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Abstract

We study the regularity properties of several classes of discrete maximal operators acting on BV(Z)
functions or `1(Z) functions. We establish sharp bounds and continuity for the derivative of these discrete
maximal functions, in both the centred and uncentred versions. As an immediate consequence, we obtain
sharp bounds and continuity for the discrete fractional maximal operators from `1(Z) to BV(Z).
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1. Introduction
Considerable attention has been given to the behaviour of differentiability under a
maximal operator. Kinnunen [11] first studied the regularity of the usual centred
Hardy–Littlewood maximal functionM and showed thatM is bounded on the Sobolev
spaces W1,p(Rd) for all 1 < p ≤ ∞. Tanaka [20] (see also [10]) noted that the W1,p-
bound for the uncentred case ofM also holds by a simple modification of Kinnunen’s
arguments. This paradigm has been extended to a local version in [12], to a fractional
version in [13] and to a multisublinear version in [7, 16]. Due to the lack of reflexivity
of L1, results for p = 1 are subtler. A crucial question in this direction was posed by
Hajłasz and Onninen in [10].

Question 1.1 [10]. Is the operator f 7→ |∇M f | bounded from W1,1(Rd) to L1(Rd)?

A standard dilation argument reveals the true nature of this question: whether the
variation of the maximal function is controlled by the variation of the original function,
that is, whether

‖∇M f ‖L1(Rd) ≤ C‖∇ f ‖L1(Rd). (1.1)
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Progress on this problem has been restricted to dimension d = 1. In 2002, Tanaka
[20] observed that if f ∈ W1,1(R), then M̃ f is weakly differentiable and (1.1) holds
with d = 1 and C = 2 for the uncentred maximal operator M̃. Tanaka’s result was later
sharpened by Aldaz and Pérez Lázaro [2], who proved that if f is of bounded variation
on R, then M̃ f is absolutely continuous and

Var(M̃ f ) ≤ Var( f ), (1.2)

where Var( f ) denotes the total variation of f . The inequality (1.2) is sharp. A new
proof of (1.1) with d = 1 and C = 1 for M̃ was presented by Liu et al. in [15]. Very
recently, (1.2) was extended to a fractional setting in [6, Theorem 1]. In the remarkable
work [14], Kurka showed that if f is of bounded variation on R, then (1.2) holds forM
(with constant C = 240 004). It was also shown in [14] that if f ∈ W1,1(R), thenM f
is weakly differentiable and (1.1) also holds for M with constant C = 240 004. It is
currently unknown whether (1.2) also holds forM. For other interesting related work,
we refer the reader to [1, 8, 9, 17, 18].

In this paper, we focus on this topic in the discrete setting. Let us recall some
notation and relevant results. For 1 ≤ p <∞, the `p-norm and the `∞-norm of a discrete
function f : Z→ R are defined by

‖ f ‖`p(Z) =

(∑
n∈Z

| f (n)|p
)1/p

and ‖ f ‖`∞(Z) = sup
n∈Z
| f (n)|.

We define the first derivative of f by f ′(n) = f (n + 1) − f (n) for any n ∈ Z. The total
variation of f recovers the `1(Z)-norm of f ′, that is,

Var( f ) = ‖ f ′‖`1(Z) =
∑
n∈Z

| f (n + 1) − f (n)|.

We denote by BV(Z) the set of functions of bounded variation defined on Z and write

Var( f ; [a, b]) = ‖ f ′‖`1([a,b]) =

b−1∑
n=a

| f (n + 1) − f (n)|

for the variation of f on the interval [a, b], where a, b are integers (or possibly ±∞).
The regularity of discrete maximal operators has attracted the attention of many

authors (see [3, 5, 6, 19, 21]). Let M (respectively M̃) be the discrete centred
(respectively uncentred) Hardy–Littlewood maximal operator given by

M f (n) = sup
r∈N

1
2r + 1

r∑
k=−r

| f (n + k)|, M̃ f (n) = sup
r,s∈N

1
r + s + 1

s∑
k=−r

| f (n + k)|,

where N = {0, 1, 2, 3, . . .}. Bober et al. [3] proved that

Var(M̃ f ) ≤ Var( f ) (1.3)
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and
Var(M f ) ≤

