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Laws in finite strictly

simple loops

Sheila Oates Macdonald

It is shown that a finite loop with no proper nontrivial

subloops has a finite basis for i ts laws.

1. Introduction

As was mentioned in the survey paper [5] the question of whether a

finite loop has a finite basis for its laws appears to be a test case for

the conjecture that a finite algebra belonging to a variety all of whose

algebras have modular congruence lattices has a finite basis for i ts laws.

So far the only result known is that of Evans [4] which shows that a finite

commutative Moufang loop has a finite basis for i ts laws. The main result

of this paper is :

THEOREM. A finite loop which has no proper nontrivial evibloops has a

finite basis for its laws.

(Such a loop will be called a strictly simple loop.)

2. Definitions and preliminary results

Critical algebra and Cross variety of algebras are defined as in [5],

(n)If V is a variety, then V denotes the variety defined by the laws of

^ involving at most n variables.

If ^ = var(d) where A is a finite algebra then a result of

Blrkhoff [/] shows that v}n is finitely based. Thus if we can find an
in)

n such that V/ has the other two attributes of a Cross variety, namely
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locally-finiteness and only finitely many (non-isomorphic) critical

algebras we will have that V_ , as a subvariety of a Cross variety, is

i tself Cross.

We now consider the special case in which A is a finite strictly

simple loop. Such a loop is necessarily monogenic. Since the result is

well known for cyclic groups of prime order we can assume A has a tr ivial

centre. Definitions and properties of loops used here may be found in

Bruck [2].

3. The variety ^

LEMMA 3.1 . A finitely generated loop in V. is isomorphic to a

direct product of a finite nuxriber of copies of A .

Proof. Let S be such a loop; then B is a homomorphic image of a

subloop of a direct product of a finite number of copies of A (Birkhoff

[ / ] ) . Thus i t is sufficient to prove that subloops and homomorphic images

of f inite direct products of copies of A again have the same form.

First we consider subloops. Let

B 5 4 x . . . x A ,
1 r '

where A . - A , and proceed by induction on r ; the result is clearly

true if r = 1 since A has no proper nontrivial subloops. The

projection of B on each factor is either A or 1 and the intersection

of B with each factor is either A or 1 . If the intersection with

any factor is 1 then B is isomorphic to its projection on the remaining

factors and so has the stated form and if the intersection of B with all

factors is A then B = A± x . . . x Ay .

Now suppose B - G/N where G = A x ... x A and N 2 G . To show

B has the required form it is sufficient to show that N is the direct

product of some of the A • , since B will then be isomorphic to the

direct product of the remaining factors. This will follow if we can show

that N has nontrivial intersection with any factor on which it has

nontrivial projection. So suppose N 2 A x 0 and that N contains a pair

(a, d) with a # 1 . Since every inner mapping of A yields an inner
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mapping of A x D we have that (aQ, d) is in N for al l 6 in I (A) .
Since A has no centre and a t 1 there exists a 6 such that
aG = a' t a and then (a, d)\(a', d) = ( aW, l) is in N , so that
N n A contains the nontrivial element a\a' .

DEFINITION 3.2. Let fi tea s lib loop of a loop G , then the
centraliser of H in G , C (H) is defined by

G
CQ(H) = {x | xh = hx, x[hji^ = [xh1)hx2,

[h1x)h2 = hx{xh2), [hjjx = hx{h2x), ih, hx, h2 € H} .

Note that in general C (H) is not a subloop. However, if H = G

then i t reduces to the centre of G .

LEMMA 3.3. The aentraliser> of any subloop of a finite loop G in V_

is a normal subloop of G .

P r o o f . L e t H < G = A * . . . x A , A . - A . T h e n H h a s

projection 1 or A on every A. . Clearly CAH) will contain the

direct product of those factors on which H has projection 1 . On the
other hand the projection of any element of C~(H) on a factor on which H

has projection A must lie in the centre of A , and so must be 1 . It
follows that CQ^H) i-s the direct product of those factors on which

H has projecticl 1 , and so is certainly a normal subloop of G .

LEMMA 3.4. .V satisfies an antiassociative law x • p{x) = 1 where
p(x) is a commutator-assoeiator word.

