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Abstract. We establish some upper and lower bounds for the number of rational
points of Prym varieties defined over finite fields. They are better than the usual Weil
bounds valid for any abelian varieties defined over such fields.
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I. Introduction. Let π : Y → X be a covering of smooth algebraic irreducible
projective curves defined over a field k of zero or odd characteristic. Then the Jacobian
JX of X is isogenous to a sub-abelian variety of the Jacobian JY of Y . If we suppose
moreover that π has degree 2, then the non-trivial involution σ of this covering induces
an involution σ ∗ on JY .

DEFINITION AND PROPOSITION 1. The Prym variety Pr = Prπ associated to the
unramified double cover π : Y → X of a curve X of genus g ≥ 2 is defined as Pr :=
Im(σ ∗ − id). It is an abelian subvariety of JY of dimension g − 1, isogenous to a direct
factor of JX in JY .

For more details, see [1] or [4]. The computation of the dimension follows from the
Riemann-Hurwitz Theorem. It is known that Prym varieties are in general not jacobian
varieties. For instance, it has been proved by Beauville in [1] that any abelian variety
of dimension less than 5 is a degeneration of Prym varieties, at least on algebraically
closed fields.

Suppose from now on that k is the finite field Fq with q elements. Being an abelian
variety of dimension g − 1, we can apply to Pr the following theorem. (See the historical
source [6] for instance.)

THEOREM (WEIL). Let A be an abelian variety of dimension d defined over Fq. Then
there exists θ1, . . . , θd ∈ R/2πZ such that, for any n ≥ 1, the number of rational points
of A over Fqn is given by

(i) �A(Fqn ) =
d∏

i=1

(qn + 1 − 2
√

qn cos nθi).

In particular,

(ii) (q + 1 − 2
√

q)d ≤ �A(Fq) ≤ (q + 1 + 2
√

q)d .
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(iii) If in addition A is the jacobian of a curve C of genus g, then d = g and the θi’s
are also related to the number of rational points of C over Fqn by

�C(Fqn ) = qn + 1 − 2
√

qn

( g∑
i=1

cos nθi

)
.

Part (ii) of Weil’s theorem for the prymian variety Prπ of a double unramified
cover π of a curve X of genus g reads as follows.

(q + 1 − 2
√

q)g−1 ≤ �Prπ (Fq) ≤ (q + 1 + 2
√

q)g−1. (1)

The upper and lower bounds in (1) are the “best possible” in the sense that both
can be reached. Indeed, it is known that any elliptic curve is a Prymian variety. Now,
suppose that E is chosen so that it reaches the upper bound (resp. the lower bound) of
Weil’s inequality (ii). Such an elliptic curve does exist if q is a square; see [5]. Then E
reaches the upper (resp. the lower) bound of (1).

The existence of such an elliptic curve E also proves, of course, that part (ii) of
Weil’s theorem for the Jacobian variety JX of a curve X

(q + 1 − 2
√

q)g ≤ �JX (Fq) ≤ (q + 1 + 2
√

q)g (2)

is also the “best possible”, at least for g = 1. Nevertheless, several sharper lower bounds
and an upper bound were proved in [3] for Jacobians. For instance:

THEOREM (G. LACHAUD AND M. MARTIN-DESCHAMPS). Let JX be the jacobian
variety of a genus g curve X defined over Fq, and �X(Fq) be the number of rational points
of X. Then

(
√

q − 1)2 qg−1 − 1
g

�X(Fq) + q − 1
q − 1

≤ �JX (Fq). (3)

If X admits a map of degree d onto the projective line, then one has also

�JX (Fq) ≤ e
q

(2g
√

e)d−1qg. (3 bis)

The aim of this paper is to prove some Lachaud-Martin Deschamps type bounds
for prymian varieties (see Theorem 2). The method used is different from theirs. It also
gives some bounds for jacobians (Theorem 5), but they are not always as good as (3)
and (3 bis); see remark 3 below.

II. Bounds for prymian varieties. If C is an algebraic curve defined over a finite
field k with q elements, we denote by �C(Fq) the number of Fq-rational points of C.

The main result of this paper is as follows.

THEOREM 2. Let X be an absolutely irreducible projective smooth algebraic curve
defined over the finite field k of odd characteristic with q elements. Let g be the genus of
X, and let π : Y → X be an unramified covering of degree 2. Then

(i)
(√

q + 1√
q − 1

) �Y (Fq )−�X(Fq )
2
√

q −2δ

(q − 1)g−1 ≤ �Pr(Fq)
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with δ = 1 if �Y (Fq) − �X(Fq)
2
√

q /∈ Z, and δ = 0 otherwise.

(ii) �Pr(Fq) ≤
(

q + 1 + �Y (Fq) − �X(Fq)
g − 1

)g−1
.

(iii) If X admits a degree d map onto P1
Fq

, then

(√
q − 1√
q + 1

)d q+1
2
√

q +2

(q − 1)g−1 ≤ �Pr(Fq) ≤ ed(q + 1)g−1.