(
2 +

146
315

)
‖ f ‖`1(Z). (1.4)

The inequality (1.3) is sharp. The inequality (1.3) for M was established by Temur
in [21] (with constant C = 294 912 004). Inequality (1.4) is not optimal, and it was
asked in [3] whether the sharp constant for (1.4) is C = 2. This question was resolved
by Madrid in [19]. Recently, Carneiro and Madrid [6] extended (1.3) to the fractional
setting. They considered the discrete uncentred fractional maximal operator

M̃α f (n) = sup
r,s∈N

1
(r + s + 1)1−α

s∑
k=−r

| f (n + k)|

and showed that if 0 ≤ α < 1, q = 1/(1 − α), f ∈ BV(Z) and M̃α f .∞, then

‖(M̃α f )′‖`q(Z) ≤ 41/qVar( f ).

To the best of our knowledge, the centred analogue remains an open problem.
The motivation for this paper is to investigate the regularity of the discrete centred
fractional maximal operator

Mα f (n) = sup
r∈N

1
(2r + 1)1−α

r∑
k=−r

| f (n + k)|.

More precisely, we shall establish the following theorem.

Theorem 1.2. Let 0 ≤ α < 1. Then Mα is bounded and continuous from `1(Z) to
BV(Z). Moreover, if f ∈ `1(Z), then

Var(Mα f ) ≤ 2‖ f ‖`1(Z),

and the constant C = 2 is the best possible. The same results hold for M̃α.

Remark 1.3. Theorem 1.2 extends the result of Madrid in [19, Theorem 1], which
corresponds to the case α = 0. On the other hand, by the nest property `q1 (Z) ( `q2 (Z)
for 0 < q1 < q2, our Theorem 1.2 is new even in the uncentred case. It should
be pointed out that Mα : BV(Z)→ BV(Z) is not bounded for 0 < α < 1. To see
this, let l ∈ N\{0} and f (n) = χ[−l,l](n). One can easily check that Var( f ) = 2 and
Var(Mα f ) ≥ Var(Mα; [l,∞)) ≥ 1

2 (4l + 1)α. This yields our claim by letting l→∞. The
same claim holds for M̃α.

We will establish Theorem 1.2 by investigating the end-point regularity of more
general discrete maximal operators. Let Φ be a function defined on (0,∞). For a
discrete function f : Z→ R, we define the discrete centred maximal operator MΦ with
respect to Φ by

MΦ f (n) = sup
r∈N

Φ(2r + 1)
r∑

k=−r

| f (n + k)| (1.5)
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and the uncentred version by

M̃Φ f (n) = sup
r,s∈N

Φ(r + s + 1)
s∑

k=−r

| f (n + k)|.

Clearly, M (respectively M̃) is the special case of MΦ (respectively M̃Φ) for Φ(t) = t−1

and, when Φ(t) = tα−1, 0 < α < 1, MΦ (respectively M̃Φ) reduces to the operator Mα

(respectively M̃α).
Our main results can be formulated as follows.

Theorem 1.4. Let MΦ be given as in (1.4). Assume that Φ : [1,∞)→ (0,∞) is convex
and decreases to zero. Then MΦ is bounded and continuous from `1(Z) to BV(Z).
Moreover, if f ∈ `1(Z), then

Var(MΦ f ) ≤ 2Φ(1)‖ f ‖`1(Z),

and the constant C = 2Φ(1) is the best possible. The same results hold for M̃Φ.

Theorem 1.5. Let M̃Φ be given as in (1.5). Assume that Φ : [1,∞)→ (0,∞) satisfies
limt→∞Φ(t) = 0 and

1
Φ(s)

+
1

Φ(t)
≤

1
Φ(t + s)

(1.6)

for all s, t ∈ [1,∞). Then M̃Φ is bounded and continuous from `1(Z) to BV(Z).
Moreover, if f ∈ BV(Z), then

Var(M̃Φ f ) ≤ Φ(1)Var( f ).

Further, if Φ is also nonincreasing, then the constant CΦ = Φ(1) is the best possible.

