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1. Introduction. The subject of alternants and
alternating functions was widely studied during the last
century (cf. Muir [6]). One of the best-known alternants
is actually a double alternant (rows and columns) defined
by Cauchy [2] in 1841. Cauchy's result may be stated as

-1
follows: If D=|d ], pq=1,...,n, where d =(x+y )~ 7,
[ Pq] P4 Pq P Yq
then
I (x -x )y -y_)
1<p<qg<n P 4P
(1) det D =
II (xp+y)

This result is used in several recent papers (cf. Hahn [3]
and Marcus and Thompson [5]). In this paper we give a '
generalization (no longer an alternant) of Cauchy's matrix.

In [1] Carlson gives bounds on the rank and inertia of Hermitian

H which satisfy R(AH) > 0, of specified rank r. For the case
when A is diagonalizabfe, Cauchy' s result may be used to prove
that the bounds are best-possible. When A 1is not diagonalizable,
perturbation arguments do not seem to work, and a special case
of our result, briefly indicated in §6 below, was employed in
place of Cauchy's result in [1].
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initi . ’ 3 ey H f y f y 3 f
2. Definitions Let e ey e o ) I
k 1
be positive integers suchthat Z e = Z f =n. Let

p=1 P q=1

x R be given complex numbers for which

k’ Y1; ey Y

17 2

2 x + # 0 for all p,q.
(2) p g

We define an n X n matrix D=[qu], p=4,...,k; g=1,...,4,
by defining each D asan e Xf matrix [d (x ,y )],

Pq 1% q 3 P 9
i=1,2,...,e ; j=1,2,...,f . Here the functions d, are

p q Ry
given by

() dylmy) = -0 (iﬁ-z (xeby) I

j-1

We illustrate the form of D for e1 =3, e_=1, f =1, f2 = 3.

— —

-1 -2
(x1+yi) (X1+Y2) —(x1+y2) (X1+Y2)

-2 2 -3 -4
-(x1+71) —(x1+yz) 2(x1+yz) -3(X1+Y2)

D= 3 3 4
(x1+yi) (x1+y?_) -3(x1+yz) 6(x,+y,)
(XZ+Y1) (X2+Y2) -(X2+Y2) (x2+Y2)
w te that if =... = = =... = =1,
e note that i e1 ek f1 fl we have

-1
D=[4d, (x ,vy )]=[(x + , which is Cauchy's double
[“pvq] [(qu) ] y u

alternant.

3. THEOREM. For D defined above, we have
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e e ff

I (x - ) P9 q vy ) Pa
(4) detp = 1SPSASk 1<p<qct
£
II (x+y)pq
t<p<k P 9
1<q<1?

4. Note. We shall use (without proof; cf. [4], p.205-206)
the formula which follows: For any n-differentiable function f,
let f[x,...,x,z] be the n-th divided difference of f with respect
to X,...,X (n times), z. Then

n-1
(5) flz) = Z (4/m!)f
m=1

(m)(x)(z-x)m + flx,...,x%, z](z-x)n

and

(6) lim f[x,...,x 2] = (4/n!) £™

Z—>X

(x) .

5. Proof of Theorem. We shall prove the theorem

i i . =... = =f =...=£f =1,
inductively. For e, ek 1 f and any

.,yl satisfying (2), the matrix D reduces

EEERRE W FEER

to Cauchy's double alternant, and (4) reduces to (1) (for a
simple proof of (1) see [5], p. 7). Our inductive inference is:

7 th lusi 4) holds £ yeeose , £ ,...,f (e >1
(7) e conclusion (4) holds for e1 ek 1 1(11 )

and x ,...,X

, Je e isfyi , if i 1ds £
1 " y1 Yl satisfying (2), if it holds for

-1,1, g0 0 oy ,f ,...,f 9 y 30 0 sy 2 [ 2EEE I )
e, e, ety . and Xy 2%, XYy Y,

satisfying (2).

