08A15, 20N05

BULL. AUSTRAL. MATH. SOC. VOL. 9 (1973), 349-354.

Laws in finite strictly simple loops

Sheila Oates Macdonald

It is shown that a finite loop with no proper nontrivial subloops has a finite basis for its laws.

1. Introduction

As was mentioned in the survey paper [5] the question of whether a finite loop has a finite basis for its laws appears to be a test case for the conjecture that a finite algebra belonging to a variety all of whose algebras have modular congruence lattices has a finite basis for its laws. So far the only result known is that of Evans [4] which shows that a finite commutative Moufang loop has a finite basis for its laws. The main result of this paper is:

THEOREM. A finite loop which has no proper nontrivial subloops has a finite basis for its laws.

(Such a loop will be called a strictly simple loop.)

2. Definitions and preliminary results

Critical algebra and Cross variety of algebras are defined as in [5]. If \underline{V} is a variety, then $\underline{V}^{(n)}$ denotes the variety defined by the laws of \underline{V} involving at most n variables.

If $\underline{\underline{V}} = \operatorname{var}(A)$ where A is a finite algebra then a result of Birkhoff [1] shows that $\underline{\underline{V}}^{(n)}$ is finitely based. Thus if we can find an <u>n such that $\underline{\underline{V}}^{(n)}$ has the other two attributes of a Cross variety, namely Received 4 June 1973.</u>

349

locally-finiteness and only finitely many (non-isomorphic) critical algebras we will have that \underline{V} , as a subvariety of a Cross variety, is itself Cross.

We now consider the special case in which A is a finite strictly simple loop. Such a loop is necessarily monogenic. Since the result is well known for cyclic groups of prime order we can assume A has a trivial centre. Definitions and properties of loops used here may be found in Bruck [2].

3. The variety \underline{V}

LEMMA 3.1. A finitely generated loop in \underline{V} is isomorphic to a direct product of a finite number of copies of A.

Proof. Let B be such a loop; then B is a homomorphic image of a subloop of a direct product of a finite number of copies of A (Birkhoff [1]). Thus it is sufficient to prove that subloops and homomorphic images of finite direct products of copies of A again have the same form.

First we consider subloops. Let

 $B \leq A_1 \times \ldots \times A_r$,

where $A_i \simeq A$, and proceed by induction on r; the result is clearly true if r = 1 since A has no proper nontrivial subloops. The projection of B on each factor is either A or 1 and the intersection of B with each factor is either A or 1. If the intersection with any factor is 1 then B is isomorphic to its projection on the remaining factors and so has the stated form and if the intersection of B with all factors is A then $B = A_1 \times \ldots \times A_p$.

Now suppose $B \simeq G/N$ where $G = A_1 \times \ldots \times A_p$ and $N \trianglelefteq G$. To show B has the required form it is sufficient to show that N is the direct product of some of the A_i , since B will then be isomorphic to the direct product of the remaining factors. This will follow if we can show that N has nontrivial intersection with any factor on which it has nontrivial projection. So suppose $N \supseteq A \times D$ and that N contains a pair (a, d) with $a \neq 1$. Since every inner mapping of A yields an inner

350

mapping of $A \times D$ we have that $(a\theta, d)$ is in N for all θ in I(A). Since A has no centre and $a \neq 1$ there exists a θ such that $a\theta = a' \neq a$ and then $(a, d) \setminus (a', d) = (a \setminus a', 1)$ is in N, so that $N \cap A$ contains the nontrivial element $a \setminus a'$.

DEFINITION 3.2. Let *H* be a subloop of a loop *G*, then the centraliser of *H* in *G*, $C_{C}(H)$ is defined by

$$\begin{split} C_G(H) &= \{x \mid xh = hx, \ x(h_1h_2) = (xh_1)hx_2, \\ & (h_1x)h_2 = h_1(xh_2), \ (h_1h_2)x = h_1(h_2x), \ \forall h, \ h_1, \ h_2 \in H\} \end{split}$$

Note that in general $C_G(H)$ is not a subloop. However, if H=G then it reduces to the centre of G.

LEMMA 3.3. The centraliser of any subloop of a finite loop G in $\underline{\mathbb{V}}$ is a normal subloop of G.

Proof. Let $H \leq G = A_1 \times \ldots \times A_r$, $A_i \approx A$. Then H has projection 1 or A on every A_i . Clearly $C_G(H)$ will contain the direct product of those factors on which H has projection 1. On the other hand the projection of any element of $C_G(H)$ on a factor on which Hhas projection A must lie in the centre of A, and so must be 1. It follows that $C_G(H)$ is the direct product of those factors on which H has projecticn 1, and so is certainly a normal subloop of G.

LEMMA 3.4. \underline{V} satisfies an antiassociative law $x \cdot p(x) = 1$ where p(x) is a commutator-associator word.

Proof. This follows immediately from Theorem 4.1 in Evans [3] since \underline{V} contains no nontrivial groups.

