NOTE ON AN ASYMPTOTIC FORMULA FOR A CLASS OF DIGRAPHS

BY
M. R. SRIDHARAN

Self-complementary digraphs, and oriented type of these were counted by Read [4] and Sridharan [5] respectively. In [3] Palmer obtained an asymptotic formula for the number of self-complementary digraphs following a method of Oberschelp [2]. An asymptotic formula for the number of self-complementary oriented graphs is given here. We refer to [1] for definitions and details not mentioned here.
§1. Basic definitions. A directed graph or a digraph consists of a finite nonempty set of distinct elements called vertices together with a prescribed collection of ordered pairs of these distinct vertices. Each ordered pair is called an edge. The complement \bar{D} of a digraph D has the same set of vertices and an edge belongs to \bar{D} if and only if it is not in D. If $e=(a, b)$ is an edge of D, then a is adjacent to b and b is adjacent from a. Two digraphs D_{1} and D_{2} are said to be isomorphic if there is a one-to-one correspondence between their vertex sets that preserves adjacency. A digraph D is said to be self-complementary if it is isomorphic to its complement. An oriented graph is a graph in which the edges are of the form either (u, v) or (v, u) but not both. Let S_{n} denote the symmetric group on n elements. Any permutation $\alpha \in S_{n}$ which has j_{1} cycles of length $1, j_{2}$ cycles of length 2 , or in general j_{i} cycles of length i is written as $\alpha=\left(1^{i_{1}} 2^{i_{2}} \cdots n^{j_{n}}\right)$ where $j_{1} \cdot 1+j_{2} \cdot 2+\cdots+j_{n} \cdot n=n$. Let $[x]$ denote the greatest integer less than or equal to x. Let (r, s) and $\langle r, s\rangle$ denote the greatest common divisor and the least common multiple of r and s respectively.
§2. Self-Complementary oriented graphs. It is known [5] that the contributions to self-complementary oriented graphs come only from permutations of the type $\left(1^{i_{1}} 2^{i_{2}} 6^{j_{6}} 10^{i_{10}} \cdots\right)$ where $j_{1}=1$ or 0 . The number of selfcomplementary oriented graphs [5] is

$$
\begin{equation*}
Y_{n}=\frac{1}{n!} \sum_{\alpha \in B_{n}} 2^{\overline{0}_{n}(\alpha)} \tag{1}
\end{equation*}
$$

where

$$
B_{n}=\left\{\alpha: \alpha \in S_{n} \text { and } \alpha \text { has type }\left(1^{i_{1}} 2^{i_{2}} 6^{j_{6}} 10^{j_{10}} \cdots\right) \text { with } j_{1}=1 \text { or } 0\right\}
$$

[^0]and
\[

$$
\begin{equation*}
\bar{O}_{n}(\alpha)=\sum_{p \in N} \frac{p}{2} j_{p}^{2}+\sum_{q<r \in N^{\prime}}(q, r) j_{q} j_{r} \tag{2}
\end{equation*}
$$

\]

where

$$
\begin{aligned}
N & =\{2,6,10,14, \ldots\} \\
N^{\prime} & =\{1,2,6,10,14, \ldots\}
\end{aligned}
$$

Case (i) Let $n=2 p$. Then
Theorem 1. $Y_{2 p}=(1 / p!) 2^{p^{2-p}}\left(1+[p(p-1)(p-2) / 3] 2^{8-4 p}+0\left(p^{5} / 2^{(20 / 3) p}\right)\right)$.
Proof. The method of proof is the same as in [1]. Let $Y_{2 p, k}$ be the contributions from permutations which have $p-(k / 2)$ cycles of length 2 . Then

$$
\begin{aligned}
& Y_{2 p, 0}=\frac{1}{p!} 2^{p^{2}-p} \\
& Y_{2 p, 6}=Y_{2 p, 0} \frac{p(p-1)(p-2)}{3} 2^{8-4 p}
\end{aligned}
$$

and

$$
Y_{2 p}=\sum_{t=0}^{[(p-1) / 2]} Y_{2 p, 4 t+2}
$$

Let $\ell_{0}=4 p / 3$ and $n_{o}=2 t_{0}+1$. We prove that for any $t_{0} \geq 1$

$$
\begin{equation*}
Y_{2 p}=Y_{2 p, 0}\left(1+\sum_{t=2}^{t_{0}-1} \frac{Y_{2 p, 4 t+2}}{Y_{2 p, 0}}+O\left(\frac{p^{n_{0}}}{2^{l_{0} n_{o}}}\right)\right) \tag{3}
\end{equation*}
$$

For $t_{0}=1$, we have

$$
Y_{2 p} \simeq Y_{2 p, 0}=\frac{1}{p!} 2^{p^{2}-p}
$$

To prove (3), it is enough if we show that

$$
\sum_{t=t_{0}}^{[p-1 / 2]} Y_{2 p, 4 t+2}=\frac{1}{p!} 2^{p^{2-p}} O\left(\frac{p^{n_{0}}}{{ }_{2} \ell_{0} n_{0}}\right)
$$

We first obtain the upper bounds for each $Y_{2 p, k}$. The number of permutations in $S_{2 p}$ with j_{2} cycles of length 2 is bounded by

$$
\frac{(2 p)!}{{ }_{2} j_{2 z_{2}!}} \frac{(2 p)!}{\left(p-\frac{k}{2}\right)!2^{p-k / 2}}
$$

