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Abstract. We study orthogonal projections of generic embedded hypersurfaces in
�4 with boundary to 2-spaces. Therefore, we classify simple map germs from �3 to the
plane of codimension less than or equal to 4 with the source containing a distinguished
plane which is preserved by coordinate changes. We also go into some detail on their
geometrical properties in order to recognize the cases of codimension less than or equal
to 1.
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1. Introduction. In this paper we study the singularities of orthogonal projections
of a generic embedded hypersurface M in �4 with boundary to a two-dimensional
plane. The singularities occurring at interior points have already been classified in [13]
(see also [17]), so we shall be concerned solely with the nature of the projections at
boundary points. We consequently need to classify map germs from �3 to the plane with
the source containing a distinguished plane which is preserved by coordinate changes.
The singularities of such maps measure, for instance, the contact of M with two-
dimensional planes. Bruce and Giblin [4] investigated the singularities of projections
of generic surfaces in �3 with boundary to a plane, i.e. the authors classify map germs
from plane to plane with the source containing a line which is preserved by coordinate
changes. Tari [18] generalized such problem, considering projections of more general
piecewise smooth surfaces in �3. If the space considered is �4, then studies on surfaces
and their projections can be found, for example, in [6, 12, 15], and on hypersurfaces in
[13, 14].

Given a germ of an immersion at 0 ∈ �3 of the set V = {(x, y, z); z ≥ 0} into �4, we
can regard the image as a small piece of a smooth hypersurface M in �4 with boundary.
Projections of M to planes are parametrized by the Grassmanian of 2-planes in �4,
G(2, 4). Then an orthogonal projection of M to plane can be represented locally by a
germ of a map (�3, 0) → (�2, 0), as we explain in Section 4. If a and b are orthonormal
bases of the plane of projection u ∈ G(2, 4), then the family of orthogonal projections
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to 2-spaces is given by

� : M × G(2, 4) → �2

(p, u) �→ (〈p, a〉, 〈p, b〉).

Given u ∈ G(2, 4), the map �u measures the contact between M and the plane
orthogonal to u, the kernel of �u. (Note that �u is of corank at most 1). If p is a corank
1 singular point of �u, then the orthogonal plane to u is a subset of TpM.

Let En be the local ring of germs of functions (�n, 0) → � and mn be its maximal
ideal (which is the subset of germs that vanish at the origin). Denote by E(n, p) the p-
tuples of elements in En. Let A = R × L = Diff (�n, 0) × Diff (�p, 0) denote the group
of right–left equivalences, which acts smoothly on mn.E(n, p) by (h, k).f = k ◦ f ◦ h−1.
We shall consider the subgroup B(n) of A (B(n) = AV in notation of [7], with V =
{(x1, . . . , xn); xn ≥ 0}) which consists of pairs of germs of diffeomorphisms (h, k), where
h preserves the n-dimensional manifold as well as its boundary (�n−1, 0) (that is, h
takes the variety V into itself) and k is any diffeomorphism in the target. When the
context is clear, we write B for B(n). Since the A-equivalence classes of �u do not
depend on the choice of orthonormal basis a, b of u (see [13]), then we can expect the
generic B-equivalence classes of �u to be those of Be-codimension less than or equal
to 4. We classify simple germs of maps (�3, 0) → (�2, 0) of codimension less than
or equal to 4 up to smooth origin preserving changes of coordinates in the source,
which preserve the manifold as well as its boundary, and any smooth origin preserving
changes of coordinates in the target. This yields an action of B on m3 . E(3, 2). The
group B is a geometric subgroup of A in Damon’s terminology [7]. The list of orbits
of simple germs of corank at most 1 and Be-codimension less than or equal to 4 of this
action are given in Theorem 1.1. Note that the germs (x, y) and (x, z + g(x, y)) are all
submersions.

THEOREM 1.1. The B-simple map-germs (�3, 0) → (�2, 0) of corank at most 1 and
Be-codimension ≤ 4 are given in Table 1.

In an analogous way to the work [4] (see also Theorem 4.1 in [8]), the classification
in Theorem 1.1 can be thought as a classification of invariant map germs. Let T :
(�3, 0) → (�3, 0) be given by T(x, y, z) = (x, y,−z); T yields a �2-action on (�3, 0).
One can classify invariant map-germs (�3, 0) → (�2, 0) up to equivariant changes of
coordinates in the source and any changes of coordinates in the target. The list of
simple invariant germs of corank at most 1 and of codimension ≤ 4 can be obtained
by replacing z by z2 in Table 1.

The classification in Theorem 1.1 also has application in the study of germs of
pairs of codimension one regular foliations in �3, which can be assumed to be given
by germs of differential 1-forms ω and η = dz. An important feature of the pair (ω, η)
is its discriminant D(ω, η), that is, the locus of points where the foliations are tangents.
This is generically a germ of a space curve. In local coordinates, the discriminant is
given by the fibre of a map-germ F : (�3, 0) → (�2, 0), which we call the discriminant
map-germ. In [10] the authors show that the discriminant D(ω, η) determines the local
topological type of the pair (ω, η) and obtain a complete list of discrete topological
models (Theorem 4.1, p. 108). Theorem 1.1 models codimension less than or equal to
four simple singularities of the discriminant map-germ up to subgroupB. TheB-class of
a discriminant map-germ determines if the associated pair of foliations is topologically
equivalent to one of the discrete topological models given in [10]. Indeed, suppose
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Table 1. Normal forms of Be-codimension ≤ 4
(ε, ε1 = ±1)

