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Introduction

Several authors have studied various types of rings of continuous functions
on Tychonoff spaces and have used them to study various types of compactifi-
cations (See for example Hager (1969), Isbell (1958), Mrowka (1973), Steiner
and Steiner (1970)). However many important results and properties pertaining
to the Stone-Cech compactification and the Hewitt realcompactification can be
extended to a more general setting by considering appropriate lattices of sets,
generalizing that of the lattice of zero sets in a Tychonoff space. This program
was first considered by Wallman (1938) and Alexandroff (1940) and has more
recently appeared in Alo and Shapiro (1970), Banachewski (1962), Brooks (1967),
Frolik (1972), Sultan (to appear) and others.

The purpose of this paper is to give a unified and more general treatment
of such rings in a lattice setting. We will work with rings of functions defined
on just a set. In addition to generalizing several classical theorems, we apply
this method to generalize and unify several of the results appearing in Hager
(1969), Isbell (1958), Mrowka (1973), Steiner and Steiner (1970). The advantage
of this general lattice method is that we not only deal with several viewpoints
at once, but in many cases get simpler proofs of the theorems.

We will use the notion of L-continuity which was presented and studied in
detail in Alexandroff (1940).

1. Definitions, Notations and Preliminaries

By a lattice of subsets of a set X we will mean a collection of subsets of X
closed under finite unions and finite intersections. If in addition the lattice is
closed under countable intersections then the lattice is called a delta lattice.
If a lattice is closed under complements, then it is called a complemented lattice.
By a delta paving we will mean a pair (X, L) where X is a set and L is a delta
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lattice of subsets of X such that 0, X e L. Since our work will be only with delta
pavings, many of our definitions will be cast in terms of delta pavings. A delta
paving (X,L) is called a separating delta paving if whenever x,yeX and x # y,
there exists an AeL such that xeA and y$A. It is called a disjunctive delta
paving if whenever x, yeX and x e A and y $ A, there exists a BeL such that
yeB and 5 n A = 0 . It is called a normal delta paving if whenever A,BeL
and i n f i = 0 , there exists C,DeL such that ^ c ^ - C and B <= X - D
where X — C and X—D are disjoint. If a delta paving is normal, separating,
and disjunctive, then it is called a strongly normal delta paving. If (X,L) is a
delta paving and if/ is a real valued function defined on the set X, then we say
that/is L-continuous with respect to the pair (X, L) if/" 1(C) e Lfor every closed
set C in R. Obviously/is L-continuous with respect to the pair (X, L) if and only
i f / - 1 ( -oo ,a ] and Z " 1 ^ , oo) e Lfor every a,beR. We will denote by F(X,L)
the collection of all bounded L-continuous functions with respect to the pair
(X, L) and by F * (X, L) the collection of all the L-continuous functions with res-
pect to the pair (X, L). If / is a real valued function defined on a set X, then
Z(f) will denote the zero set of/; that is Z(f) = {xeX:f(x)=0}. We will refer
to X — Z(f) as the cozero set off in X. A delta paving (X, L) is called a completely
normal delta paving if and only if L = {Z(f);feF*(X,L)} = {Z(f):feF(X,L)}.
If a completely normal delta paving is also a separating and disjunctive delta
paving, then we call it a strongly completely normal delta paving. We remark
that every completely normal delta paving is a normal delta paving and the
converse is true if and only if for each AzL there exists AteL, i = 1,2,3, •••
such that A = n f (X—A^) where (X,L) is the delta paving (see Alexandroff
(1944). A family F of real valued functions defined on a set X is said to be closed
under inversion if wheneverfeF and Z(/) = 0 , / i s invertible in F. F is said
to be closed under bounded inversion if whenever / g e F and g(x) # 0 for all
xeX ,f/g is in F, whenever fig is bounded. By an inverse closed algebra on a
set X we mean a family of real valued functions defined on a set X which forms a
uniformly closed vector lattice of functions containing constants and closed under
multiplication and inversion. If an inverse closed algebra on a set X separates
points of X, then we say that it is a strongly inverse closed algebra. If A is a
family of real valued functions defined on a set X, then by Z[A~] we will mean
{Z(f):feA}. If X is a topological space, then we will denote by C(X) the col-
lection of all bounded real valued functions defined on X. In such a case when
we refer to the zero sets of X we will mean the collection of all zero sets of X,
that is Z\C(X)~\. If (X, L) is a delta paving, then by an L-filter we will mean a
nonempty collection of nonempty subsets of L closed under finite intersections
and supersets which are in L. By an L-ultrafilter we will mean an L-filter which
is maximal with respect to the finite intersection property. Each L-filter extends
to an L-ultrafilter by Zorn's Lemma, and if we take W(L), the collection of L-ultra-
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filters, and topologize them with a topology having as a base for the closed sets,
sets of the form V(A) = {F e W(L): AeF] where AeL, W(L) becomes a compact
7\ space. W(L) is T2 if and only if (X, L) is a normal delta paving (see Brooks
(1967), Wallman (1938)). If (X, L) is a separating disjunctive delta paving, then
X can be embedded in W{L) as a dense subspace when it carries the relative
topology. The embedding map takes each xeX into the unique L-ultrafilter of
supersets of x in L. With the relative topology, {A: AeL} forms a base for the
closed sets of X, and is thus a semi-normal base in the sense of Frink (1964).
We will always identify X with its image in W(L) when possible. Finally if T is
a compactification of a space X, we will denote by R(T) the collection of restric-
tions of continuous functions on T to X, and by A(T), the smallest strongly
inverse closed algebra containing R(T).