Remark 1.6. Examples of functions satisfying the assumptions on Φ in Theorem 1.4
are t−α(α > 0), e−at(a > 0), (ln t)−1 and so on. An example of a function satisfying
the assumptions on Φ in Theorem 1.5 is (P(t))−1, where P(t) is a polynomial with
positive coefficients. We mention three further examples: (a) Φ(t) = t−2 satisfies the
assumptions in Theorems 1.4 and 1.5; (b) Φ(t) = t−1/2 satisfies the assumptions in
Theorem 1.4, but Φ does not satisfy the condition (1.6); (c) Φ(t) = (1 + t2)−1 satisfies
the assumptions in Theorem 1.5, but Φ is a concave function defined on [1,∞).

Remark 1.7. Clearly, Theorem 1.2 follows immediately from Theorem 1.4 when
Φ(t) = tα−1 for 0 ≤ α < 1. The boundedness part in Theorem 1.4 extends (1.3), which
corresponds to the case Φ(t) = t−1. It is not hard to see, by considering the function
f (n) = χ{1}(n), that the constant CΦ = 2Φ(1) (respectively CΦ = Φ(1)) is best possible
in Theorem 1.4 (respectively Theorem 1.5).

The rest of this paper is organised as follows. We prove Theorem 1.4 in Section 2
and Theorem 1.5 in Section 3. The proof of the boundedness part in Theorem 1.4 is

https://doi.org/10.1017/S0004972716000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000940


112 F. Liu [5]

based on the method of [19]. The main ideas in the proof of the boundedness part
of Theorem 1.5 are motivated by [3], but our method is simpler than that of [3]. The
proofs of the continuity parts in Theorems 1.4 and 1.5 rely on the boundedness results
and an application of the Brezis–Lieb lemma in [4], which was used to prove the
continuity of a class of discrete maximal operators by Carneiro and Hughes in [5].
However, our approach is different to and simpler than that of [5].

Throughout this paper, the letter C, sometimes with additional parameters, will
stand for positive constants, not necessarily the same at each occurrence but
independent of the essential variables.

2. Proof of Theorem 1.4

2.1. Boundedness part. We apply the method in the proof of [19, Theorem 1] to
prove the boundedness part of Theorem 1.4. Let f ∈ `1(Z). Without loss of generality,
we may assume that f ≥ 0.

2.1.1. Centred case. For convenience, let Γ(x) = Φ(2x + 1) − Φ(2x + 3) for any
x ≥ 0. One can easily check that Γ(x) is decreasing on [0,∞) and

∑
n∈N Γ(n) = Φ(1).

Since f ∈ `1(Z), then, for any n ∈ Z, there exists rn ∈ N such that MΦ f (n) = Arn ( f )(n),
where

Ar( f )(n) = Φ(2r + 1)
r∑

k=−r

f (n + k)

for any r ∈ N and n ∈ Z. Let

X+ = {n ∈ Z : MΦ f (n + 1) > MΦ f (n)} and X− = {n ∈ Z : MΦ f (n) ≥ MΦ f (n + 1)}.

Then

Var(MΦ f ) =
∑
n∈X+

(MΦ f (n + 1) − MΦ f (n)) +
∑
n∈X−

(MΦ f (n) − MΦ f (n + 1))

≤
∑
n∈X+

(Arn+1 ( f )(n + 1) − Arn+1+1( f )(n)) +
∑
n∈X−

(Arn ( f )(n) − Arn+1( f )(n + 1)). (2.1)

On the other hand, for a fixed n ∈ Z,

Arn+1 ( f )(n + 1) − Arn+1+1( f )(n)

= Φ(2rn+1 + 1)
∑
k∈Z

f (k)χ[n+1−rn+1,n+rn+1+1](k)

− Φ(2rn+1 + 3)
∑
k∈Z

f (k)χ[n−rn+1−1,n+rn+1+1](k)

≤
∑
k∈Z

f (k)Γ(rn+1)(χ{n<k≤n+rn+1+1}(n) + χ{n+1−rn+1≤k≤n}(n))

≤
∑
k∈Z

f (k)(Γ(k − n − 1)χ{n<k}(k) + Γ(n − k)χ{n≥k}(k)), (2.2)
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Arn ( f )(n) − Arn+1( f )(n + 1)

= Φ(2rn + 1)
∑
k∈Z

f (k)χ[n−rn,n+rn](k)

