MINKOWSKI'S THEOREM WITH CURVATURE LIMITATIONS (I)

Z. A. Melzak
(received March 14, 1959)

1. The well-known theorem of Minkowski, [1], [2],
states that:
(M) a plane convex region, symmetric about the origin O,
includes a lattice point other than O if its area is greater than4.

By a lattice point we shall understand a point in the plane,
both of whose coordinates are rational integers. In connection
with (M) a critical region is defined to be a convex symmetric
region of area 4, which includes no lattice point other than O.
One such region is the open square S = {(x,y)( Ixlt <1, lyl< 1} ,
an infinite set of critical regions is formed by the parallelograms
bounded by the lines y = x+1, y = x-1, y-1 = k(x-1), y+1 = k(x+1),
0<-k < ® . Finally, there is a critical hexagon H, bounded by
the following six lines: y-1 ==(x-1), y+1 = -(x+1), y-1 = mx,
y+l = mx, y =1 /mYx-1), y =(1/m)x+1), where m = tan /12,

All the vertex angles of H are equal to 2T/3.

Since all critical regions are convex polygons it is natural
to expect that the constant 4 in (M) ought to be diminished if the
boundary of the convex symmetric region is required to curve
more strongly than a straight line. It is the aim of this article
to find the corresponding critical regions and the constants which
replace 4 in (M) under suitable curvature restrictions on the
region.

It should be emphasized that the topology of various regions

does not enter into the picture. It will be clear in each case
whether the point-set used is to be taken as open or closed.

The following notation is used. Any region, unless other-
wise specified, is assumed to be convex and symmetric about
the fixed origin O. A p.l.p. (proper lattice point) is a lattice
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point other than O, Capital letters, other than A,B and O, will
denote regions. A(X) and B(X) will stand for the area and the
boundary of X, respectively. Small letters will denote points
or numbers, and small Greek letters will denote curves or
angles. For any set Z,Z' will be its image in O.

2. Let R be a region and let p€B(R). A circle ¥ is said
to be a supporting circle of R at p if it is tangent there to a
supporting line of R, and if B(R), and therefore R as well,
lies inside or on ¥ . R is said to be an r-region if at each
point of B(R) there exists a supporting circle of radius £ r,
while for at least one point there is no supporting circle of
smaller radius.

It follows from this definition that if B(R) consists of a
finite number of arcs along each of which there exists a contin-
uously varying radius of curvature (continuity is one-sided at
the corners), then R is an r-region, 0<r¢ . However, it is
easy to give an example of an r-region R, such that curvature
fails to exist at an uncountable subset of B(R). We give the
following example based on the properties of the Cantor set.
Let &« be the unit circle about O. On the upper semi-circle let
X be the set which becomes the ordinary ternary Cantor set
based on [0,M] when & is unrolled onto a line. Let r be real,
1< r< . Replace the arc of & , corresponding to the first
excluded middle third, by an arc of a circle of radius r located
so that the result is a convex curve. Repeat the same on each
middle third of the succeeding stages. Finally, carry out the
same procedure for the lower semi-circle. It is clear that one
obtains in this way a convex curve B(K) which bounds an r-region
K, whil/e along B(K) curvature fails to exist at all points of &
and

An r-region is said to be maximal if it contains no p.l.p.
and if no other r-region containing no p.l.p. has bigger area.
We assume henceforth that r > 1, since otherwise the problem is
trivial. Strictly speaking, it would be necessary to obtain a
proof that there exists a maximal r-region. Such a proof can be
constructed, as in the isoperimetric problem, by the use of
Blaschke's selection principle, [3], but it is of no interest here.

3. LEMMA 1. Let K be a maximal r-region. Then B(K)
consists of a finite number of circular arcs of radius r.

Suppose that this is false. Then there are on B(K) two
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points p; and p;, bounding the (shorter) arc « , such that the
following properties hold. First, & is neither an arc of
radius r nor a union of a finite number of such arcs. Then,
letting T, and 7, be any two supporting lines at p; and p;, the
non-convex region N bounded by &, ?; and 7,, contains no
p-l.p. Now replace Ty and T, by the corresponding supporting
circles of radius r at p; and p,. Let M be the non-convex
region bounded by ® and by these two circles. Finally let
L=KuMuM' . Then L is an r-region containing no p.l.p.
and A(L) > A(K), which is a contradiction. We note further
that since r > 1, there are at least two arcs.

In view of this lemma we shall use the self-explanatory
terms 'corner' and 'interior point' for the points on the boun-
dary B(K) of a maximal r-region K.

LEMMA 2. If K is a maximal r-region, then each arc of
B(K) contains an interior p.l.p.

