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Abstract We find positive solutions to a nonlinear equation of Klein–Gordon type. Our analysis is
carried out by truncating the related functional and estimating mountain pass solutions by Moser’s
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1. Introduction

In this paper we deal with the equation

−∆mu + |u|m−2u − a(x)(λ|u|p−1u − |u|q−1u) = 0 in R
N , (1.1)

where N � 3, 1 < m < N , m − 1 < p < m∗ − 1 � q, m∗ = mN/(N − m) and λ is a
positive parameter. We assume throughout this note that

0 � a(x) < K for x ∈ R
N and K > 0 a constant, (1.2)

a(x) > 0 for x ∈ B ⊂ R
N , where B is a ball (1.3)

and
lim

|x|→∞
a(x) = 0. (1.4)

A similar problem was treated in [2] where m = 2 and a ≡ 1 for the equation

−∆u − g(u) = 0 in R
N .

The nonlinearity g is subcritical, for instance, g(u) = up − uq − u with 1 < p, q <

(N +2)/(N −2). The authors were able to handle more general nonlinearities g(u) under
suitable assumptions.
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Also, in [1] the authors solve (1.1) with m = 2, a ≡ 1, 1 < p < (N + 2)/(N − 2) and
q > p. This supercritical problem is treated in radial coordinates by minimizing

∫ 1
2 |∇u|2

subject to the constraint
∫

G(u) = 1, where G is the primitive of g with G(0) = 0. They
recover compactness by working in H1

rad(RN ) and using the Strauss lemma [7]. The
Lagrange multiplier is ruled out by rescaling the equation, since a ≡ 1. Their result is
sharp in the sense that they determine a constant λ0 > 0 such that (1.1) has a positive
(radial) solution if and only if λ > λ0. Their approach also applies if one considers the
m-Laplacian instead of the Laplacian operator. But if one incorporates a weight function
a(x) as in (1.1), even a radial one, then their techniques are not applicable, because there
is no way to rescale the problem when one finds a constrained minimizer.

The functional setting to attack the supercritical problem (1.1) is by considering

J : W 1,m(RN ) ∩ L1+q(RN ) → R

defined by

J(u) =
1
m

∫
(|∇u|m + |u|m) −

∫
a(x)

(
λ

p + 1
|u|p+1 − 1

q + 1
|u|q+1

)
.

For ease of notation, all integrals throughout the paper are computed in R
N , unless

otherwise mentioned. The functional J has no clear geometry, for instance, it does not
satisfy the ‘mountain pass theorem’ assumptions in W 1,m(RN ). Note that zero is not
a local minimizer in the case q > m∗ − 1. And, even if q = m∗ − 1, there is a lack of
compactness. Unlike [1,2], we cannot work with radial functions, since a(x) may be non-
radial. We then truncate the nonlinearity g(x, u) = a(x)(λ|u|p−1u − |u|q−1u) in order to
make the problem appropriately subcritical. The principal part, −∆mu, of the equation
makes difficult the obtainment of estimates, since we cannot bootstrap using the classical
Lp theory involving linear elliptic operators. The new (truncated) functional Ĵ satisfies
the mountain pass geometry. In this way, there is a Palais–Smale (PS) sequence. Since
a(x) decays to zero, this allows us to show that the sequence has non-trivial limit u,
by [5]. u is then a critical point of Ĵ . To conclude that u is indeed a solution of the
original problem (1.1), we follow a Moser iterative scheme to find an L∞ bound for u

(see [6]). Actually, one concludes that ‖u‖L∞(RN ) is small for sufficiently large λ.
There are works related to ours where, say, non-autonomous subcritical problems are

addressed. In [3] the authors found exponentially decaying solutions by a weighted-space
approach to solving the equation. The equations considered in [4, 8] are more closely
related to ours, except for the fact that, in their context, a(x) does not tend to zero at
infinity.

2. Statements and proofs

We begin with a non-existence result. Henceforth, we assume that (1.2)–(1.4) hold.

