1}$. Since $h_{1}, h_{2} ; c_{1}, c_{2} ; x, y$ are arbitrary elements of $H, C_{G}(H)$ and G respectively, it follows that $C_{G}(H)$ is a normal subloop of G.

LEMMA 4.4. If $G=(I, J)$ where $I \simeq A$ and $J \simeq A_{1} \times \ldots \times A_{r}$ with $A_{i} \cong A$, then G is a direct product of a finite number of loops isomorphic to A.

Proof. We proceed by induction on r. The result is certainly true for $r=1$ since then $(I, J\rangle$ belongs to $\underline{\underline{V}}$, so assume $r>1$, and the result is true for $r-2$. Then $J=A_{1} \times J_{2}$ and $\left(I, A_{1}\right)=K_{1}$, (I, J_{2}) $=K_{2}$ where K_{1} and K_{2} are finite direct products of loops isomorphic to A. Let $X=C_{G}\left(A_{1}\right), Y=C_{G}(X)$; then both X and Y are normal subloops of G. We now show that $G=X Y$. Since $A_{2} \times \ldots \times A_{r} \leq X$ it is sufficient to prove that $K_{1}=\left(I, A_{1}\right) \leq X Y$. Since $K_{1} \in \underline{V}$ we have, as in Lemma 3.3, that $c_{K_{1}}\left(A_{1}\right)$ is the direct product of those factors of K_{1} on which A_{1} has projection 1 , and so these factors belong to X. It remains to prove that the factors on which
A_{1} has projection A belong to Y. Let $x_{1}, x_{2} \in X$ and consider $H=\left(K_{1}, x_{1}, x_{2}\right)$. Since H has four generators it is in $\underline{\underline{V}}$ and so again is a direct product of loops isomorphic to A. If D_{1}, \ldots, D_{s} are the factors of K_{1} on which A_{1} has projection A, then A_{1} will have projection A on precisely those factors of H on which some D_{i} has projection A. Thus x_{1}, x_{2} as elements of $C_{H}\left(A_{1}\right)$ must belong to those factors of H on which every D_{i} has projection 1 . It follows that if $c \in D_{i}$, then $c x_{1}=x_{1} c, c(x y)=\left(c x_{1}\right) x_{2}$, $\left(x_{1} c\right) x_{2}=x_{1}\left(c x_{2}\right), \quad\left(x_{1} x_{2}\right) c=x_{1}\left(x_{2} c\right)$ so that, since x_{1}, x_{2}, were arbitrary elements of $X, D_{i} \leq Y$ as required. Note that this also implies that $A_{1} \leq Y$.

Now $X \cap Y$ is an abelian group and so is trivial. Thus $G=X \times Y=K_{1} X=K_{2} Y \quad$ (since $A_{2} \times \ldots \times A_{r} \leq X, A_{1} \leq Y$). Thus $X \simeq K_{2} Y / Y \simeq K_{2} / Y \cap K_{2}$ is a finite direct product of loops isomorphic to A, and so also is Y. It follows that G has the required form.

COROLLARY 4.5. A finitely generated loop in $\underline{\underline{V}}^{(n)}$ is a direct product of. a finite number of loops isomorphic to A.

Proof. By Lemma 4.2, $G=\left(A_{1}, \ldots, A_{s}\right\rangle$ for some (finite) s. Induction on s using Lemma 4.4, now gives the required result.

THEOREM 4:6. $\underline{\underline{V}}^{(n)}$ is a Cross variety.
Proof. By Blrkhoff's result, [1] Theorem 11, $\underline{\underline{V}}^{(n)}$ has a finite basis for its laws, and Corollary 4.5 shows that finitely generated loops in $\underline{\underline{V}}^{(n)}$ are finite and that A is the only critical loop in $\underline{\underline{V}}^{(n)}$.

Since a subvariety of a Cross variety is Cross the theorem stated in the introduction follows immediately.

References

[1] Garrett Birkhoff, "On the structure of abstract algebras", Proc. Cambridge Philos. Soc. 31 (1935), 433-454.
[2] Richard Hubert Bruck, A survey of binary systems (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 20. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1958; reprinted 1966).
[3] Trevor Evans, "Identical relations in loops, I", J. Austral. Math. Soc. 12 (1971), 275-286.
[4] Trevor Evans, "Icentities and relations in commutative Moufang loops", (Preprint).
[5] Sheila Oates Macdonald, "Various varieties", J. AustraZ. Math. Soc. (to appear).

Department of Mathematics,
University of Queensland,
St Lucia,
Queensland.