Suppose that this is false. Then there is an arc p in
B(K), with corners q; and q,, and without interior p.l.p's.
Continue the arcs, or arc, adjoining B at q; and q,, beyond
q; and q,, and repeat the same with /5’ . Nowlet B be
translated by a parallel motion through a small distance a away
from the origin. Let the same operation be repeated on g’ .
We obtain thus a new r-region L. which includes no p.l.p's if
a is small enough, Since A(L) > A(K), the desired contradic-
tion is proved and the lemma follows.

LEMMA 3. Let K be a maximal r-region and let & be
one of the arcs of B(K). If & contains exactly one interior
pP.l.p. pthen p is the centre of « .

Let q; and qp be the corners of « and suppose that pis
nearer to q) thantogqp. Let & and the neighbouring arcs (or arc)
be continued beyond q and q,. Rotate the extended &« through
a small angle O about p so as to leave q) outside the new
region. Repeat the same operation on «/ . Suppose that in the
process the corners q; and q, are moved to q3 and q4 res-
pectively. By the hypothesis Pq) < fq\z and § is small; there-
fore $q3 = Pq; and Pqy = $q,. Further for 8 sufficiently
small, B9 < Pqy and ﬁq“_,} < ﬁq\z Consider now the two circu-
larly bounded non-convex regions pq;qj and pgyqy. Let the
first one be reflected in the line through p which bisects the
angle at p between the tangents to pq; and Pqy. Under this
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reflexion the image of q3 is onthe interior of f)?;z and thatof q
on the interior of §E4. It follows that the first region has

smaller area than the second one. That is, more area is gained
than lost in the process, and the maximality of K is contradicted,
which completes the proof.

LEMMA 4. Let K be a maximal r-region and let &« be
one of the arcs of B(K). Let q, 9, and c¢ be the corners and
the centre of K respectively. If &« contains exactly two
interior p.l.p.'s p; and p;, then pj lies between q; and ¢
(or possibly at c), and p, between c and q,. Also, pfﬁaz < E?ll-

Suppose that P, and p, are both between q and c. Rotate
o as in the previous lemma, about p, - the maximality of K is
contradicted as before. Suppose now that Erpz > &\11. Rotate
o« as before, but this time twice: once about Py soas to leave
q) outside, and once about p, so as to leave g, outside. Now
K is replaced by the union of the two rotated arcs and the
maximality of K is again contradicted since the new region has
larger area.

LEMMA 5. Let K be a maximal r-region and let
o, B, ¥, & be four arcs lying in this order on B(K). Let
A » A, ¥ be the angles between &« and B, @ and ¥, ¥ and
Suppose that # and ¥ , corners included, contain one
p.l.p. each. Then A+ AL+ V 3 2T,

Let q; be the corner between « and 3 , q5 that between
B and ¥, and q3 that between ¥ and § . Let p; and p; be
the p,l.p.'s on B and ¥ respectively. Rotate B througha
small angle about P, and ¥ through a small angle about Py
extending the two arcs as necessary. The sense of rotations is
such as to leave q and q; outside the new region. Suppose that
the process moves q;,9, and q3 to q4,qg and q¢ respectively.
Let p be the angle at q; between the straight segment q;q5 and
the tangent at qp to B ; similarly let 0" be the angle between
9295 and the tangent at q, to ¥ . Therefore

(1) p+t O+ =27
Let the same operation be repeated at o, /3', ¥, g

The total change of area of K during the process is

(2) A A =2[A(P19,95) + A(P9,95) - A(P1a;9y) - A(P,a59¢)]

where each summand is the area of the circularly bounded non-
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convex region with indicated corners. Assume now that
A, ¥V > 1/2; it will be seen that the proof holds a fortiori if

either A or V is < T/2.

By Lemma 3,p, is the centre of A and p; that of ¥
Performing some elementary calculations we get

(3)AA = Za%[tan(f: -/ 2)-tan(A -TT/Z)] + Za%[tan(o’-TT/Z) -tan(V- TT/Z)] +e

where a; and ap are the distances from q and qj to @5 and
@6 respectively, and the error term e is much smaller than
the other two summands if qg is sufficiently close to q;, i.e.
if the angles of rotation of B and ¥ are small enough. Now

(4) AA = Za?Isin(P -A)sec(p-T/2)sec(A -T/2)
+ Za%sin(o’- V)sec(o -T/2)sec(V - T{/2)+e;

by the assumptions on various angles the four secants in (4) are
positive. Comparing (1) and (4) we see that q. can be selected
so as to make the two sines in (4) positive, provided that

A + M+ VY < 2T. If the latter holds then the total change A A
of area in the perturbation process is positive, and the maxi-
mality of K is contradicted.

LEMMA 6. Let K be a maximal r-region and let n be
the number of p.1.p.'s on B(K). Then n=4 or n=6.

