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1. Introduction. The subject of al ternants and 
alternating functions was widely studied during the last 
century (cf. Muir [6]). One of the best-known al ternants 
is actually a double alternant (rows and columns) defined 
by Cauchy [2] in 1841. Cauchy1 s resul t may be stated as 
follows: If D = [d 1, p ,q = l , . . . , n , where d = (x +y ) , 

pq pq p q 
then 

n (x
a~XT,)(y

a~yJ 
l < p < q < n q P q P 

(1) det D = - F 1 = - - . 
n (x +y ) 

1 < p, q < n P q 

This resul t is used in several recent papers (cf. Hahn [3] 
and Marcus and Thompson [5]). In this paper we give a 
generalization (no longer an alternant) of Cauchy' s mat r ix . 
In [1] Carlson gives bounds on the rank and inertia of Hermitian 
H which satisfy R(AH) > 0, of specified rank r . For the case 
when A is diagonalizable, Cauchy1 s resul t may be used to prove 
that the bounds are bes t -poss ible . When A is not diagonalizable, 
perturbation arguments do not seem to work, and a special case 
of our resul t , briefly indicated in § 6 below, was employed in 
place of Cauchy' s resul t in [1], 
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2. Definitions. Let e . e . . . . , e , f , f , . . . , f 
1 Z k 1 Z i 

be positive integers such that 2 e = 2 f =n . Let 
p q 

p = l P q= l 4 

V • v v 
, y be given complex numbers for which 

(2) x + y i 0 for all p, q . 
p q 

We define an n X n ma t r ix D = [ D ], p = 1, . . . , k; q = 1, . . . ,1 , 
pq 

by defining each D as an e X f ma t r i x [d..(x ,y )], 
pq p q y p q 

i = 1, 2 , . . . , e ; j = l , 2 , . . . , f . Here the functions d.. a re 
p q y 

given by 

(3) dy(*.y) = (- l) i + j l ^ ; 2 ) (x+y)1"^ 

We i l lus t ra te the form of D for e = 3, e = 1, f = l , f = 3 . 
1 2 1 2 

D = 

( V y i ) _ 1 ( x i+ y2 ) _ 1 - ( V y 2 ) _ 2 (x 1 + y 2 ) 
- 3 

. - 2 - 3 

•(VV " ( X ! + y 2 ) 2 (X1+Y2 ) " " 3 ( V y 2 ) 

( V y i ) _ ( x l + y 2 ) _ " 3 ( x i + y 2 ) _ 4 6 ( x i + y 2 ) _ 5 

( x 2 + y i r l ( V y 2 ) _ 1 - ( x 2 + y 2 ) _ 2 ( x 2 + y 2 ) 
- 3 

We note that if e, = e, = f = . . . = f = 1, we have 
k 1 i 

D = t d
1 4 ( x »y )] = [ ( x +y ) ]> which is Cauchy' s double 

p q 
al ternant . 

3. THEOREM. For D defined above, we have 
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e e f f 
n (x -x ) p q n (y -y ) P q 

(4) det D = * < P < * < k q P l < P < q < i q P . 
e f 

n (x +y ) P q 

l < p < k P q 

1 < q < i 

4. Note. We shall use (without proof; cf. [4], p. 205-206) 
the formula which follows: For any n-differentiable function f, 
let f[x, . . . , x, z] be the n-th divided difference of f with respect 
to x, . . . , x (n times), z. Then 

n-1 
(5) f(z) = S ( l /m!)r m , (x) (z-x) m + f[x , . . . ,x ,z] (z-x) n 

m=l 

and 

(6) lim f[x, . . . , x , z ] = (1/nl) f(n)(x) . 
z-*x 

5. Proof of Theorem. We shall prove the theorem 
inductively. For e t = . . . = e, = f = . . . = f =1, and any 

1 k 1 i 
x , . . . , x , y , . . . , y satisfying (2), the matrix D reduces 

1 k 1 I 
to CauchyT s double alternant, and (4) reduces to (1) (for a 
simple proof of (1) see [5], p. 7). Our inductive inference is: 

(7) the conclusion (4) holds for e , . . . , e , f , . . . , f (e > 1) 
1 k 1 i l 

and x , . . . , x , y , . . . , y satisfying (2), if it holds for 
1 k 1 i 

e - 1 , l , e , . . . ,e ,f , . . . ,f and x , z, x , . . . , x ,y , . . . ,y 
1 2 k l i 1 2 k l i 

satisfying (2). 

