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ABSTRACT. We model the evolution of photospheric field elements by
treating them as mean field structures undergoing a nonlinear self-
interaction mediated by much smaller-scale, convectively driven plasma
turbulence. Distributed fields can gather into discrete, strong elements
of a minimum permitted scale. Also studied are the transport of flux
from dissolving elements and to growing elements via weak intermediate
fields and the cancellation of adjacent emements of opposite polarity.

1. THE FIELD EVOLUTION EQUATION

The photospheric Reynolds number Re~10!2 and kinematic viscosity
v~1cm?/s indicate that the convectively driven plasma motions are
turbulent down to ~ 1 m. The magnetic Reynolds number Rm . 106 and
plasma magnetic diffusivity n ~107 cm?/s indicate a strong influence of
the turbulence on the magnetic field. Because there are no rigorous
derivations of interactions of the magnetic field with the turbulence
under these solar conditions, we must combine derivations valid under
other conditions, numerical simulations, and observational
phenomenology.

Acknowledging that there are unresolved theoretical questions about
this procedure, we follow Steenbeck, et al. (Krause and R¥dler 1980) and
split the magnetlc field into a vertical, large-scale, slowly-varying
"mean field" <B>= ZB(x,y,t), identified with observed photospheric
fields, and a "turbulent" part, carried about by the rapid, small-scale
eddies (Stenflo 1988). We assume vanishing helicity and mean velocity,
and that statistical properties of the turbulence vary on mean field
scales.

We adopt a magnetic "turbulent diffusivity" RB~<u?>/T, where u is
the turbulent velocity and T the eddy correlation time. See discussions
by Parker (1979), Krause and Ridler (1980), Moffatt (1983), and
especially numerical simulations by Drummond and Horgan (1986). In the
photosphere B ~10!3 cm?/s.

A turbulent, conducting fluid behaves diamagnetically with respect
to the mean field, leading to an equation, valid for Rm>>1, which
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reduces to
> L > 1 > L >
3B/at = V-[B% V(B? B)] = v:[B? vC] (1)

(Vainshtein and Zel'dovich 1972). See other discussions by Zel'dovich
(1956), Ridler (1968), and Moffatt (1983).

Nonlinearity arises from the inhibition of turbulence by strong
mean fields. This idea forms the basis of thermal plug models of sunspot
cooling. For Rm<<1l, Krause and RHdler (1980) show that, assuming the
energy source is unaffected, most turbulent modes are suppressed by a
strong mean field as 1/B*. Peckover and Weiss (1978) found by numerical
simulation that overturning convective eddies are unaffected by weak
fields, but are suppressed as 1/B* in strong fields, thus reducing the
turbulent energy supply. Beckers's (1976) observations of microturbulent
velocities in sunspots indicate a turbulent diffusivity about 0.01 that
of the photospheric value. We adopt a phenomenological diffusivity to
model this behavior: B(B)= B,/(1+|B/B.|™). B, is the critical field
separating the kinematic and dynamical regimes of eddy suppression,
which we estimate at ~100 G.

2. SOLUTIONS AND COMPARISON TO OBSERVATIONS

1
The functional C[B]=B[130/(1~!-|B/BCIn)]/2 acts as a potential governing
the two-dimensional flow of B. When n>2, B[C] is double valued, sol? can
vary discontinuously between Bj<B, and By>B,, where By=B.[2/(n-2)] n
while C remains continuous. When n>2 and B>B the functional derivative
8C/8B<0, and local maxima and minima of B and C anticoincide. Then
fluctuations of B will grow. When B<Bp or n<2 fluctuations are damped.

The smallest-scale fluctuations grow or decay first. A scale cut-
off is imposed by requiring B to vary only over distances larger than
the turbulent eddies. For numerical solutionsthe minimum scale will be
associated with the grid spacing, which we identify with the granular
scale ~1 Mm. We present a one-dimensional case using three point spatial
derivatives, an explicit, trapezoidal time integration, and modelled
random fluctuations. We choose n=4 and closed boundary conditions. An
initially uniform field B KBp=1 will remain uniform; Figure 1 shows the
evolution for the maximally unstable case B _=1.3. B=B_ is metastable for
a few hours and then breaks up on the scale of the grid as expected.
Separate peaks undergoing a negative fluctuation develop local maxima of
C and decay by transporting flux through the intervening weak field to
the stronger peaks which, being local minima of C, grow. A stable state
is reached after about 200 hours with only one strong peak Bj>B; and
B2=B02/B between; C is uniform. For Bo=3000 G, the initial uniform
state lasts about 10 days.

The present investigation differs from earlier ones by Kraichnan
(1976) and Knobloch (1978). These involve a linear diffusion equation
with negative diffusivity. Such a system has no stable static solution.

We find that, under certain conditions, the field gathers itself
into isolated, strong elements with weak field between. It evolves to an
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ordered state not in a minimum field energy configuration, thus evoking
the "dissipative structures" discussed by Nicolis and Prigogine (1977)
in connection with nonlinear chemical reactions. This process also
suggests the sudden breakup of sunspot umbrae after the appearance of
bright umbral dots (Zwaan 1987). In addition, such solutions include the
growth and decay in place of apparently isolated flux elements, as
observed by Simon and Wilson (1985) and by Topka, et al. (1986).
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Figure 1. Magnetic field distribution versus time.
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Figure 2. Peak field strength and rate of flux loss versus time for
n=4 (long lived) and n=2 (short lived) cases.

Martin, et al. (1985) have observed the cancellation in active
regions, over a few hours time, of adjacent but seemingly unconnected
flux elements of opposite polarity. We have carried out a two-dimensional
calculation for such elements of initial strength 1000 G and one
intermediate grid point held at B=0. Figure 2 illustrates the element
peak field value and the flux loss rate in one polarity as a function of
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time for n=4 and n=2. The n=4 case extends the lifetime of the peaks to
~8 hr compared to about 1.5 hr for the diffusive n=2 case. For purely
atomic diffusion this would take ~10 years. The flux loss rate is a few
times 10'® Mx/hr, in good agreement with observations. A single flux
element with surrounding field held to zero will likewise survive for
several hours; with surrounding field BCZ/B it will be stable.

3. CONCLUSIONS

Our treatment is far from rigorous. Further, it ignores much of the
physics affecting photospheric fields, such as the balancing of magnetic
and gas pressures which must limit the intensity of flux elements, and
the large-scale velocity flows which can produce regions of B>B; leading
to fragmentation. All the same, our solutions resemble some field
phenomena which have proven difficult to explain satisfactorily. We
believe we have made a plausible case that a field-turbulence
interaction such as this is relevant to the behavior of photospheric
fields. Such a viewpoint provides a different way to think about
magnetic flux elements: rather than equilibrium structures representing
a balance among various forces, they more resemble shock waves,
maintained by a self-interaction of the mean field which is mediated by
the small-scale turbulence.
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