Normal form Be-codimension

(x, y) 0
(x, z + εy2) 0
(x, z + xy + y3) 0
(x, z + y3 + εk−1xky), k ≥ 2 k − 1
(x, z + xy + εy4) 1
(x, z + xy + y5 + εy7) 2
(x, z + xy + y5) 3
(x, z + xy + εy6 + y9) 4
(x, z + xy2 + εy4 + y2k+1), k ≥ 2 k
(x, z + xy2 + y5 + εy6) 3
(x, z + xy2 + y5 + εy9) 4
(x, z + x2y + εy4 + ε1y5) 3
(x, z + x2y + εy4) 4
(x, y2 + εz2 + ε1

kxk−1z), k ≥ 2 k − 2
(x, y2 + xz + εz3) 1
(x, y2 + xz + εz4 + ε1z6), 2
(x, y2 + xz + εz4) 3
(x, yz + xy + εy3) 1
(x, yz + xy + y4 + εy6) 2
(x, yz + xy + y4) 3
(x, xy + z2 + y3 + εykz), k ≥ 2 k

that the discriminant map-germ of (ω, η) has a B-simple singularity of codimension
less than or equal to four and that it is transverse, away from the origin, to the pair
of foliations. Then the topological type of the pair is determined by the number of
branches of D(ω, η) in each half region delimited by the leaf of ω (or η) through the
origin, provided this number does not exceed two. We can calculate the number of
branches of the zero-fibre of a normal form F given in Table 1, in the semi-spaces z > 0
and z < 0, as follows. Take, for example, the normal form F(x, y, z) = (x, z + y2). Then
F−1(0, 0) is the parabola z + y2 = 0 in the plane x = 0. So there are two branches of
F−1(0, 0) in the semi-space z ≤ 0 and none in z > 0.

The paper is organized as follows. In Section 2 we give some preliminary concepts
from singularity theory. In Section 3 we give the classification, which is carried out
inductively on the jet level until a sufficient jet is found. We deal with the geometry
of B-simple map germs given in Theorem 1.1 of codimension ≤ 1 in Section 4. We
observe that all B-germs of codimension ≤ 1 are simple (Theorem 3.7). This section
also contains pictures which can be useful to recognize various cases. Our notation
and terminology will follow closely [4].

2. Preliminaries. In this paper we use a method of classification of map germs
that is similar to the well known method for group A, and also works for group
B.

Given a map-germ f ∈ mn.E(n, p), θf denotes the set of germs of vector fields along
f (these are sections of the pull-back of the tangent bundle of the target manifold). We
set θn = θid�n ,0 and θp = θid�p ,0 , where id�n,0 and id�p,0 denote the germs of identity maps
on (�n, 0) and (�p, 0) respectively. One can define the homomorphisms tf : θn → θf by
tf (ψ) = Df.ψ , and wf : θp → θf by wf (φ) = φ ◦ f .
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The tangent space to the A-orbit of f at the germ f is given by

LA(f ) = tf (mn.θn) + wf (mp.θp)
= mn.{fx1 , . . . , fxn} + f ∗(mp).{e1, . . . , ep},

where fxi denotes the partial derivative with respect to xi (i = 1, . . . , n), {e1, . . . , ep}
is the standard basis vectors of �p considered as elements of E(n, p) and f ∗(mp) is the
pull-back of the maximal ideal in Ep.

The extended tangent space to the A-orbit of f at the germ f is given by

LeA(f ) = tf (θn) + wf (θp)
= En.{fx1 , . . . , fxn} + f ∗(Ep).{e1, . . . , ep}.

The codimension of the orbit of f is given by

dim�(mn.E(n, p)/LA(f )),

and the codimension of the extended orbit (Ae-codimension) is given by

dim�(E(n, p)/LeA(f )) .

Let k ≥ 1 be an integer. We denote by Jk(n, p) the space of kth order Taylor
expansions without constant terms of elements of E(n, p) and write jkf for the k-jet of
the map f . A germ f is said to be k − A-determined if every map g with jkg = jkf is
A-equivalent to f (notation: g ∼ f ). The k-jet of f is then called a sufficient jet. (See
for example [2, 3, 19] for finite determinacy criteria.)

The method used here is that of complete transversal [5] together with Mather’s
Lemma [11], given below, where A1 denotes the normal subgroup of A whose
elements have 1-jets at 0 equal to the identity. The classification (i.e. the listing of
representatives of the orbits) of germs of codimension less than or equal to four is
carried out inductively on the jet level. The first below result checks whether f is
k-determined and therefore can we stop the induction method. Otherwise, by using
the subgroup A1, the second result says what monomials of degree k + 1 we need to
add to jkf . Finally, Mather’s lemma says if the monomials are really necessary for the
A-classification. After this we return to the first theorem to check whether f is finitely
determined.

THEOREM 2.1. (Theorem 6.10 in [2]).
(1) A germ f : (�n, 0) → (�p, 0) is finitely A-determined if and only if for some N we
have mN

n .E(n, p) ⊂ LA.f .
(2) A germ f : (�n, 0) → (�p, 0) is (2r + 1)-A-determined if

mr+1
n .E(n, p) ⊂ LA.f + m2r+2

n .E(n, p).

(3) A germ f : (�n, 0) → (�p, 0) is r-A1-determined if and only if

mr+1
n .E(n, p) ⊂ LA1.f.

(4) A germ f : (�n, 0) → (�p, 0) is r-A1-determined if and only if

mr+1
n .E(n, p) ⊂ LA1.f + mr+1

n .(f ∗mp.En + mr+1
n ).E(n, p).
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PROPOSITION 2.2. (Complete transversal, Proposition 2.2 in [5]). Let g be a k-jet
in Jk(n, p), and let T be a vector subspace of the set Hk+1(n, p) of homogeneous jets of
degree k + 1, such that

Hk+1(n, p) ⊂ T + L(Jk+1A1)(g) .

Then any (k + 1)-jet jk+1f with jkg = jkf is Jk+1A1-equivalent to g + t for some t ∈ T.
(The vector subspace T is called the complete (k + 1)-transversal of g.)

LEMMA 2.3. (Mather’s Lemma, Lemma 3.1 in [11]). Let G be a Lie group acting
smoothly on a finite dimensional manifold X. Let V be a connected submanifold of X.
Then V is contained in a single orbit of G if and only if

(1) for each x ∈ V, TxV ⊂ TxG(x) = LG(x);
(2) dim TxG(x) is constant for all x ∈ V.

The notion of simple germs is defined in [1] as follows.

DEFINITION 2.4. ([1]). Let X be a manifold and G a Lie group acting on X. The
modality of a point x ∈ X under the action of G on X is the least number m such that a
sufficiently small neighbourhood of x may be covered by a finite number of m-parameter
families of orbits. The point x is said to be simple if its modality is 0, that is, a sufficiently
small neighbourhood intersects only a finite number of orbits. The modality of a finitely
determined map-germ is the modality of a sufficient jet in the jet-space under the action
of the jet-group.