PROPOSITION 1. / / (X,L) is a normal delta paving, and if A,BeL where
AC\B = 0 , then there exists an feF{X,L) where O ^ / g l , such that
f{A) = 0 and f(B) = 1.

PROOF. See Alexandroff (1940; page 317).

PROPOSITION 2. (a) If(X,L) is an arbitrary delta paving, then F*(X,L)
is an inverse closed algebra on X. If A is an inverse closed algebra on a set X,
then A consists precisely of the Z \_A]-continuous with respect to the pair(X,Z(A~\).
Thus there is a 1-1 correspondence between algebras on a set X and completely
normal delta pavings (X,L).

(b) The correspondence in (a) carries strongly completely normal delta
pavings onto strongly inverse closed algebras.

PROOF, (a) See Alexandroff (1940; page 317).

(b) Suppose A is a strongly inverse closed algebra on a set X and that x,yeX
where x ^ y. Then there exists an / i n A such that/(x) = 0 and/(y) = 1. Thus
xeZ(f) and y$Z(f), and it follows that (X,Z[A]) is separating. The fact that
y e Z(f-1) and that Z(/-1) n Z(f) = 0 , shows that (X, Z[A~\) is also dis-
junctive.

On the other hand, if (X, L) is a strongly completely normal delta paving
and x,yeX with x ^ y, then there exist /geF*(X,L) such that xeZ(f),
y e Z(g) and with Z(f) n Z(g) = 0 . The function h = f2\f2 + g2 is in F*(X, L)
and separates x and y.

2. The Main Theorem

THEOREM. If(X,L) is a strongly normal delta paving, then F(X,L) con-
sists precisely of the restrictions of all the continuous functions on W{L) to X.

PROOF. Let / e F(X, L) and let K be any compact set containing the range
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of/. If Ge W(L), then/(G) is a filter base in K, and therefore has an adherence
point in K. It is easy to see that if a is an adherence point of /(G) and if Z is any
zero set neighborhood of a in R, then/~1(Z)eG. It follows from this and the
fact that distinct points of R are sparable by disjoint zero set neighborhoods in
R, that/(G) has only one adherence point in K and therefore converges. Let
/(G) = lim/(G) for any G e W(L). Then / is the unique continuous extension
of / to W(L). To see that/ is continuous, we note that if C is any closed set in
R, C = n Z , where the Za run through the zero set neighborhoods of C in R.
It follows very simply from this that (?)~l(C) = n f~1(Za), which is closed in
W(L). Thus / is continuous. Suppose now that Gt ^ G2 where Gt, G2 e W{L).
Then there exist i e G j and BeG2 such that AC\B — 0. By Proposition 1
there is an h e F(X, L) such that h(A) = 0 and h(B) = 1. Thus h{Gx) = 0 and
h(G2) = 1 and it follows that {f:feF(X,L)} separates points of W{L). Since
this collection is uniformly closed and contains constants, it follows from the
Stone-Weierstrass Theorem, that {f:feF(X,L)} = C(W(L)).