Theorem 2.1. There is a constant λ̃ > 0 such that, for λ � λ̃, there is no non-trivial
solution.
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Proof of Theorem 2.1. Multiply Equation (1.1) by a possible positive solution u.
Then∫

|∇u|m =
∫

a(x)(λ|u|p+1 − |u|q+1) − |u|m

=
∫

u�λ1/(q−p)
a(x)(λ|u|p+1 − |u|q+1)

−
∫

|u|m +
∫

u>λ1/(q−p)
a(x)(λ|u|p+1 − |u|q+1)

�
∫

u�λ1/(q−p)
a(x)(λ|u|p+1 − |u|q+1) −

∫
|u|m

�
∫

u�λ1/(q−p)
K(λ|u|p+1 − |u|q+1) − |u|m.

Let h(λ, s) = λKsp+1 − Ksq+1 − sm (see (1.2)). A simple calculation shows that there
exists a λ̃ such that, for 0 � λ � λ̃, h(λ, s) � 0 for every s � 0. Consequently,

∫
|∇u|m �

∫
u�λ1/(q−p)

h(λ, u) dx � 0.

Hence, u ≡ 0 for λ � λ̃. �

Remark 2.2. Note that the previous theorem is true for 1 < m < ∞.

The existence result reads as follows.

Theorem 2.3. There is a constant λ∗ > 0 such that for λ > λ∗ there is a weak solution
u > 0 belonging to W 1,m(RN ) ∩ L∞(RN ).

Proof of Theorem 2.3. Define

f(λ, u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if u � 0,(
1 − uq−p

λ

)
up if 0 < u � ε,

(
1 − εq−p

λ

)
up if u > ε.

(2.1)

We also assume that λ > 1, because this allows us to take ε in the interval (0, 1) uniformly
in λ. Here ε is chosen in such a way that

(1 − εq−p)up � f(λ, u) � up (2.2)

and
θF (λ, u) � f(λ, u)u for u > 0 for some constant θ > m, (2.3)

where F is the primitive of f with F (λ, 0) = 0. We now study the modified equation

−∆mu + |u|m−2u − λa(x)f(λ, u) = 0. (2.4)
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The corresponding functional Ĵ : W 1,m(RN ) → R is defined by

Ĵ(u) =
1
m

∫
|∇u|m + |u|m −

∫
λa(x)F (λ, u).

The functional Ĵ satisfies the mountain pass geometry. Hence there is a PS sequence
un ∈ W 1,m(RN ), that is, Ĵ(un) → c and Ĵ ′(un) → 0. Our aim is to prove that a subse-
quence of un converges to some u, thus finding a critical point of Ĵ . We need also to
verify that u 	≡ 0.

By multiplying Equation (2.4) by un, using the fact that Ĵ(un) → c and by (2.3), we
can conclude that un ⇀ u in W 1,m(RN ). Since Ĵ ′(un) → 0, by (2.2) one has

‖un‖m
W 1,m(RN ) � C‖un‖p+1

Lp+1(RN ) + δn‖un‖W 1,m(RN ),

where δn → 0. By a variant of the result of [5], there is a sequence xn such that
∫

B1(xn)
|un|m > c̄ > 0

for some constant c̄. Passing to a subsequence if necessary, there are only two cases to
analyse. If there is a constant K > 0 such that |xn| � K, then there is a sufficiently large
R such that ∫

BR(0)
|un|m > c̄ > 0,

implying that u 	≡ 0. On the other hand, we may have |xn| → ∞. In this case, let
vn(x) = un(x + xn). Hence, vn ⇀ v and∫

B1(0)
|vnk

|m > c̄ > 0;

thus, v 	≡ 0. By (1.4), v satisfies

−∆mv + |v|m−2v = 0 in R
N and v ∈ W 1,m(RN ), (2.5)

implying that v ≡ 0 in R
N , which constitutes a contradiction.