Let us see why (7) is enough to make the induction go. 
First, both sides of (4) are affected the same by rearrange­
ments of rows of D; hence the fact that (7) refers to confluence 
of the first rows with the e .th row is no restriction. (7) will 

1 
prove that any confluence of a single row with a group of other 
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rows p re se rves (4). Second, the columns and rows enter into 
(4) symmetr ical ly; thus it suffices to prove (7). 

Let D denote (in accord with the previous notation) the 
ma t r i x for which we are to prove (4). Let a ma t r i x agreeing 
with D in all rows except the e^th, and having in that row the 
e lements g (q = 1, . . . , I ; j = 1, . . . , f ), be denoted F(g. ). 

j q q j q 
Thus D = F(d (x ,y )). The ma t r i x for which (4) is a sse r ted 

e iJ 1 q 

by the inductive hypothesis is F(d (z ,y )). Here d is 
* j q i j 

defined by (3). We know x +y ^ 0 for all q, and we will 
1 q 

soon let z-*x , so we a re assuming z+y ^ 0. 
1 q 

Now d.. is an infinitely differentiable function of its 

f i rs t argument , so let us apply (5) to d.(x) =d. .(x, y ) (the 
1 y q 

dependence on j and y is not indicated in the next few 
q 

equations): 
e -1 

1 1 ( ) e 

(8) d ( z ) = S m ! " d ! m , ( x ) ( z . x ) m + d , [ x , . . . , x , z ] ( z - x ) 
i . i l l i l 1 1 

m = 0 
F r o m (3) we compute d! = id and hence by induction 

l i+1 

(9) d (»> = m! d 
1 m+1 

Substituting (9) in (8), we have 

e -1 
1 e - 1 

d l ( z ) = s d j x ^ z ^ ) " 1 - + d [ x X f z J ( z - x ) * , 
m = l 

and from this we obtain 

e - 1 l - e j l m - e 
(10) d [x , . . . , x , z ] = d (z)(z-x ) * - 2 d ( x j ( z - x ) * 

1 1 1 1 1 , m l l m = l 
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On the other hand, by (6) and (9) we have 

i { e i _ 1 ) 

(11) lim d 1 [ x l , . . . , x 1 , 2 ] = ( ( e 1 - l ) ! ) ^ ( x ^ d ^ ) . 
z-*x 1 

1 

This completes the pre l iminar ies to relating the deter­
minants of D and F(d .(z,y )). 

i j q 

Applying the inductive hypothesis and dividing the e th 
e -1 

1 
row of F(d (z,y )) by (z-x ) , we obtain the following: 

l j q 1 

1-e 
(12) det F(d (z ,y )(z-x ) *) = 

ij q i 

e e (e - l ) e e f f 
n (x -x ) p q n (x -x ) l p n (x -z) p n (y - y ) p q 

2<p<q<k q P 2<p<k P 2<p<k P l<p<q<l q P 

/ V1 e 1f 

n < (x +y ) (z+y ) n (x +y ) PV q 

l<q<i [ q q 2<p<k P q 

Without affecting this value for the determinant, we can modify 

d - e i 
the e th row of the mat r ix F(d (z,y )(z-x ) ) by subtracting 

m-e 
1 

from it (z-x ) t imes the mth row, for each m = l , . . . , e - l . 
1 1 

Referring to (10), one sees that we have proved 
det F(d [x , . . . , x ,z]) equals (12). But now let z approach 

x . The mat r ix , by (11), approaches F(d (x ,y )) = D, 1 ^ j 1 q 

while (12) plainly approaches the desired expression (4). This 
completes the proof. 

6. Remark. If e =f and y =x (in this case , (2) 
_ P P P P 

is equivalent to x -f x ^ 0 for all p and q) then the mat r ix 
p q 

D is Hermitian. By numbering the blocks of D appropriately 
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we can assume for suitable s and t (0 < s < t •< k) the 
following proper t ies : 

(13) { x , . . . , x } is a maximal set of distinct elements of 
1 t 

x , . . . , x , 
1 k 

(14) Re(x ) > 0 if 1 < p < s, Re(x ) < 0 if s + 1 < p < t , 
p - - p - -

and 

(15) for p < t, e > e if x = x (necessar i ly q > t) . 
p - q p q 

Then it is an easy consequence of (4) and the theorems of [1] 
s t 

that D has S e positive and S e negative eigenvalues. 
p = l P p = s+l P 
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