Proof. This follows immediately from Theorem U.I in Evans [ 3 ] s ince

V_ contains no n o n t r i v i a l groups.

4. The variety 1^

Let n 2 6 and consider V̂

LEMMA 4.1. V/n contains no nontrivial groups.

Proof. Since n 2: 1 , V. satisfies the antiassociative law of

Lemma 3.U and so contains only the trivial group.
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LEMMA 4.2. A finitely-generated loop in V is generated by a

finite number of loops isomorphic to A .

P r o o f . L e t G = < x , , . . . , x > ; t h e n < x . > 6 V ( s i n c e n > 1 ) a n dI P v —

so <x.) is a direct product of a finite number of loops isomorphic to

A . The totality of al l such loops is clearly finite and generates G .

LEMMA 4 . 3 . Let G € V ( w ) and H 5 G , then CJH) 5 G .

Proof. Let 7^, h^ i. H , c±, c^ € C^ti) and x, y € G . Then

L = (h^ h2, o^, a2, x, y) € 1 , (since n 2: 6 ) . Now

e1 > e2 € C^{ih^, ^2>) and, by Lemma 3.3 , this i s a normal subloop of

L , so that <e1, a >, e 6, CpS are in C£ (< h , ?t >} for a l l inner

mappings 6 of £ , in par t icu la r , for 6 = B{x)R(y)R(xy)~1 ,

L(x)L(y)L(yx) and R(x)L{x)~ . Since h , h ; a , o^; x, y are

arbitrary elements of H , CQW) an<^ ^ respectively, i t follows that

CAH) is a normal subloop of G ,

LEMMA 4 . 4 . If G = (I, J) where I - A and J = A^ *...•* Ap

with A- - A , then G is a direat product of a finite number of loops

isomorphic to A .

Proof. We proceed by induction on r . The result is certainly true

for r = 1 since then (I, J) belongs to V , so assume r > 1 , and the

result is true for r - 1 . Then J = /L x J^ and < I, A^ > = K ,

(I, <7 > = Xp where X, and K^ are finite direct products of loops

isomorphic to A . Let X = C^^) , X = C^U) ; then both X and r are

normal subloops of G . We now show that G = XX . Since

A2 x . . . x A 2 X i t is sufficient to prove that K = < I, A^) < XX .

Since K^ i J£ we have, as in Lemma 3-3, that C^ [A^\ is the direct

product of those factors of K. on which A^ has projection 1 , and so

these factors belong to X . I t remains to prove that the factors on which
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A^ has projection A belong to Y . Let x, , Xp € X and consider

B = (K , x,, Xp> . Since H has four generators it is in Y and so

again is a direct product of loops isomorphic to A . If D., ..., D are

X S

the factors of #. on which A. has projection A , then i4- will have

projection A on precisely those factors of H on which some D. has

projection 4 . Thus x^, x^ as elements of Cg(^ ) must belong to

those factors of H on which every D. has projection 1 . It follows

that if a € £>. , then ex = x.e , c(xjy) = [ox )x ,

(x̂ ĉjxg = x1(cx2) , [x-^x^c = x1(x2c) so that, since x , x , were

arbitrary elements of X , D. 2 X as required. Note that this also

implies that /L £ Y .

Now X n Y is an abelian group and so is t r iv ia l . Thus
G = X x Y = Â X = tfpY (since ^2 * . . . x Ap £ AT , /11 £ J ) . Thus

X - KJl/Y = Kp/YrtfC is a finite direct product of loops isomorphic to

A , and so also is Y . I t follows that G has the required form.

COROLLARY 4.5. A finitely generated loop in T is a direct
product of a finite number of loops isomorphic to A .

P r o o f . By Lemma k . 2 , G =<A , ..., A > f o r s o m e ( f i n i t e ) s .
x s

Induction on s using Lemma h.h, now gives the required result.

THEOREM 4;6. V ^ is a Cross variety.

Proof. By Blrkhoff's result, [1] Theorem 11, V ^ has a finite

basis for its laws, and Corollary U.5 shows that finitely generated loops

in X a rs finite and that A is the only critical loop in V̂

Since a subvariety of a Cross variety is Cross the theorem stated in

the introduction follows immediately.
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