The contribution $\bar{O}_{2 p}(\alpha)$ is largest when α has the type $\left(2^{p-(k / 2)} 6^{k / 6}\right)$. Therefore,

$$
\bar{O}_{2 p}(\alpha) \leq \frac{6 p^{2}-4 k p+k^{2}}{6}
$$

With these bounds, we have, for each k

$$
Y_{2 p, k} \leq \frac{1}{\left(p-\frac{k}{2}\right)!2^{p-k / 2}} 2^{6 p^{2-4 k p+k / 6}} \leq p \frac{k}{2} \cdot y_{2 p, 0} \cdot 2^{(-4 k p+\cdots) / 6}
$$

Let

$$
\begin{aligned}
& \ell_{1}=\frac{4 p-3-k}{3} \\
& \ell_{2}=\frac{2 p-3}{3} \\
& \ell_{3}=\frac{4 p-3-4 k_{0}-2}{3} \\
& \ell_{4}=\frac{4 p}{2}
\end{aligned}
$$

and $n_{1}=4 t_{0}+3$. Then,
(4)

$$
Y_{2 p, k} \leq Y_{2 p, 0}\left(\frac{p}{{ }_{2} \ell_{1}}\right)^{k / 2}
$$

Since $k \leq 2 p$

$$
\begin{equation*}
Y_{2 p, k} \leq Y_{2 p, 0}\left(\frac{p}{{ }_{2} \ell_{2}}\right)^{k / 2} \tag{5}
\end{equation*}
$$

Surnming from $t-t_{0}$ to $[(p-1) / 2]$ we have

$$
\sum_{t=t_{0}}^{[(p-1) / 2]} Y_{2 p, 4 t+2} \leq Y_{2 p, 0} \sum_{t=t_{0}}^{[(p-1) / 2]}\left(\frac{p}{{ }_{2} \ell_{2}}\right)^{2 t+1}
$$

$$
\begin{equation*}
\text { i.e. } \sum_{t=t_{0}}^{[(p-1) / 2]} Y_{2 p, 4 t+2}=c Y_{2 p, 0}\left(\frac{p}{{ }_{2} \ell_{2}}\right)^{n_{0}} \tag{6}
\end{equation*}
$$

where c is a constant close to 1 . Put $k=4 t_{0}+2$ in (4), then,

$$
\begin{equation*}
Y_{2 p, k} \leq Y_{2 p, 0}\left(\frac{p}{{ }_{2} \ell_{3}}\right)^{n_{0}}-Y_{2 p, 0} O\left(\frac{p^{n_{0}}}{{ }_{2} \ell_{0} n_{0}}\right) \tag{7}
\end{equation*}
$$

and hence

$$
\sum_{t=t_{0}}^{2 t_{0}} Y_{2 p, 4 t+2}=Y_{2 p, 0} O\left(\frac{p^{n_{0}}}{{ }_{2} \ell_{0} n_{0}}\right)
$$

From (6) it follows that

$$
\sum_{t=2 t_{0}+1}^{[(p-1) / 2]} Y_{2 p, 4 t+2}=Y_{2 p, 0} O\left(\frac{p}{{ }_{2} \ell_{2}}\right)^{n_{1}}
$$

But

$$
O\left(\frac{p}{{ }_{2} \ell_{2}}\right)^{n_{1}}=O\left(\frac{p}{{ }_{2} \ell_{4}}\right)^{n_{0}}
$$

Hence

$$
Y_{2 p}=Y_{2 p, 0} O\left(\frac{p^{n_{0}}}{{ }_{2} \ell_{0} n_{0}}\right)
$$

The statement of the theorem follows by setting $t_{0}=2$. Case (ii) $n=2 p+1$. Case (ii) $n=2 p+1$.

Theorem 2

$$
Y_{2 p+1}=\frac{2^{p^{2}}}{p!}\left(1+\frac{p(p-1)(p-2)}{3} 2^{6-4 p}+O\left(p^{5} / 2^{(20 / 3) p}\right)\right)
$$

Proof. Same as in Theorem 1.
The following table gives the numbers of self-complementary oriented graphs up to the second approximation.

n	Y_{n}	First approximation	Second approximation
3	2	2	2
4	2	2	2
5	8	8	8
6	12	10.67	12
7	88	85.33	87.89
8	176	170.67	175.79
9	2752	2730.67	2757.98
10	8784	8738.13	8825.51

Since a self-complementary oriented graph is also a self-complementary tournament, the first approximation of this can be found in [1, page 215].

A similar attempt to obtain asymptotic formulae for self-converse digraphs and oriented self-converse graphs does not lead to a satisfactory result.

References

1. F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, N.Y., (1973).
2. W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann. 174 (1967), 53-78.
3. E. M. Palmer, Asymptotic formulas for the number of self-complementary graphs and digraphs, Mathematika 17 (1970), 85-90.
4. R. C. Read, On the number of self-complementary graphs and digraphs, J. Lond. Math. Soc. 38 (1963), 99-104.
5. M. R. Sridharan, Self-complementary and self-converse oriented graphs, Indag. Math. 32 (1970), 441-447.

Department of Mathematics,

Indian Institute of Technology, Kanpur India, 208016.

[^0]: Received by the editors April 22, 1976 and, in revised form, May 2, 1977 and October 22, 1977.