− Φ(2rn + 3)
∑
k∈Z

f (k)χ[n−rn,n+rn+2](k)

≤
∑
k∈Z

f (k)Γ(rn)(χ{n<k≤n+rn}(n) + χ{n−rn≤k≤n}(n))

≤
∑
k∈Z

f (k)(Γ(k − n − 1)χ{n<k}(k) + Γ(n − k)χ{n≥k}(k)). (2.3)

It follows from (2.1)–(2.3) that

Var(MΦ f ) ≤
∑
k∈Z

f (k)
( ∑

n∈X+, n<k

Γ(k − n − 1) +
∑

n∈X+, n≥k

Γ(n − k)

+
∑

n∈X−, n<k

Γ(k − n − 1) +
∑

n∈X−, n≥k

Γ(n − k)
)

=
∑
k∈Z

f (k)
(∑

n<k

Γ(k − n − 1) +
∑
n≥k

Γ(n − k)
)
≤ 2Φ(1)‖ f ‖`1(Z).

2.1.2. Uncentred case. The proof follows similar lines to Section 2.1.1 and we
only need to make some modifications. Let Υ(x) = Φ(x + 1) − Φ(x + 2) for any x ≥ 0.
Observe that Υ(x) is decreasing on [0,∞) and

∑
n∈N Υ(n) = Φ(1). Since f ∈ `1(Z), for

all n ∈ Z there exist rn, sn ∈ N such that

M̃Φ f (n) = Brn,sn ( f )(n) := Φ(rn + sn + 1)
sn∑

k=−rn

f (n + k).

Fix n ∈ Z. By arguments similar to those used to derive (2.2)–(2.3),

Brn+1,sn+1 ( f )(n + 1) − Brn+1,sn+1+1( f )(n)

≤
∑
k∈Z

f (k)(Υ(k − n − 1)χ{n<k}(k) + Υ(n − k)χ{n≥k}(k)), (2.4)

Brn,sn ( f )(n) − Brn+1,sn ( f )(n + 1)

≤
∑
k∈Z

f (k)(Υ(k − n − 1)χ{n<k}(k) + Υ(n − k)χ{n≥k}(k)). (2.5)

Let

X̃+ = {n ∈ Z : M̃Φ f (n + 1) > M̃Φ f (n)} and X̃− = {n ∈ Z : M̃Φ f (n) ≥ M̃Φ f (n + 1)}.
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Then, from (2.4)–(2.5),

Var(M̃Φ f ) =
∑
n∈X̃+

(M̃Φ f (n + 1) − M̃Φ f (n)) +
∑
n∈X̃−

(M̃Φ f (n) − M̃Φ f (n + 1))

≤
∑
n∈X̃+

(Brn+1,sn+1 ( f )(n + 1) − Brn+1,sn+1+1( f )(n))

+
∑
n∈X̃−

(Brn,sn ( f )(n) − Brn+1,sn ( f )(n + 1))

≤
∑
k∈Z

f (k)
(∑

n<k

Υ(k − n − 1) +
∑
n≥k

Υ(n − k)
)
≤ 2Φ(1)‖ f ‖`1(Z).

2.2. Continuity part. Let f j → f in `1(Z) as j→∞. Without loss of generality, we
may assume that f j ≥ 0 for all j and that f ≥ 0, since || f j| − | f || ≤ | f j − f |.

2.2.1. Centred case. Let Γ(x) and Ar be as in Section 2.1.1. We want to show that

lim
j→∞
‖(MΦ f j)′ − (MΦ f )′‖`1(Z) = 0. (2.6)

For any ε ∈ (0, 1), there exists N1 = N1(ε, f ) > 0 such that

‖ f j − f ‖`∞(Z) ≤ ‖ f j − f ‖`1(Z) < ε (2.7)

and

‖ f j‖`∞(Z) ≤ ‖ f j‖`1(Z) ≤ ‖ f j − f ‖`1(Z) + ‖ f ‖`1(Z) < ‖ f ‖`1(Z) + 1 (2.8)