Proof of Theorem 2. We use Lemmas 3 and 4 that follow, whose proofs are
postponed to the end of this section.

LEMMA 3. Let a > 1, γ ∈ N, b ∈ R and P be the polytope P = {(x1, . . . , xγ ) ∈
[−1, 1]γ | ∑γ

k=1 xk = b}. Suppose that |b| ≤ γ . Then

inf
(x1,...,xγ )∈P

γ∏
k=1

(a − xk) ≥
(√

a − 1
a + 1

)b+2δ

(
√

a2 − 1)γ ,

where δ = 0 if b ∈ Z, δ = 1 otherwise.

LEMMA 4. In the situation of Lemma 3, we have

sup
(x1,...,xγ )∈P

γ∏
k=1

(a − xk) =
(

a − b
γ

)γ

.

We now return to the proof of Theorem 2. Since Pr is isogenous to a direct factor
of JX in JY by Proposition 1, we have

�Pr(Fq) = �JY (Fq)
�JX (Fq)

. (4)

We need the more precise form of Weil’s theorem as in the introduction. Let FC be
the Frobenius endomorphism acting on the Tate module T�(JC) of the Jacobian JC of
a smooth projective curve C over Fq. It is well known that dim T�(JC) = 2gC where
gC denotes the genus of C. If Spec FC is the spectrum with multiplicities of this
endomorphism, then Weil’s theorem asserts that

�C(Fq) = q + 1 −
∑

ω∈Spec FC

ω, (5)

�JC(k) =
∏

ω∈Spec FC

(1 − ω), (6)

and |ω| = √
q for all ω ∈ Spec FC .

Now, JX is a Gal(k/k)-invariant subvariety of JY , so that T�(JX ) is an FY -
invariant submodule of T�(JY ), and FX is the restriction of FY to T�(JX ). Moreover,
dim T�(JY ) − dim T�(JX ) = 2g − 1 − g = g − 1 by the Riemann-Hurwitz formula.
Hence, there exists some numbers θ1, . . . , θg−1 ∈ R/2πZ, such that

Spec FY = Spec FX ∪ {√
q exp(±iθ1), · · · ,√q exp(±iθq−1)

}
.
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This implies, together with (5) applied to both X and Y :

�Y (Fq) − �X(Fq) = −2
√

q
g−1∑
k=1

cos θk, (7)

and together with (4) and (6) applied to both JX and JY :

�Prπ (k) =
g−1∏
k=1

(q + 1 − 2
√

q cos θk). (8)

Notice that from (7) we have

−(g − 1) ≤ �Y (Fq) − �X(Fq) ≤ g − 1.

One then deduces part (i) of Theorem 2 (resp. part (ii)) from (7), (8) and Lemma 3
(resp. Lemma 4) with C = X and Y , a = q + 1

2
√

q , b = − �Y (Fq) − �X(Fq)
2
√

q , and γ = g − 1. Part
(iii) follows then from the inequalities

−d(q + 1) ≤ −�X(Fq) ≤ �Y (Fq) − �X(Fq) ≤ �X(Fq) ≤ d(q + 1).

The proof of the theorem will be complete if we prove both Lemma 3 and 4.
Proof of Lemma 3. Up to logarithm, we need to calculate the minimum of the

function

F(x1, . . . , xγ ) =
∑

log(a − xk).

This is a strictly concave function. Hence its minimum on the compact convex domain
P is reached on an extremal point of P; that is a point x ∈ P, such that [a, b] ⊂ P
implies that x /∈]a, b[.

Suppose that x = (x1, x2, x3, . . . , xγ ) ∈ P has at least two coordinates, x1 and x2

for simplicity, lying in ] − 1, 1[. Then for ε sufficiently small, one also has (x1 + t, x2 −
t, x3, . . . , xγ ) ∈ P for any t ∈] − ε, ε[, which implies that x is not extremal on P. It
follows that an extremal point a = (a1, . . . , aγ ) ∈ P satisfies⎧⎨

⎩
ak = 1 for n values of k ∈ {1, . . . , γ },
ak = −1 for m values of k ∈ {1, . . . , γ },
eventually ak = ±{b} or ±({b}−1) for δ ∈ {0, 1}, value of k ∈ {1, . . . , γ }.

Here, {b} denotes the fractional part of the real number b, so that {b} ∈ [0, 1[ and
b − {b} ∈ Z. Hence, we have δ = 0 if b ∈ Z, and δ = 1 otherwise.

In the case b /∈ Z, that is δ = 1, let us denote by β the unique coordinate of the
extremal point a = (a1, . . . , aγ ) of P, lying in ] − 1, 1[. Up to permutation of the entries,
these extremal points then have the shape{

(1, . . . , 1,−1, . . . ,−1) if b ∈ Z,

(1, . . . , 1,−1, . . . ,−1, β) if b /∈ Z.