The results on finite determinacy and complete transversal are stated above for the
group A and were initially proved for the groups L, R, C, K and A (see [5, 3]). However,
Damon[7] showed that these results are also valid for a larger class of subgroups of
K and A, which he called geometric subgroups of K and A. These are subgroups that
satisfy some algebraic properties that ensure that all the results on finite determinacy
and versal unfoldings are valid for the action of such subgroups on mn.E(n, p). As we
said before, the group B is a geometric subgroup of A.

3. Classification. The singularities occurring at interior points of the surface were
classified by using the group A in [13]. For boundary points we need to use the group
B as described below.

We shall use (x, y, z) coordinates on �3, and �2 × {0} is, naturally, the xy-plane.
This corresponds to the boundary of our manifold with boundary, whose interior is
taken to be that part of �3 with z > 0. Then our aim is to classify simple map germs
f : (�3, 0) → (�2, 0) of corank at most 1 and Be-codimension ≤ 4.

The group B in the Introduction is the subgroup of Mather’s group A consisting of
pairs of germs of diffeomorphisms (h, k) in Diff (�3) × Diff (�2) with h preserving the
manifold as well as its boundary �2 × {0} (that is, h takes the variety V = {(x, y, z) :
z ≥ 0} into itself). Then B acts on the set of map germs f : (�3, 0) → (�2, 0) and
we wish to classify B-orbits of low codimension. Therefore, if (h, k) ∈ B, we can write
h(x, y, z) = (h1(x, y, z), h2(x, y, z), zh3(x, y, z)) with h3(0, 0, 0) > 0 for germs of smooth
functions hi, i = 1, 2, 3.

The group B inherits the action of the group A on m(x, y, z).E(3, 2). As it is a
Damon geometric subgroup (see [7]), the determinacy results in Section 2 (or [3])
apply here. As we explained in the Introduction, we are interested in obtaining the list
of the orbits of simple germs of codimension less than or equal to four of this action.
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The B (resp. B1, i.e. the subgroup of B whose elements have with 1-jets at 0 the identity)
tangent space of f ∈ m(x, y, z).E(3, 2) is given by

LB.f = m(x, y, z).{fx, fy} + E3{zfz} + f ∗m(u, v).{e1, e2},
LB1.f = m2(x, y, z).{fx, fy} + m(x, y, z).{zfz} + f ∗m2(u, v).{e1, e2}.

The situation here is very similar to that considered in [4], where a classification of
codimension ≤ 2 singularities of map-germs (�2, 0) → (�2, 0) up to diffeomorphisms
in the source that preserve the variety {(x, y) : y ≥ 0} and any diffeomorphism in the
target is given. The results on finite determinacy in [4] can be adapted to our situation.

THEOREM 3.1. ([7]). A map-germ f : (�3, 0) → (�2, 0) is finitely B-determined if
and only if LB.f contains mN(x, y, z).E(3, 2) for some N.

THEOREM 3.2. (Compare with Theorem 1.2 in [4]). Let U ⊂ B be a subgroup with
B1 ⊂ U and J1U be a unipotent group, and let f ∈ m(x, y, z).E(3, 2). If

mr+1(x, y, z).E(3, 2) ⊂ LU.f

then f is r-B-determined. (Taking U = B1, one can deduce that f is r-B1-determined.)

We use the following result, which is an adaptation of Corollary 1.3 in [4], to check
the inclusion in Theorem 3.2.

COROLLARY 3.3. If f satisfies

ml(x, y, z).E(3, 2) ⊂ E3{fx, fy, zfz} + f ∗m(u, v).E(3, 2) + ml+1(x, y, z).E(3, 2)

and

mr+1(x, y, z).E(3, 2) ⊂ LB1.f + mr+l+1(x, y, z).E(3, 2)

then f is r-B1-determined.

Of course, if a germ is r-B1-determined then it is k-B-determined for some k ≤ r. We
can use Corollary 3.3 to obtain the degree of B1-determinacy and then a combination
of the complete transversal method and Mather’s lemma to find the degree of B-
determinacy.

The classification is carried out inductively on the jet level as we mentioned in the
Introduction. When working in Jk(3, 2), the symbol ∼ means here JkB-equivalence.

The 1-jets

Write j1f = (a1x + a2y + a3z, b1x + b2y + b3z). If a1b2 − a2b1 �= 0, then j1f ∼
(x, y). If a1b2 − a2b1 = 0 but one of the coefficients ai or bi, i = 1, 2, is not zero, then
j1f ∼ (x, z) or j1f ∼ (x, 0). If a1 = a2 = b1 = b2 = 0, then j1f ∼ (z, 0) or j1f ∼ (0, 0).
So the orbits in J1(3, 2) are

(x, y), (x, z), (x, 0), (z, 0), (0, 0).

Note that the 1-jet (0, 0) leads to germs of corank 2 and so cannot arise as the projection
of a hypersurface in �4 to plane. It is not hard to show that the 1-jet (x, y) is 1-B-
determined and is stable (that is Be-codimension is zero).
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We now follow these germs and carry out the classification inductively on the
jet level, using the complete transversal method [5] and the ‘Transversal’ package [9].
We observe that we adapted such package to work in the case of hypersurface with
boundary. The tangent space calculated by this original package is for the usual groups
of Mather, so we changed it for the group B.

Higher jets

Case 1. Suppose j1f ∼ (x, z). In this case f is B-equivalent to (x, z + g(x, y)), for
some germ g of a smooth function of degree greater or equal to 2 in (x, y). Consider
h(x, y) = (x, g(x, y)) as a map-germ (�2, 0) → (�2, 0).

PROPOSITION 3.4. The map germ f (x, y, z) = (x, z ± g(x, y)) is r-B-determined (resp.
simple) if and only if the map-germ h(x, y) = (x, g(x, y)) is r-A-determined (resp. simple).
We also have Be-cod(f ) = Ae-cod(h).

Proof. We observe that

LB.f = E3.{(z, 0), (0, z)} + m(x, y).{(1, gx), (0, gy)} + h∗m(u, v).{e1, e2}
= E3.{(z, 0), (0, z)} + LA.h.

So by Theorems 2.1 and 3.1, f is B-determined if and only if h is A-determined. Now
using the complete transversal method and Mather’s Lemma, one can show that both
germs have the same degree of determinacy.