3. Consequences

In the rest of the paper iffeF(X,L) where (X, L) is some strongly normal
delta paving, we will denote by / its unique continuous extension to W(L). It
should be mentioned concerning the corollaries to be presented that Corollaries
3 and 4 generalize Theorem 2.9 and Corollary 2.10 in Steiner and Steiner (1970).
Corollary 2(b) is Theorem 2.3 in Steiner and Steiner (1970). Corollaries 6,7
extend Theorem 7.1 and Proposition 7.2 in Hager (1969) and Corollary 9 is
the main theorem in Mrowka (1973). In all cases one should compare the proofs
given here to the ones in the above quoted papers.

COROLLARY 1. If (X,L) and(Y,M) are two strongly normal delta pavings,
then F(X,L) and F(Y,M) are isomorphic if and only ifW(L) is homeomorphic
to W(M).

PROOF. If F(X, L) and F{Y,M) are isomorphic, then by the theorem, so are
C(W(L)) and C(W(M)). The result now follows from the Banach-Stone Theorem
(Gillman and Jerrison (1960; page 57)). The converse is trivial.

COROLLARY 2. (a) If(X,L) is a strongly normal delta paving, then the
trace of the zero sets of W(L) on X is contained in L.

(b) If(X,L) is a strongly completely normal delta paving, then the trace
of the zero sets of W(L) on X coincides with L.

PROOF, (a) The trace of a zero set in W(L) on X is the zero set of an L-con-
tinuous function with respect to the pair (X,L) by the theorem. This is clearly
in L by the definition of L-continuity with respect to the pair (X, L).

(b) If (X, L) is a strongly completely normal delta paving and if AeL,
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then A = Z(f) for some/e F(X, L). The result follows from the theorem and part
(a).

COROLLARY 3. If (X,L) is a strongly normal delta paving, and ifXczT
czW(L), then if L = {Z C\T:ZeZ[C{WL))~\, then W(L') is homeomorphic
to W(L).

PROOF. If fe F(X, L), then its continuous extension to T is L'-continuous
with respect to the pair (T,L) since (f)-\C)<=Z[C(W(L)y]. On the other hand,
if/' is L'-continuous with respect to the pair (T,L), then its restriction to X is
.K-continuous with respect to the pair (X, K) where K={ZnX:Ze Z[C(W(L))~\}.
But by Corollary 2(a), K c L. Thus the restriction of/' to X is L-continuous with
respect to the pair (X, L). It follows that F(X, L) and F(T, L') are isomorphic
and hence that W(L) is homeomorphic to W(L').

COROLLARY 4. If(X,L) is a strongly normal delta paving and if Sis any
cozero set in W{L) containing X, then PS = W(L) where PS is the Stone-Cech
compactification of S.

PROOF. Although the statement of the theorem is more general than
that of Corollary 2.10 in Steiner and Steiner (1970), the proof is exactly the
same.

COROLLARY 5. IfT=W(L) where (X,L) is a strongly normal delta paving,
then A(T) = F*(X,L).

PROOF. By the theorem R(T) = F(X,L) hence A(T) = F*(X,L).

COROLLARY 6. / / (X, L) is a strongly completely normal delta
paving, Z[A(W(L)~\ is exactly the family of countable intersections of elements
ofL.

PROOF. By the previous corollary, we have that Z[A(W(L))~\ =Z[F*(X,L)] .
However by our assumption Z[F*(X,L)] = L, and since L is closed under
countable intersections, the proof is complete.

COROLLARY 7. If L is a complemented lattice, and (X,L) is a separating
disjunctive delta paving, then for each cozero sets in W(L) containing X,
PS = W(L) where PS is the Stone-Cech compactification of S.