for any j ≥ N1. Fix n ∈ Z and j ≥ N1. It follows from (2.7) that

|MΦ f j(n) − MΦ f (n)| ≤ sup
r∈N

Φ(2r + 1)
n+r∑

k=n−r

| f j(k) − f (k)| ≤ Φ(1)‖ f j − f ‖`1(Z) < Φ(1)ε

for any j ≥ N1, which implies that MΦ f j → MΦ f pointwise as j→∞ and

lim
j→∞

(MΦ f j)′(n) = (MΦ f )′(n) (2.9)

for all n ∈ Z. By the boundedness part of Theorem 1.4, (MΦ f )′ ∈ `1(Z). By the
classical Brezis–Lieb lemma in [4], to derive (2.6) it suffices to show that

lim
j→∞
‖(MΦ f j)′‖`1(Z) = ‖(MΦ f )′‖`1(Z). (2.10)

By (2.9) and Fatou’s lemma,

‖(MΦ f )′‖`1(Z) ≤ lim inf
j→∞

‖(MΦ f j)′‖`1(Z).

Thus, (2.10) reduces to showing that

lim sup
j→∞

‖(MΦ f j)′‖`1(Z) ≤ ‖(MΦ f )′‖`1(Z). (2.11)
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We now prove (2.11). Note that there exists a sufficiently large positive integer
R1 = R1(ε, f ) such that ∑

|n|≥R1

f (n) < ε. (2.12)

One can easily check that
lim
|n|→∞

MΦ f (n) = 0.

It follows that there exists an integer R2 = R2(ε) > 0 such that MΦ f (n) < ε for all
|n| ≥ R2. There also exists an integer R3 > 0 such that Φ(2r + 1) < ε if r ≥ R3. Let
R = max{R1,R2,R3, 1}. By (2.9), there exists N2 = N(ε,R) > 0 such that

|(MΦ f j)′(n) − (MΦ f )′(n)| ≤
ε

4R + 2
(2.13)

for any j ≥ N2 and |n| ≤ 2R. From (2.13),

‖(MΦ f j)′‖`1(Z) ≤
∑
|n|≤2R

|(MΦ f j)′(n) − (MΦ f )′(n)| + ‖(MΦ f )′‖`1(Z) +
∑
|n|≥2R

|(MΦ f j)′(n)|

≤ ‖(MΦ f )′‖`1(Z) + ε +
∑
|n|≥2R

|(MΦ f j)′(n)| (2.14)

for any j ≥ N2. Fix j ≥ N2 and set

X+
j = {|n| ≥ 2R : MΦ f j(n + 1) > MΦ f j(n)}, X−j = {|n| ≥ 2R : MΦ f j(n) ≥ MΦ f j(n + 1)}.

Since f j ∈ `
1(Z), for n ∈ Z there exists rn ∈ N such that MΦ f j(n) = Arn ( f j)(n). So,∑

|n|≥2R

|(MΦ f j)′(n)| =
∑
n∈X+

j

(MΦ f j(n + 1) − MΦ f j(n)) +
∑
n∈X−j

(MΦ f j(n) − MΦ f j(n + 1))

≤
∑
n∈X+

j

(Arn+1 ( f j)(n + 1) − Arn+1+1( f j)(n))

+
∑
n∈X−j

(Arn ( f j)(n) − Arn+1( f j)(n + 1)). (2.15)

By arguments similar to those used in deriving (2.2) and (2.3),

Arn+1 ( f j)(n + 1) − Arn+1+1( f j)(n) ≤
∑
k∈Z

f j(k)(Γ(k − n − 1)χ{n<k}(k) + Γ(n − k)χ{n≥k}(k)),

(2.16)

Arn ( f j)(n) − Arn+1( f j)(n + 1) ≤
∑
k∈Z

f (k)(Γ(k − n − 1)χ{n<k}(k) + Γ(n − k)χ{n≥k}(k)).