For the result on simplicity, we observe that any one-parameter family fa map-
germ with f0(x, y, z) = (x, z + g0(x, y)) can be written in a suitable coordinate system
in the form (x, z + ga(x, y)), for some one-parameter family of functions ga(x, y). Then
fa is not equivalent to fa′ , for a �= a′, if and only if (x, ga(x, y)) is not B-equivalent to
(x, ga′ (x, y)). �

The germ h(x, y) = (x, g(x, y)) in Proposition 3.4 is of corank ≤ 1 (see [17] for
the corank 2 simple germs). The A-simple germs (�2, 0) → (�2, 0) of corank at most
1 and Ae-codimension ≤ 4 are given in [16]. In view of Proposition 3.4, we can take
(x, g(x, y)) as in Table 2 to obtain the germs (x, z ± g(x, y)). We make changes of scale
in the source and target to obtain the classification in Table 1. Recall that, since the
B-group preserves the set {(x, y, z); z ≥ 0} as well as its boundary, we can use only
scalar change of coordinate for z of the form z = kZ, k > 0. Therefore, there is a sign
ε = ±1 in Table 1 in front of even powers of y in the second components of the germs
in Table 2.

Observe that (x, z + y) is equivalent to (x, y).

Case 2. Suppose that j1f ∼ (x, 0). A complete two-transversal is given by

(x, b1xy + b2xz + b3yz + b4y2 + b5z2)

for some b1, b2, b3, b4, b5 ∈ �. We can now make linear changes of coordinates and
obtain the following orbits in J2(3, 2) (the superscript (ns) is used to mean that the
germs are non-simple and will not be followed):

b4 �= 0 ⇒ (x, y2 + xz ± z2), (x, y2 + xz), (x, y2 ± z2), (x, y2)(ns). Case (2.1).
b4 = 0, b1 �= 0 ⇒ (x, xy + yz), (x, xy + z2), (x, xy)(ns). Case (2.2).
b4 = 0, b1 = 0 ⇒ (x, xz + z2)(ns), (x, xz)(ns), (x, z2)(ns), (x, yz)(ns), (x, 0)(ns). Case (2.3).
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Table 2. A-simple germs of map-germs (�2, 0) → (�2, 0),
ε = ±1 ([16])

Type Normal form Ae-codimension

1 (x, y) 0
2 (x, y2) 0
3 (x, xy + y3) 0
4k (x, y3 + εk−1xky), k ≥ 2 k − 1
5 (x, xy + y4) 1
6 (x, xy + y5 + εy7) 2
7 (x, xy + y5) 3
9 (x, xy + y6 + y9) 4

112k+1 (x, xy2 + y4 + y2k+1), k ≥ 2 k
12 (x, xy2 + y5 + y6) 3
13 (x, xy2 + y5 + εy9) 4
16 (x, x2y + y4 + εy5) 3
17 (x, x2y + y4) 4

Case (2.1).
Suppose j2f = (x, y2) + j2(0, g(x, y, z)). All orbits from Case (2.1) can be

considered as subcases of this one, and we call them by (2.1.1), (2.1.2), (2.1.3) and
(2.1.4) respectively. Any complete k-transversal of (0, y2) can be written in the form
(x, y2 + g(x, z)) for some germ g of a polynomial in (x, z) with a zero 2-jet. We take here
g to have a zero 1-jet to include the cases (x, y2 + xz ± z2), (x, y2 + xz) and (x, y2 ± z2).

Let h(x, z) = (x, g(x, z)) and consider the action of the subgroup B(2) of A with
diffeomorphisms in (�2, 0) preserving the line z = 0 and the set {(x, z) : z > 0}, and
any diffeomorphism in the target, on the set of map-germs (�2, 0)→ (�2, 0) (see [4]).

PROPOSITION 3.5. The map-germ f (x, y, z) = (x, y2 ± g(x, z)) is r-B(3)-determined
(resp. simple) if and only if the map-germ h(x, z) = (x, g(x, z)) is r-B(2)-determined (resp.
simple). We have Be(3)-cod(f ) = Be(2)-cod(h).

Proof. We can write

LB(3).f = E3.{(y, 0), (0, xy), (0, y2), (0, yz)}
+E2.{x(1, gx), z(1, gx), z(0, gz)} + h∗m(u, v).{e1, e2}

= E3.{(y, 0), (0, xy), (0, y2), (0, yz)} + LB(2).h.

So by Theorem 3.1 and its version for the B(2)-singularities of map-germs
(�2, 0) → (�2, 0) [4], f is B(3)-determined if and only if h is B(2)-determined. Using
the complete transversal method and Mather’s Lemma, one can show that both germs
have the same degree of determinacy. The simplicity follows the same argument in the
proof of the Proposition 3.4. �

Map-germs (�2, 0) → (�2, 0) ofBe-codimension ≤ 2 and some other consequences
of these are given in [4]. Also, all the B-simple germs can be obtained from the
calculations in [4]. The corank 1 cases are listed in Table 3. (There is also a corank
2 series given by (z + x2k+1, x2).) Then by Proposition 3.5, B-simple germs (�3, 0) →
(�2, 0) in the form (x, y2 ± g(x, z)) from subcases (2.1.1), (2.1.2) and (2.1.3) can be
obtained by using Table 3. As we explained in Case 1, we make changes of coordinates
in the source and target to obtain the classification in Table 1, but we can not use z = kZ
with k < 0. Therefore, there is a sign ε = ±1 in Table 1 in front of zk, k = 2, 3, 4 in the
second components of the germs in Table 3.
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Table 3. Corank 1 B(2)-simple singularities
of map-germs (�2, 0) → (�2, 0) [4]

Normal form Be-codimension

(x, z2 + εkxk−1z), k ≥ 2 k − 2
(x, xz + z3) 1
(x, xz + z4 + εz6), 2
(x, xz + z4) 3

The cases of germs with 2-jet equivalent to (x, y2 ± z2) or (x, y2 + xz ± z2) give
us only the family (x, y2 ± z2 + εkxk−1z), k ≥ 2, which comes from Table 3. We
now follow other cases that do not come from Table 3, that is, other cases with
2 < cod ≤ 4. Then we need to analyse the germs with 4-jet equivalent to (x, y2 + xz)
or 2-jet equivalent to (x, y2). We will prove that they generate non-simple germs.
Therefore, the next step also justifies the fact that Table 3 does not have simple germs of
codimension 4.