In the first place, n is a positive integer and, by the
symmetry of K, n is even. Let the n p.l.p.'s be, in order,
p; = (x4,v3)> 1 =1,2,...,n. It is clear than the pi's are vertices
of a convex polygon P with O in its interior. Also, by the
determinant formula for the area of a triangle

_is 1
AP =33 2 =y - vl

where xp;1 = X1 and yp4] = y1 . Each summand is a non-negative
integer and since O is inside P, each summand is in fact positive.
Therefore

A(P) > n/2 .
Suppose now that n ) 8. Then A(K) > A(P) 2 4, and so by (M)
K includes a p.l.p. which is a contradiction. It remains to
show that n > 2. Suppose, to the contrary, that n=2. Then, by
Lemmas 2 and 3,B(K) consists of two arcs o and «’, and each
has a p.l.p. at its centre. Let the latter be p and p’. Then it is
easy to show that K contains also the circle about O passing
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through p and p'. Since this circle contains two other p.l.p.'s
(or more) it follows that either B(K) has at least four p.l.p.'s,

or K includes a p.l.p. in its interior. Since either case leads

to a contradiction the lemma is proved.

It has been proved by now that if K is a maximal r-region
then B(K) consists of m arcs of radius r and contains n
p.l.p.'s. Further, m and n are even positive integers,
m £ n, and n=4 or n=6. Therefore there are five possibilities
for K: T2,4’T2,6’T4,4’T4,6’T6,6‘ Here Tm,n is the type of
region bounded by m arcs and containing exactly n p.l.p.'s on
its boundary.

It turns out that the maximal r-region K is completely
determined as follows. K can be of the type T, 4 only if
r < (5/2)1/2; the four p.l.p.'s are then (0, %1) and *1, 0), and the
two arcs have their centres on the line x = -y. K can be of the
type T ¢ only if r = (5/2)]/2; the region is then as above, with
the addition of p.1.p.'s (1,1) and (-1,-1). K can be of the type
T4’4 only if the four arcs have their centres on the coordinate
axes and the four p.l.p.'s are (0,%+1) and (¥1,0). K can be of
the type T4 6 only if r > (5/2)]/2; the four arcs have then their
centres on the lines x = £y and the six p.l.p.'s are (0,x1),
(£1,0) (1,1) and (-1,-1). Finally K can be of the type Te,6
only if r > (5/2)1/2 and the six p.l.p.'s are as above; the centres
of the arcs are here as follows: two on the line x=y and the
other four in the second and fourth quadrants, situated symme-
trically with respect to the line x = -y. It is to be understood
that the above determination holds only up to reflexions in the
coordinate axes and their two diagonals.

Now, the complete determination is reduced to the com-
putation of different areas. For a fixed r the critical constant
replacing 4 in (M) is, of course, the largest area of the admis-
sible maximal r-region.

This programme will be carried out in the second part of
this article. In the remainder of this part we consider exten-

sions to the n-dimensional space E.

4. Before proceeding to the general case we remark that
in E3 the lemmas 1 and 6 possess the following extensions:

Let K be a maximal r-region in E3. Then B{(K) consists
of a finite number of regions, each region being a part of the
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sphere of radius r, bounded by a finite number of other such
spheres. Each such region contains at least one interior p.l.p.

Let K be a maximal r-region in E; and let n be the
number of p.1.p.'s on B(K): Then n £ 24.

In E, the constant 4 of (M) is replaced by 2B, All regions
will be assumed, as before, to be convex and symmetric about
the origin O. The definition of an r-region is the same as before,
supporting hyperplanes and n-spheres replacing supporting lines
and circles. The definition of a maximal r-region is clear. As
before, we assume that r > 1.

THEOREM 1. Let K be a maximal r-region in E;. Then
K is the intersection of f(n) solid n-spheres of radius r, where
f(n) is an even integer and f(n) < 2Pn(n-2)! +n -2/(n-1). More-
over, each n-spherical part of B(K) contains an interior p.l.p.

The proof follows exactly the proofs of Lemmas 1, 2, and
6 and the only important difference is the determination of the
bound on the number f(n). We enumerate the p.l.p.'s on B(K):
P1:P2se-- ’Pg(n)‘ It is clear that f(n) £ g(n). The points
PyseeesP are vertices of a convex polytope P whose volume
V%P) satiggle){s. V(P) < V(K). By the use of the generalized Euler-
Poincaré formula it can be shown that B(P) can be partitioned
into h(n) = (n-1)g(n) - n? +n+2 n-simplices, such that all the
vertices of each simplex are among the points p;, and no two
simplices overlap except on a lower-dimensional simplex, If
the n vertices of each simplex are joined by straight segments
to O, we obtain a decomposition of the polytope P into h(n)
(n+1)-simplices whose vertices have all their coordinates
integral. Then, following the proof of Lemma 6, and making
use of the determinant formula for the volume of a simplex, we
show that

1/n! h(n) < 2%,

since otherwise K includes a p.l.p. in its interior. The above
inequality leads at once to the estimate of f(n) in the theorem.

The author acknowledges with thanks the referee's sugges-
tions toward clearing up and improving several points in the ~
proofs and correcting some errors.
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