PROOF. AS usual Z[F(X,L)] c L. On the other hand, if A eLand if KA is
the characteristic function of A, then since Lis complemented, KA is L-continuous
with respect to the pair (X, L). Since A = Z(l -KA), we see that L= Z\_F(X, L)].
It follows that (X, L) is a strongly completely normal delta paving, and the result
follows from Corollary 4.
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4. Further Consequences

The following corollaries follow directly from the method of proof of the
main theorem. In all cases when Tis a T2 compactification of a space X, we will
denote by L the trace of the zero sets o f T o n l . That is L = Z\R{T)~].

COROLLARY 8. Suppose that T is a T2 compactification of a space X.
Suppose that whenever Z(f) and Z(g) are disjoint elements of L there is an
heR(T), such that h(Z(f)) = 0 and h(Z(g)) = 1. Then T is homeomorphic
to W(L).

PROOF. Since R(T) is contained in F(X,L), each/in R(T) extends to a con-
tinuous / defined on W(L). Exactly as in the proof of the main theorem
{f:feR(T)} = C(W(L)). It follows that C(T) and C(W(L)) are isomorphic
and thus the corollary follows.

COROLLARY 9. / / T is a T2 compactification of a space X,and if R(T) is
closed under bounded inversion, then T is homeomorphic to W{L).

PROOF. Suppose that Z(/) and Z(g) are disjoint elements of L. The function
h = f2lf2 + g2 is in R(T) by our hypothesis and h(Z(f)) = 0 while h(Z(g) = 1.
The result now follows from the previous corollary.

COROLLARY 10. If Tis a T2 compactification of a space X and if for every
cozero set S in T containing X, PS = T where @S is the Stone-Cech compac-
tification of S, then Tis homeomorphic to W(L).

PROOF. If Z(/) and Z(g) are disjoint elements of L, then the function h con-
structed as in the proof of the previous corollary is a bounded continuous func-
tion on the cozero set T— Z(f2 + g2), and is therefore, by our assumption,
continuously extendable to T. Thus h is in R(T), h(Z(f)) = 0 and h(Z(g)) = 1
and the result follows from Corollary 8.

5. Remarks

According to our main theorem, if (X, L) is a strongly normal delta paving,
then W(L) "behaves" like the ordinary Stone-Cech compactification in that
every bounded L-continuous function with respect to the pair (X,L) has a unique
continuous extension to W{L), and these extensions constitute all of the (bounded)
continuous functions on W{L). Corollary 1 strengthens this assertion by gen-
eralizing the well known theorem which states that for completely regular
Hausdorff spaces X and Y, C{X) is isomorphic to C( Y) iff PX is homeomorphic
to PX where PX and p Y denote the Stone-Cech compactifications of X and Y
respectively. It therefore seems reasonable to call a Wallman compactification
arising from a strongly normal delta paving a "generalized Stone-Cech com-

https://doi.org/10.1017/S1446788700020711 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020711


[7] General rings of functions 365

pactification". Mrowka's /Mike compactifications (Mrowka (1973)), and Wall-
man compactifications arising from nest generated intersection rings (Steiner
and Steiner (1970)) are examples of generalized Stone-Cech compactifications.
Not only do these compactifications admit the usual algebraic and uniform co-
pletion interpretations, but also admit measure theoretic interpretations. One
can consult Sultan (unpublished) for a complete discussion of this. We also
remark in passing that any strongly inverse closed algebra provides us with a
generalizd Stone-Cech compactification, namely, the Wallman compact space
associated with the zero sets of the algebra. We also remark that Corollary 5
can in fact be strengthened to the following: If T is any T2 compactification of
space X, then A(T) - F*(X,L) where L i s the trace of the zero sets of T o n X.

The proof of this amounts to the realization that Z[>1(T)] and Z[F*(X,Lj\

coincide, and then using Proposition 2. This observation explains the connection
between the work done and those of Hager (1969), Isbell (1958), Steiner and
Steiner (1970).
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