Others cases for (2.1.2): j4f ∼ (x, y2 + xz)
A complete five-transversal (that is the 5-CT) is j5f ∼ (x, y2 + xz + b1z5) with

codimension ≥ 3, and by Mather’s lemma we can take b1 = ε = ±1 or b1 = 0. If
b1 = ε, then 6-CT has (0, z6) but by Mather’s Lemma this vector is on the tangent space.
Therefore, j7f ∼ (x, y2 + xz + εz5 + b3z7) with b3 = ε1 = ±1 or b3 = 0. If b3 = ε1 then
we have

(1) j8f ∼ (x, y2 + xz + εz5 + ε1z7 + b4z8),
where b4 is a modulus. So they are non-simple germs. If b3 = 0, then j8f ∼ (x, y2 +
xz + εz5 + b4z8) with b4 = ε1 or b4 = 0, these are also non-simple germs because they
have non-simple germs (1) next to them.
If b1 = 0, then j8f ∼ (x, y2 + xz + b2z6 + b4z8). By Mather we have the following cases:
b2 = ε and b4 = ε1. Then we have

(2) j9f ∼ (x, y2 + xz + εz6 + ε1z8 + b5z9),
where b5 is modulus. So these are non-simple germs;
b4 = 0 and b2 �= 0. Then j9f ∼ (x, y2 + xz + εz6 + b5z9), b5 = ε1 or b5 = 0, are also
non-simple because they have non-simple germs (2) next to them;
b2 = 0. Then j7f ∼ (x, y2 + xz + b3z7), b3 = ε1 or b3 = 0, that are not sufficient jets
but have codimension ≥ 5 and also are non-simple germs. In fact, jkf ∼ (x, y2 + xz +
εzk−3 + ε1zk−1 + azk) with a modulus.

(2.1.4) j2f ∼ (x, y2)
A 3-CT is j3f ∼ (x, y2 + b1x2z + b2xz2 + b3z3). The codimension is at least 2. If

b1b2 �= 0 then
(3) j3f ∼ (x, y2 + εx2z + xz2 + b3z3),

where b3 is a modulus, so we will not consider it. Consequently, we have the next cases:
b1 = 0, b2 �= 0 and b3 �= 0 then j3f ∼ (x, y2 + xz2 + εz3);
b2 = 0, b1 �= 0 and b3 �= 0 then j3f ∼ (x, y2 + εx2z + ε1z3);
b1 = 0, b2 = 0 and b3 �= 0 then j3f ∼ (x, y2 + εz3);
b2 = 0, b3 = 0 and b1 �= 0 then j3f ∼ (x, y2 + εx2z);
b1 = 0, b3 = 0 and b2 �= 0 then j3f ∼ (x, y2 + xz2);
b1 = 0, b2 = 0 and b3 = 0 then j3f = (x, y2).

So we do not have simple germs for this case because they have non-simple germ
(3) next to them.
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Case (2.2).
(2.2.1) j2f ∼ (x, xy + yz)

If j2f ∼ (x, xy + yz) then j3f ∼ (x, xy + yz + b1y3) is three-determined and have
codimension 1 if b1 �= 0, in which case we can take b1 = ε by Mather’s lemma. If
b1 = 0, we have the cases j6f ∼ (x, xy + yz + y4 + b3y6), six-determined with b3 =
ε and codimension 2 or if b3 = 0 then j6f ∼ (x, xy + yz + y4), six-determined with
codimension 3.

If j4f ∼ (x, xy + yz) then we have non-simple germs. In fact, j8f ∼ (x, xy + yz +
b4y5 + b5y7 + b6y8), where b4 and b5 are ε or zero, and codimension is ≥ 3. If b4b5 �= 0,

then b6 is a modulus. Then for all other subcases, with b4b5b6 = 0, we have non-simple
germs.

(2.2.2) j2f ∼ (x, xy + z2)
A complete three-transversal is given by (x, xy + z2 + b1y3 + b2y2z). Then the

orbits in J3(3, 2) over the above 2-jet are

(x, xy + z2 + y3 + εy2z), (x, xy + z2 + y3), (x, xy + z2 + εy2z)(ns), (x, xy + z2)(ns).

Higher jets of (x, xy + z2)

- j3f ∼ (x, xy + z2 + y3 + εy2z)
This germ is 3-B-determined and has Be-codimension 2. This germ appears in

Table 1 by using the same formula determined in the next case with k = 2.

� j3f ∼ (x, xy + z2 + y3)
Any (k + 1)-jet (k ≥ 3) with k-jet equal to (x, xy + z2 + y3) is equivalent to (x, xy +

z2 + y3 + b1ykz). When b1 �= 0, a change of scale reduces to (x, xy + z2 + y3 + εykz).
The germ (x, xy + z2 + y3 + εykz) is (k + 1)-B-determined and has Be-codimension k.

� j3f ∼ (x, xy + z2 + εy2z)
A complete four-transversal is given by (x, xy + z2 + εy2z + b1y4) with

codimension ≥ 3. One can show by using Mather’s lemma that b1 is a parameter
modulus.

� j3f ∼ (x, xy + z2)
The 4-CT has (0, y4) and (0, y3z), then we have the following cases:

j5f ∼ (x, xy + z2 + εy4 + y3z + b1y4z) with b1 modulus, codimension ≥ 4 for any b1;
j6f ∼ (x, xy + z2 + b0y3z + b1y6 + b2y5z), b0 = ε or b0 = 0 with at least one modulus,
codimension ≥ 5;
jk+1f ∼ (x, xy + z2 + εy4 ± ykz + b1yk+1z) with b1 modulus, codimension ≥ k.

The 5-CT of j4f ∼ (x, xy + z2) has (0, y5) and (0, y4z) and generates non-simple
germs as in the former cases. The codimension is at least 5.