(2.17)

https://doi.org/10.1017/S0004972716000940 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000940


116 F. Liu [9]

It follows from (2.7), (2.8), (2.12) and (2.15)–(2.17) that∑
|n|≥2R

|(MΦ f j)′(n)| ≤
∑
k∈Z

f j(k)
( ∑

n<k, |n|≥2R

Γ(k − n − 1) +
∑

n≥k, |n|≥2R

Γ(n − k)
)

≤
∑
|k|≥R

f j(k)
( ∑

n<k, |n|≥2R

Γ(k − n − 1) +
∑

n≥k, |n|≥2R

Γ(n − k)
)

+
∑
|k|<R

f j(k)
( ∑

n<k, |n|≥2R

Γ(k − n − 1) +
∑

n≥k, |n|≥2R

Γ(n − k)
)

≤ 2Φ(1)‖ f jχ{|k|≥R}‖`1(Z) +
∑
|k|<R

f j(k)
( ∑

n≤−2R

Γ(k − n − 1) +
∑
n≥2R

Γ(n − k)
)

≤ Cε + CΦ(2R + 1) ≤ Cε

for any j ≥ N1. Combining this inequality with (2.14) yields

‖(MΦ f j)′‖`1(Z) ≤ ‖(MΦ f )′‖`1(Z) + Cε

for any j ≥ max{N1,N2}, which gives (2.11).

2.2.2. Uncentred case. Similar arguments to those in Section 2.2.1 yield the
continuity of M̃Φ.

3. Proof of Theorem 1.5

Before giving the proof of Theorem 1.5, we recall an important definition and
present two lemmas, which will play a key role in our proof. For a discrete function
f : Z→ R, we say that a point n is a local maximum of f if

f (n − 1) ≤ f (n) and f (n) > f (n + 1).

Lemma 3.1. Let f : Z→ R be a bounded function and Φ be as in Theorem 1.5. If n is
a local maximum of M̃Φ f , then M̃Φ f (n) = Φ(1)| f (n)|.

Proof. First we claim that there exist s0, r0 ∈ N such that s0 + r0 , 0 and

M̃Φ f (n) = Φ(r0 + s0 + 1)
s0∑

k=−r0

| f (n + k)|. (3.1)

Suppose no such s0, r0 ∈ N exist with s0 + r0 , 0 and (3.1) holds. We may assume
without loss of generality that M̃Φ f (n) is not attained for any r ∈ N. Let {Nk}

∞
k=1 be an

increasing sequence of positive integers with limk→∞ Nk =∞. By our assumption,

M̃Φ f (n) = sup
r≥Nk , s∈N

Φ(r + s + 1)
s∑

m=−r

| f (n + m)| ∀k ≥ 1.

It follows that for any ε > 0 and k ≥ 1, there exist rk ≥ Nk and sk ∈ N such that
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M̃Φ f (n)≤Φ(rk + sk + 1)
sk∑

m=−rk

| f (n + m)| + ε

= Φ(rk + sk + 1)
sk∑

m=−rk

| f (n + 1 + m)|

+ Φ(rk + sk + 1)(| f (n − rk)| − | f (n + sk + 1)|) + ε

≤ M̃Φ f (n + 1) + Φ(rk + sk + 1)‖ f ‖`∞(Z) + ε. (3.2)

If ε → 0 and k→∞, (3.2) leads to M̃Φ f (n) ≤ M̃Φ f (n + 1), which is a contradiction.
We may assume without loss of generality that s0 ≥ 1, r0 ≥ 1 (since the other cases

can be obtained by a simple modification of our arguments). By (3.1), our assumption
and the properties of Φ,

M̃Φ f (n) = Φ(r0 + s0 + 1)
(
| f (n)| +

0∑
k=−r0+1

| f (n − 1 + k)| +
s0−1∑
k=0

| f (n + 1 + k)|
)

≤ Φ(r0 + s0 + 1)
( 1
Φ(1)

+
1

Φ(s0)
+

1
Φ(r0)

)
M̃Φ f (n)

+ Φ(r0 + s0 + 1)
(
| f (n)| −

1
Φ(1)

M̃Φ f (n)
)

≤ M̃Φ( f )(n) + Φ(r0 + s0 + 1)
(
| f (n)| −

1
Φ(1)

M̃Φ f (n)
)
,

which yields M̃Φ f (n) ≤ Φ(1)| f (n)|. Thus, M̃Φ f (n) = Φ(1)| f (n)|. �

Remark 3.2. Lemma 3.1 implies [3, Lemma 3] when Φ(t) = t−1.

Lemma 3.3. Let [a, b] be an interval with a, b being integers (or possibly ±∞) and
f ∈ BV(Z). Assume that Φ satisfies the conditions in Theorem 1.5. Then

Var(M̃Φ f ; [a, b]) ≤ Φ(1)Var( f ; [a, b]).