4. The variety $\underline{V}^{(n)}$

Let $n \ge 6$ and consider $\underline{\underline{V}}^{(n)}$.

LEMMA 4.1. $\underline{\underline{v}}^{(n)}$ contains no nontrivial groups.

Proof. Since $n \ge 1$, $\underline{v}^{(n)}$ satisfies the antiassociative law of Lemma 3.4 and so contains only the trivial group.

LEMMA 4.2. A finitely-generated loop in $\underline{v}^{(n)}$ is generated by a finite number of loops isomorphic to A.

Proof. Let $G = \langle x_1, \ldots, x_r \rangle$; then $\langle x_i \rangle \in \underline{\mathbb{V}}$ (since $n \ge 1$) and so $\langle x_i \rangle$ is a direct product of a finite number of loops isomorphic to A. The totality of all such loops is clearly finite and generates G.

LEMMA 4.3. Let $G \in \underline{v}^{(n)}$ and $H \leq G$, then $C_{G}(H) \leq G$.

Proof. Let $h_1, h_2 \in H$, $c_1, c_2 \in C_G(H)$ and $x, y \in G$. Then $L = \langle h_1, h_2, c_1, c_2, x, y \rangle \in \underline{V}$, (since $n \ge 6$). Now $c_1, c_2 \in C_L(\langle h_1, h_2 \rangle)$ and, by Lemma 3.3, this is a normal subloop of L, so that $\langle c_1, c_2 \rangle$, $c_1\theta$, $c_2\theta$ are in $C_L(\langle h_1, h_2 \rangle)$ for all inner mappings θ of L, in particular, for $\theta = R(x)R(y)R(xy)^{-1}$, $L(x)L(y)L(yx)^{-1}$ and $R(x)L(x)^{-1}$. Since $h_1, h_2; c_1, c_2; x, y$ are arbitrary elements of H, $C_G(H)$ and G respectively, it follows that $C_G(H)$ is a normal subloop of G.

LEMMA 4.4. If $G = \langle I, J \rangle$ where $I \approx A$ and $J \approx A_1 \times \ldots \times A_r$ with $A_i \approx A$, then G is a direct product of a finite number of loops isomorphic to A.

Proof. We proceed by induction on r. The result is certainly true for r = 1 since then $\langle I, J \rangle$ belongs to \underline{V} , so assume r > 1, and the result is true for r - 1. Then $J = A_1 \times J_2$ and $\langle I, A_1 \rangle = K_1$, $\langle I, J_2 \rangle = K_2$ where K_1 and K_2 are finite direct products of loops isomorphic to A. Let $X = C_G(A_1)$, $Y = C_G(X)$; then both X and Y are normal subloops of G. We now show that G = XY. Since $A_2 \times \ldots \times A_r \leq X$ it is sufficient to prove that $K_1 = \langle I, A_1 \rangle \leq XY$. Since $K_1 \in \underline{V}$ we have, as in Lemma 3.3, that $C_{K_1}(A_1)$ is the direct product of those factors of K_1 on which A_1 has projection 1, and so these factors belong to X. It remains to prove that the factors on which Now $X \cap Y$ is an abelian group and so is trivial. Thus $G = X \times Y = K_1 X = K_2 Y$ (since $A_2 \times \ldots \times A_r \leq X$, $A_1 \leq Y$). Thus $X \simeq K_2 Y/Y \simeq K_2/Y \cap K_2$ is a finite direct product of loops isomorphic to A, and so also is Y. It follows that G has the required form.

COROLLARY 4.5. A finitely generated loop in $\underline{\mathbf{y}}^{(n)}$ is a direct product of a finite number of loops isomorphic to A.

Proof. By Lemma 4.2, $G = \langle A_1, \ldots, A_s \rangle$ for some (finite) s. Induction on s using Lemma 4.4, now gives the required result.

THEOREM 4.6. $\underline{v}^{(n)}$ is a Cross variety.

Proof. By Birkhoff's result, [1] Theorem 11, $\underline{\underline{v}}^{(n)}$ has a finite basis for its laws, and Corollary 4.5 shows that finitely generated loops in $\underline{\underline{v}}^{(n)}$ are finite and that A is the only critical loop in $\underline{\underline{v}}^{(n)}$.

Since a subvariety of a Cross variety is Cross the theorem stated in the introduction follows immediately.

References

- [1] Garrett Birkhoff, "On the structure of abstract algebras", Proc.
 Cambridge Philos. Soc. 31 (1935), 433-454.
- [2] Richard Hubert Bruck, A survey of binary systems (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 20. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1958; reprinted 1966).
- [3] Trevor Evans, "Identical relations in loops, I", J. Austral. Math. Soc. 12 (1971), 275-286.
- [4] Trevor Evans, "Identities and relations in commutative Moufang loops", (Preprint).
- [5] Sheila Oates Macdonald, "Various varieties", J. Austral. Math. Soc. (to appear).

Department of Mathematics, University of Queensland, St Lucia, Queensland.