Let us see why (7) is enough to make the induction go.
First, both sides of (4) are affected the same by rearrange-
ments of rows of D; hence the fact that (7) refers to confluence

of the first rows with the e1th row is no restriction. (7) will

prove that any confluence of a single row with a group of other
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rows preserves (4). Second, the columns and rows enter into
(4) symmetrically; thus it suffices to prove (7).

Let D denote (in accord with the previous notation) the
matrix for which we are to prove (4). Let a matrix agreeing
with D 1in all rows except the e th, and having in that row the

elements g, (q=1,...,24;j=1,...,f ), be denoted F(g, ).
Ja q Ja
Thus D = F(de '(Xi’yq))' The matrix for which (4) is asserted
J
1
by the inductive hypothesis is F(di,(z,y )). Here d. is
J q 1]

defined by (3). We know x1+yq # 0 for all q, and we will

soon let z—>x,, Soweare assuming z+y # O.
q

Now dij is an infinitely differentiable function of its
first argument, so let us apply (5) to di(x) =d, (x, yq) (the
1

dependence on j and yq is not indicated in the next few

equations):
e -1
1 -1 _(m) m ;-1
8 d = = 'd - cee X, -
(8) i(z) m N (xi)(z x1) + di[xi’ x, z](z xi)
m=0
From (3) we compute di = idi+1 and hence by induction
(m)
d = td .
() 1 ™ m+1
Substituting (9) in (8), we have
e -1
1 m-1 ei—i
d = = d - ) ceoux,,2)(2-
1(z) m(x1)(z xi) + di[xi’ ' %, z](z X‘i) s
m=1
and from this we obtain
1-e1 81-1 m-e,
10) d yeeosX ,2] = - - -
(10) 1[x1 %, z] di(z)(z xi) m?idm(xi)(z xi) .
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On the other hand, by (6) and (9) we have

-1 1
(11) Ilim d'i[xi"” ,xi,z] =((e1—1)!) d1 (x)=d (x,).
z—>xi 1

This completes the preliminaries to relating the deter-
minants of D and F(d (z,y )).
15 7q

Applying the inductive hypothesis and dividing the eith
e -1
row of F(di_(z,yq)) by (z—xi) ! , we obtain the following:
J

1-e
1
(12) det F(dij(z,Yq)(Z-Xi) ) =

e e : (e -1)e e ff
I x-x)P% m (x-x) ' P m (x-220® 1© (y-y)P?
2<p<q<k 1 P 2<p<k p 1 2<p<k P 1<p<q<{ 1P
ei-i e ) f
Ity ) D (ery) T Gy ) Py S
1<q<4 2<p<k

Without affecting this value for the determinant, we can modify
1-e

the e, th row of the matrix F(dij(z,yq)(z-x ) i) by subtracting

1 1

me-e

from it (z-x1) times the mth row, for each m=1,..., ei-i.

Referring to (10), one sees that we have proved
det F(di[xi’ - ,x1,z]) equals (12). But now let z approach

x,. The matrix, by (41), approaches F(d .[(x,,y )) =D,
1 e1_] 1" 7q
while (12) plainly approaches the desired expression (4). This
completes the proof.
6. Remark. If e =f and y =x (in this case, (2)
—_— _ P P P P
is equivalent to xp + xq # 0 for all p and q) then the matrix

D is Hermitian. By numbering the blocks of D appropriately

2717
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we can assume for suitable s and t (0 < s <t < Kk) the

following properties:
(13) {xi, cees Xt} is a maximal set of distinct elements of

X s3e.0.,X

1 k'’
(14) Re(xp)>0 if 1<p<s, Re(xp)<0 if s+1<p<t,

and

(15) for p<t, e >e if x =x (necessarily g>t).
- P~ q P q -

Then it is an easy consequence of (4) and the theorems of [1]

s t
that D has Z e positiveand Z e negative eigenvalues.
p=1 P p=s+1
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