(2.2.3) j2f ∼ (x, xy)
The complete three-transversal gives us

(1) j3f ∼ (x, xy + b1y3 + b2y2z + b3yz2 + b4z3)
with codimension of at least 3. If b3b4 �= 0, then j3f ∼ (x, xy + b1y3 + b2y2z + yz2 +
εz3) with two moduli. For all other subcases of (1), with b1b2b3b4 = 0, we have non-
simple germ.
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Table 4. Corank 1 B-simple singularities of map-
germs f : (�3, 0) → (�2, 0) of Be-codimension ≤ 4
and with j1f ∼ (x, 0) of case(2.2), ε = ±1

Normal form Be-codimension

(x, yz + xy + εy3) 1
(x, yz + xy + y4 + εy6) 2
(x, yz + xy + y4) 3
(x, xy + z2 + y3 + εykz), k ≥ 2 k

We summarise the above classification in Table 4.

By using f from Table 4, we get some of the normal forms given in Theorem 1.1.

Case (2.3). All subcases are non-simple germs.

(2.3.1) j2f ∼ (x, xz + z2)
The germs in J3(3, 2) with this 2-jet are equivalent to (x, xz + z2 + b1x2y +

b2xy2 + b3y3 + b4y2z + b5yz2) for some bi ∈ �, i = 1, . . . , 5, with codimension ≥ 3.
By using Mather in J3(3, 2) we confirm that these orbits always are non-simple. We
have many cases and we will not describe everything here. For example, y3 is not
at the tangent space if b3 �= 0, −b2

4 + 3b5b3 + 4b4b2 �= 0, −b2
4b1 + 4b1b2b4 + b5b2

2 �=
0, so in these connected components the germs are non-simple. Also, if b3 = 0
(−b2

4 + 3b5b3 + 4b4b2 = 0 or −b2
4b1 + 4b1b2b4 + b5b2

2 = 0), they are non-simple germs
because near this case there is non-simple germ.

(2.3.2) j2f ∼ (x, xz)
j3f ∼ (x, xz + b1x2y + b2xy2 + b3y3 + b4y2z + b5yz2 + b6z3) with codimension ≥

4. By using Mather’s lemma, y3 is not at the tangent space if b5 �= 0, b2 �= 0, b4b2
5 +

3b6b3b5 − 4b6b2
4 �= 0, −b2

2 + 3b3b1 �= 0. So for any case these are non-simple germs.

(2.3.3) j2f ∼ (x, z2)
j3f ∼ (x, z2 + b1x2y + b2xy2 + b3y3 + b4y2z + b5xyz + b6z3 + b7x2z) with codi-

mension ≥ 4. By using Mather x2y is not at the tangent space if b3 �= 0, b5 �= 0,
−3b3b5 + 2b4b2 �= 0 and 3b3b7 + b4b1 − b2b5 �= 0. So for any case these are non-simple
germs.

(2.3.4) j2f ∼ (x, yz)
The orbits in J3(3, 2) are given by (x, yz + b1x2y + b2xy2 + b3y3). If b2b3 �= 0

then the germs with this 3-jet are equivalent to (x, yz + b1x2y + xy2 + εy3) with one
modulus. Then all the next cases are non-simple germs because they have non-simple
germs next to them. If b3 = 0: b1b2 �= 0 then j3f ∼ (x, yz + εx2y + xy2); b1 = 0 and
b2 �= 0 then j3f ∼ (x, yz + xy2). If b2 = 0: b1b3 �= 0 then j3f ∼ (x, yz + x2y + εy3);
b1 = 0 and b3 �= 0 then j3f ∼ (x, yz + εy3); b3 = 0 and b1 �= 0 then j3f ∼ (x, yz + εx2y);
b1 = b3 = 0 then j3f ∼ (x, yz).

(2.3.5) j2f ∼ (x, 0)
The 3-CT give us j3f ∼ (x, b1x2y + b2xy2 + b3y3 + b4y2z + b5xyz + b6z3 +

b7x2z + b8xz2 + b9yz2) with codimension ≥ 5. By using Mather x2y is not at the
tangent if b6 �= 0, b9 �= 0, b2

9b4 + 3b3b6b9 − 4b2
4b6 �= 0 and 2b4b8 − b9b5 �= 0. So for

any case these are also non-simple germs.

Case 3. Suppose j1f ∼ (z, 0). All the cases are non-simple germs.
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A complete two-transversal is given by

(z + a1x2 + a2xy + a3y2, b1x2 + b2xy + b3y2 + b4xz + b5yz).

If 4b3b1 − b2
2 �= 0, then by using Mather and scalar changes of coordinates j2f ∼ (z +

ε1x2 + a2xy + a3y2, x2 + ε y2) with new coefficients ai, ε = ±1, ε1 = ±1. First we deal
with the case ε1 = 1. If ε = 1, the conditions of Mather are true if a2

2 + (a3 − 1)2 �= 0.
Then we need to consider two cases (one representant in each connected component)
(a2, a3) = (0, 1) and (a2, a3) = (0, 0) for which the normal forms are (z, x2 + y2) and
(z + x2, x2 + y2) respectively. If ε = −1, the conditions of Mather are true if (a2 + 1 +
a3)(a2 − 1 − a3) �= 0 (lines that divide the plane (a2, a3) in four regions). Then we need
to consider the cases (a2, a3) = (0, 0), (a2, a3) = (0,−2) (which are equivalents). These
are in the region (a2 + 1 + a3)(a2 − 1 − a3) < 0 and we will use the representative form
(z + x2, x2 − y2). When (a2 + 1 + a3)(a2 − 1 − a3) > 0, we can take (a2, a3) = (−2, 0),
(a2, a3) = (2, 0) (which are equivalents), then by using (2, 0) we have (z + x2 + 2xy, x2 −
y2). On the lines given by (a2 + 1 + a3)(a2 − 1 − a3) = 0, that is a2 = ±(1 + a3), the
2-jets are equivalent to (z ± (1 + a3)xy + (1 + a3)y2, x2 − y2). The intersection of these
lines, (a2, a3) = (0,−1), gives us (z, x2 − y2).