Proof. We only consider the bounded interval [a, b], since the assertion of Lemma 3.3
for unbounded intervals [a,b] follows easily from this and the fact that Var(M̃Φ f ; [a,b])
is the supremum of Var(M̃Φ f ; [a′, b′]) over bounded subintervals [a′, b′] ⊂ [a, b].
Suppose that −∞ < a < b < ∞. We may assume without loss of generality that a1
(respectively a` (` ≥ 1)) is the first (respectively last) local maximum of M̃Φ f . Invoking
Lemma 3.1, we have M̃Φ f (ak) = Φ(1)| f (ak)|. Then

Var(M̃Φ f ; [a, b]) = Var(M̃Φ f ; [a, a1]) + Var(M̃Φ f ; [a`, b]) +
∑̀
k=0

Var(M̃Φ f ; [ak, ak+1])

≤ M̃Φ f (a1) − M̃Φ f (a) + M̃Φ f (a`) − M̃Φ f (b)

+

`−1∑
k=1

(M̃Φ f (ak) − M̃Φ f (bk+1) + M̃Φ f (ak+1) − M̃Φ f (bk+1))
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≤Φ(1)
(
| f (a1)| − | f (a)| + | f (a`)| − | f (b)|

+

`−1∑
k=1

(| f (ak)| − | f (bk+1)| + | f (ak+1)| − | f (bk+1)|)
)

≤Φ(1)
(
Var( f ; [a, a1]) + Var( f ; [a`, b])

+

`−1∑
k=1

(Var( f ; [ak, bk+1]) + Var( f ; [bk+1, ak+1]))
)

≤Φ(1)Var( f ; [a, b]).

This completes the proof of Lemma 3.3. �

Proof of Theorem 1.5. The boundedness part of Theorem 1.5 can be seen as a special
case of Lemma 3.3. It remains to show the continuity part. We will indicate here the
modifications that have to be made to the proof for the continuity part in Theorem 1.4.
Let f j → f in `1(Z) as j→∞. We want to show that

lim
j→∞
‖(M̃Φ f j)′ − (M̃Φ f )′‖`1(Z) = 0. (3.3)

By the same arguments as in Section 2.2.1, for any ε ∈ (0, 1), there exists N1 =

N1(ε, f ) > 0 such that

‖ f j − f ‖`∞(Z) ≤ ‖ f j − f ‖`1(Z) < ε (3.4)

for any j ≥ N1. It follows easily from the same arguments as in Section 2.2.1 that in
order to establish (3.3), it suffices to show that

lim sup
j→∞

‖(M̃Φ f j)′‖`1(Z) ≤ ‖(M̃Φ f )′‖`1(Z). (3.5)

By the same arguments used to derive (2.14), there exist R > 0 and N2 > 0 such that∑
|n|≥2R

f (n) < ε (3.6)

and

‖(M̃Φ f j)′‖`1(Z) ≤ ‖(M̃Φ f )′‖`1(Z) + ε +
∑
|n|≥2R

|(M̃Φ f j)′(n)| (3.7)

for any j ≥ N2. On the other hand, by Lemma 3.3, (3.4) and (3.6),∑
|n|≥2R

|(M̃Φ f j)′(n)| ≤ Var(M̃Φ f j; [2R,∞)) + Var(M̃Φ f j; (−∞,−2R])

≤ Φ(1)(Var( f j; [2R,∞)) + Var( f j; (−∞,−2R]))
≤ Φ(1)(Var( f j − f ; (−∞,−2R] ∪ [2R,∞)) + Φ(1)Var( f ; (−∞,−2R] ∪ [2R,∞)))

≤ 2Φ(1)‖ f j − f ‖`1 + 2Φ(1)
∑
|n|≥2R

f (n) ≤ 4Φ(1)ε (3.8)
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for any j ≥ N1. Combining (3.8) with (3.7) yields

‖(M̃Φ f j)′‖`1(Z) ≤ ‖(M̃Φ f )′‖`1(Z) + (4Φ(1) + 1)ε

for all j ≥ max{N1,N2}. This gives (3.5) and completes the proof of Theorem 1.5. �
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