Now, the equations {
n + m + δ = γ,

n − m + δβ = b (9)
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give the values of n and m in terms of the parameters γ, b and δ. We obtain:

min exp F(x1, . . . , xγ ) = exp F(a1, . . . , aγ )

= (a − β)δ(a − 1)n(a + 1)m

= (a − β)δ(a2 − 1)
m+n

2

(
a − 1
a + 1

) n−m
2

= (a − β)δ(a2 − 1)
γ−δ

2

(
a − 1
a + 1

) b−δβ

2

by (9). But a − β ≥ a − 1 and b − δβ ≤ b + δ. Hence Lemma 3 follows.

Proof of Lemma 4. We now have to calculate the maximum of the strictly concave
function F given in the beginning of the proof of Lemma 3. It is a maximum
on the compact set P. Since F is strictly concave on its range of definition, this
is also a maximum on the larger set characterized by

∑
xk = b. By differential

calculus, this maximum of F on the whole hyperplane whose equation is
∑

xk = b
is reached at the point x = (x1, . . . , xγ ) provided that grad F(x) = (− 1

a−x1
, . . . ,− 1

a−xγ
)

is colinear to grad (
∑

xk − b) = (1, . . . , 1); that is for x1 = . . . = xγ = b
γ

. Since |b| ≤ γ

by assumption, this point lies on P, so that Lemma 4 follows.

REMARK 1. Let π : Y → X be a Galois covering of curves of any degree, and with
possible ramifications. The Galois group G acts on the Jacobian JY and on its Tate
module. For each irreducible character χ of G, there is an isotypic sub-abelian variety
Pχ of JY . For the trivial character 1, we have P1 = JX . One could hope to apply the
method of this paper to obtain bounds on the number of rationnal points of these Pχ .
Unfortunately, they depend on the dimension of Pχ , which cannot in general be
expressed in terms of simple invariants. The point made in the present paper is that
in the degree two case, there is a unique non-trivial χ , and if moreover the covering is
unramified, then one can compute by Riemann-Roch the dimension of JY in terms of
the genus g of X , so that the dimension of the Prym variety Prπ = Pχ for the unique
non-trivial χ is known.

However, these dimensions can be computed when π : Y → X is a Galois covering
of order prime to the characteristic p, whose group G has only rational representations
(note that this is the case if G is a Weyl group). The reader is refered to [2]. The proofs
therein also work in finite characteristic if one works with the Tate modules instead of
the cohomology groups H0(X, ωX ).

REMARK 2. Since Pr has dimension g − 1, we have seen in the introduction that

(q + 1 − 2
√

q)g−1 ≤ �Pr(k) ≤ (q + 1 + 2
√

q)g−1

by Weil’s theorem. On the other hand, (6) implies

−2(g − 1)
√

q ≤ �Y (Fq) − �X(Fq) ≤ 2(g − 1)
√

q.

Hence, our bounds in Theorem 2 are always “better” than Weil’s one (in the sense that
for instance our upper bound is smaller than Weil’s one).
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Moreover, one can observe that the closer |�Y (Fq) − �X(Fq)| is to its maximal
possible value 2(g − 1)

√
q, the “sharper” (in the sense that the ratio of our upper

bound by our lower bound is smaller) are our bounds in Theorem 2. But for fixed
π : Y → X over Fq and large n, it is expected by Tchebotarev that about half of the
rational points in X(Fqn ) split in Y , and half remain inert, so that �Y (Fqn ) − �X(Fqn )
should be less than 2(g − 1)

√
qn. Consequently, it can be expected that our bound is

rather good for large qn.

REMARK 3. Of course, one can also give upper and lower bouds for the number of
rational points of JX in the same way. We obtain the following result.

THEOREM 3. Let JX be the Jacobian variety of the projective smooth irreducible curve
X of genus g defined over Fq. Then

(i)
(√

q + 1√
q − 1

) �X(Fq )−(q+1)
2
√

q −2δ

(q − 1)g ≤ �JX (Fq)

with δ = 1 if �X(Fq)−q−1
2
√

q /∈ Z, and δ = 0 otherwise.

(ii) �JX (Fq) ≤
(

q + 1 + �X(Fq)−q−1
g

)g

.

Proof of Theorem 5. It follows from (5), (6), and Lemmas 3 and 4 with γ = g,
a = q + 1

2
√

q and b = − �X(Fq)−q−1
2
√

q .
Let us compare this theorem with that of Lachaud and Martin-Deschamps stated

in the introduction. Roughly speaking, their upper and lower bounds, say for fixed q
and large g, both grow like qg. The bounds of Theorem 5 can be better if �X(Fq) is
sufficiently small. However, suppose that X has a degree d map onto the projective
line. Then �X(Fq) ≤ d(q + 1), and the upper bound of Proposition 5 implies that

�JX (Fq) ≤ (q + 1)g
(

1 + d − 1
g

)g

≤ exp(d − 1)(q + 1)g,

growing like (q + 1)g, which is not as good as (3 bis).
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