Now we consider the case ε1 = −1. If ε = 1, the conditions of Mather are true if
a2

2 + (a3 + 1)2 �= 0. Then we need to consider two cases (a2, a3) = (0,−1) and (a2, a3) =
(0, 0) for which the normal forms are (z, x2 + y2) (that appears above) and (z − x2, x2 +
y2) respectively. If ε = −1, the conditions of Mather are true if (a2 − 1 + a3)(a2 + 1 −
a3) �= 0 (lines that divide the plane (a2, a3) in four regions). Then we need to consider
the cases (a2, a3) = (0, 0), (a2, a3) = (0, 2) for which the normal forms are respectively
equivalent to (z − x2, x2 − y2) and (z + x2, x2 − y2) (this last one appears before). These
are in the region (a2 − 1 + a3)(a2 + 1 − a3) < 0. When (a2 − 1 + a3)(a2 + 1 − a3) > 0
then we can take (a2, a3) = (−2, 0), (a2, a3) = (2, 0) (which are equivalents). So by using
(2, 0) we have (z − x2 + 2xy, x2 − y2). On the lines given by (a2 − 1 + a3)(a2 + 1 −
a3) = 0, that is a2 = ±(a3 − 1), the 2-jets are (z ± (a3 − 1)xy + (a3 − 1)y2, x2 − y2). The
intersection of these lines, (a2, a3) = (0, 1), gives us a form equivalent to (z, x2 − y2).

We analyse all these cases below.

(3.1) j2f ∼ (z + ε1x2, x2 + εy2):
The orbits in J3(3, 2) are given by a modular form (z + ε1x2 + a4x3 + a5y3, x2 +

εy2), so all the subcases are non-simple germs. The codimension is at least 2.

(3.2) j2f ∼ (z, x2 + εy2):
The 3-jet is equivalent to (z + a1y3 + a2xy2 + a3x2y + a4x3, x2 + εy2) that are non-

simple germs because by Mather (x3, 0) is not at the tangent space if a1 �= 0 and
3a2

1 − 2εa3a1 + εa2
2 �= 0. Therefore, all cases are non-simple. The codimension is at

least 4.

(3.3) j2f ∼ (z + ε1x2 + 2xy, x2 − y2)
The 3-jet is equivalent to (z + ε1x2 + 2xy + a4y3, x2 − y2 + b6y3) for some a4, b6 ∈

�. By Mather (0, y3) is not in the tangent space if a4 �= 0. So we always have non-simple
germs. The codimension is at least 2.

(3.4) j2f ∼ (z ± (1 + a3)xy + (1 + a3)y2, x2 − y2) or j2f ∼ (z ± (a3 − 1)xy + (a3 −
1)y2, x2 − y2):

These 2-jets are non-simple, a3 is a modulus.
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Table 5. Map germs (�3, 0) → (�2, 0) of codimension ≤ 1,
ε, ε1 ± 1

No. Normal form Be-codimension of orbit

I (x, y) 0
II (x, z + εy2) 0
III (x, z + xy + y3) 0
IV (x, z + εx2y + y3) 1
V (x, z + xy + εy4) 1
VI (x, y2 + εz2 + xz) 0
VII (x, y2 + εz2 + ε1x2z) 1
VIII (x, y2 + xz + εz3) 1
IX (x, yz + xy + εy3) 1

If 4b3b1 − b2
2 = 0, then using the fact that the case above, 4b3b1 − b2

2 �= 0, always
generates non-simple germs, we can conclude that at any neighbourhood of germs
where 4b3b1 − b2

2 = 0 there are infinite orbits and also in this case the germs are non-
simple. For all subcases the codimension is at least 2.

As a consequence of the analysis done before, we have the following results.

THEOREM 3.6. The map-germs f : (�3, 0) → (�2, 0) with 1-jet equivalent to (z, 0)
or 2-jet equivalent to (x, y2), (x, xy), (x, yz), (x, xz + z2), (x, xz), (x, z2), (x, 0) or 3-jet
(x, xy + z2 + εy2z), (x, xy + z2) or 4-jet (x, y2 + xz), (x, xy + yz) are non-simple germs.

In Section 4 we study geometrically the germs given by Theorem 3.7. These germs
are given in Table 5.

THEOREM 3.7. The map-germs f : (�3, 0) → (�2, 0) of corank at most 1 and Be-
codimension ≤ 1 are simple germs.

4. The geometry of codimension ≤ 1 singularities. In this section we collect
together the normal forms of germs f : (�3, 0) → (�2, 0) of codimension ≤ 1 which
arise from parallel projections of hypersurfaces with boundary (so they are of corank
at most 1 and also simple germs by Theorem 3.7 ) and, in order to recognize different
cases, we go into some detail on their geometrical properties.

We give, for each non-submersive germ f of codimension 1 in Table 5, a Be-versal
unfolding and a bifurcation diagram to show, for germs close to f in the Be-versal
unfolding, which types of boundary singularities occur. Since the submersions IV and
V do not have singular points, the bifurcation diagrams are given for the restriction of f
to the boundary. The notation VI2 indicates the presence of two singularities of Type VI
arbitrarily near the origin for germs in an appropriate region of the diagram. Similarly,
VI− and VI+ mean singularities of Type VI with ε = −1 and ε = 1 respectively.

It is also of interest to find, for each germ in Table 5, a single hypersurface M for
which the family of parallel projections realizes a versal unfolding of the germ. More
precisely, suppose that

i : (x, y, z) �→ (X(x, y, z), Y (x, y, z), Z(x, y, z), W (x, y, z))

is a (germ of an) immersion at (0, 0, 0) so that we can regard the image as a small piece
of smooth hypersurface M in �4. We are interested in the restriction to z ≥ 0.
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If � is the family of orthogonal projections to 2-spaces given in Section 1 and
u ∈ G(2, 4), then the map �u measures the contact between M and the plane orthogonal
to u. Let p ∈ �4 be the origin and let us suppose that

TpM = 〈(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)〉.
If p is a corank 1 singular point of �u, then the orthogonal plane to u is a subset of
TpM. So the generators of the plane u should be taken as a vector a of TpM and a
vector b normal to TpM at p.

The family of planes in �4 close to the plane u generated by a = (1, 0, 0, 0) and
b = (0, 0, 0, 1) may be given taking (1, β1, γ1, 0) and (0, β2, γ2, 1) as generators of those
planes for β1, β2, γ1, γ2 close to 0. So, we get the map

�β,γ (X, Y, Z, W ) = (X + β1Y + γ1Z, W + β2Y + γ2Z) ,

where β and γ denote the pairs (β1, β2) and (γ1, γ2). Note that �0,0 = �u.
To realize a versal unfolding with 1-parameter, we take β1 = γ1 = β2 = 0 and call

γ2 = λ, where (x, y, z) → (X, Y, Z, W ) is an immersion at (0, 0, 0).
For each normal form we give pictures of the source X together with � (i.e.

� = �1, the critical set of the map f ), and the kernel K of df (0). We also draw the
critical loci (image of �) and the image of the boundary for f and for members of the
versal family unfolding f . As aid to the recognition of various cases, we give pictures
of the fibre f −1(0) and also information about the singularities of the restriction of
f to the boundary (see [16]). Parts of � or its image that are virtual, in the sense of
corresponding to the part z < 0 in the source �3, appear dashed in the figures. The
boundary (plane-xy) and its image are drawn with grey colour.

Geometrical information in Cases I–IX.

Cases I–V. These are germs of submersions and so K is a line. Except Case I whose K
is transverse to the boundary (that is, on M, the direction of projection is transverse
to ∂M), in the other cases K is a subset of the boundary. For Cases I and III to V the
image of the boundary is �2.

- Cases I–III. These cases are stable submersions and so realized simply by the following
immersions:
I. i(x, y, z) = (x, 0, z, y). See Figure 1(a).
II. i(x, y, z) = (x, y, 0, z + εy2). The image of the boundary is, unlike Cases I–V, a semi-
plane. Furthermore, the fibre f −1(0) is a curve tangent to the boundary, for ε = −1
(see Figure 1(b)), and f −1(0) = 0, for ε = 1 (see Figure 1(c)). The singularity of the
restriction of f to the boundary is the fold (x, y2).
III. i(x, y, z) = (x, y, 0, z + xy + y3). The set f −1(0) is tangent to the boundary (see
Figure 1(d)). The singularity of the restriction of f to the boundary z = 0 is the cusp
(x, xy + y3).
- Cases IV and V. These cases are codimension 1 submersions. For these cases � is empty
and we cannot consider the bifurcation diagram for the germ f . Then the bifurcation
diagrams are given for the restriction of f to the boundary that has codimension 1
singularity only in these cases.
Case IV. A Be-versal unfolding is (x, z + y3 + εx2y + λy). A realization is i(x, y, z) =
(x, y, 0, z + y3 + εx2y). The fibre f −1(0) is also tangent to the boundary, as in Case III
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x
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z

K

K KK

f−1(0)f−1(0)

(a) (b) (c) (d)
Figure 1. (Colour online) Submersions. (a) Case I. (b) Cases II and V, for ε = −1. (c)

Cases II and V, for ε = 1. (d) Cases III and IV.

1 1

22 5

42

λ

λ

= +1 = −1

Figure 2. (Colour online) (Left) The image of the boundary of case V. (Right)
Bifurcation diagrams of singularities for the restriction of f to the boundary, cases IV

and V. (See Table 2 for notation of Rieger.)

(Figure 1(d)) but, unlike this case, the singularity of the restriction of f to the boundary
z = 0 is the lips/beaks (x, εx2y + y3), which is a codimension 1 singularity.

Case V. A Be-versal unfolding is (x, z + xy + εy4 + λy2) and a realization is i(x, y, z) =
(x, y2, y, z + xy + εy4). Unlike Cases I–IV, the boundary z = 0 is mapped to a curve
with an ordinary cusp (see Figure 2). The fibre f −1(0) is as in Case II (Figure 1(b) and
(c)) but, unlike this case, the singularity of the restriction of f to the boundary z = 0 is
the swallowtail (x, xy + y4), which is a codimension 1 singularity.

Cases VI–IX. These are those germs with K = ker df (0) being the plane-yz.
� Case VI. This is stable and so realized by an immersion i(x, y, z) = (x, y, z, y2 +

εz2 + xz). The sets K and � are transverse to each other and to the boundary,
whose image is a semi-plane containing f |� for ε = −1. The fibre f −1(0) also
distinguishes cases ε = 1 and ε = −1: f −1(0) = 0 or it is a set transverse to the
boundary respectively (see Figure 3). The singularity of the restriction of f to the
boundary z = 0 is a fold.

� Case VII. A Be-versal unfolding is (x, y2 + εz2 + εx2z + λz) and a realization is
i(x, y, z) = (x, y, z, y2 + εz2 + εx2z). Sets K and � are transverse to each other, and
� is tangent to the boundary (that is, on M, the critical set of the projection is
tangent to ∂M) in the region z ≤ 0 for εε = 1 and in the region z ≥ 0 for εε = −1.
The boundary image is a semi-plane. See Figures 4 and 5. The fibre f −1(0) is similar
to Case VI, according to ε, as well as the singularity of the restriction of f to the
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Σ

Σ f−1(0)

(a) (b)

Figure 3. (Colour online) (a) Case VI for ε = 1. (b) Case VI for ε = −1.
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K

λ

λ

Σ

Σ

λ = 0 λ > 0λ < 0

= 1

f−1(0) = −1

VII

VII(VI+)2

(VI−)2

Figure 4. (Colour online) Case VII for εε = 1.

boundary z = 0. Note that the singular set � distinguishes this case from all other
cases.

� Case VIII. ABe-versal unfolding is (x, y2 + xz + εz3 + λ(z + z2)) and a realization is
i(x, y, z) = (x, y, z + z2, y2 + xz + εz3). Sets K and � are tangent to each other, and
both of these are transverse to the boundary. The fibre f −1(0) also distinguishes cases
ε = −1 and ε = 1: it is a cuspidal curve or f −1(0) = 0 respectively (see Figure 6).
The singularity of the restriction of f to the boundary z = 0 is, as Case VII, the
same as Case VI. Note that f |� , unlike all other cases, has a cusp singularity.

� Case IX. A Be-versal unfolding is (x, yz + xy + εy3 + λ(y2 + z)) and a realization is
i(x, y, z) = (x, y, y2 + z, yz + xy + εy3). Sets K and � are transverse to each other,
and also to the boundary. Furthermore, the fibre f −1(0) is, unlike all other cases,
the semi-line (0, 0, z) for ε = 1 and (0, 0, z) ∪ (0, y, y2), for ε = −1, with z ≥ 0 (see
Figure 7). The singularity of the restriction of f to the boundary z = 0 is the same
as Case III.
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Figure 5. (Colour online) Case VII for εε = −1.
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Figure 6. (Colour online) Case VIII (ε = 1 and ε = −1).
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y
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VI−VI−

IX

IX

Figure 7. (Colour online) Case IX (ε = 1 and ε = −1).
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