Moreover, since u 	≡ 0 by (2.1) and (2.4), we conclude that u > 0 in R
N .

By Lemma 2.5 below, the norm ‖u‖L∞(RN ) is small for sufficiently large λ. Thus, u is
indeed a positive solution of the original problem (1.1). �

Remark 2.4. It is an open question as to whether λ̃ = λ∗. In general λ̃ depends on
m; for m = 2 and a ≡ 1 the equality λ̃ = λ∗ is valid (see [1]).

Lemma 2.5. Let u be a mountain pass solution of (1.1). Then

‖u‖L∞(RN ) � Cλ−1/(p+1−m)

for some constant C > 0 independent of λ and u.
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Proof of Lemma 2.5. The critical value corresponding to a mountain pass solution
u is given by

c = min
γ∈Γ

max
t∈[0,1]

Ĵ(γ(t)) = Ĵ(u),

Γ = {γ ∈ C0([0, 1], W 1,m(RN )) : γ(0) = 0, γ(1) = e},

where Ĵ(0) = 0 and Ĵ(e) � 0. In order to choose some value e, let ϕ ∈ W 1,m(RN ) with
supp(ϕ) ⊂ {a > 0} and ϕ � 0. Hence,

Ĵ(tϕ) = tm‖ϕ‖m
W 1,m(RN ) − λ

∫
Ω

a(x)F (λ, tϕ)

� tm‖ϕ‖m
W 1,m(RN ) − tp+1

p + 1
λ(1 − εq−p)

∫
Ω

a(x)ϕp+1.

We choose t = t0, in such a way that Ĵ(t0ϕ) � 0, so that

tp+1−m
0 =

(p + 1)‖ϕ‖m
W 1,m(RN )

λ(1 − εq−p)
∫

Ω
a(x)ϕp+1 .

Let e = t0ϕ. Then

‖e‖W 1,m(RN ) = t0‖ϕ‖W 1,m(RN ) � k

λ1/(p+1−m) ,

where k > 0 is a constant independent of λ. Hence,

c � max
t>0

Ĵ(tϕ)

� max
t>0

[
tm‖e‖m

W 1,m(RN ) − tp+1

p + 1
λ(1 − εq−p)

∫
Ω

a(x)|e|p+1
]

� tm0 ‖e‖m
W 1,m(RN ) − tp+1

0

p + 1
λ(1 − εq−p)

∫
Ω

a(x)|e|p+1

� tm0 ‖e‖m
W 1,m(RN ) �

(
k1

λ1/(p+1−m)

)m

,

where k1 is independent of λ.
Since u is a solution,

(
1
m

− 1
θ

)
‖u‖m

W 1,m(RN ) � Ĵ(u) = c <

(
k1

λ1/(p+1−m)

)m

and
‖u‖Lm∗ (RN ) � k‖u‖W 1,m(RN ) � k1

λ1/(p+1−m) . (2.6)

We are going to perform a Moser iterative scheme (see, for example, [6]). Here we need
to keep track of the dependence on λ.
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Note that m < p + 1 < m∗ and, by (1.3) and (2.2),

−∆mu + um−1 � λup in R
N . (2.7)

For M > 0 and k > 0, define vM (y) = inf{u(y), M} and v(y) = (vM (y))km+1. Using v

as a test function in (2.7), we obtain

(km + 1)
∫

vkm
M |∇vM |m +

∫
vm+km

M � λ

∫
vp+km+1

M ,

km + 1
(k + 1)m

∫
|∇(vM )k+1|m � λ

∫
v
(k+1)m+p+1−m
M ,

1
c1

km + 1
(k + 1)m

(∫
|(vM )(k+1)m∗ |

)m/m∗

� λ

(∫
v
(k+1)ml
M

)1/l(∫
vm∗

M

)(p+1−m)/m∗

.

From now on ci, i = 1, 2, 3, 4, denote positive constants independent of λ. Note that

l =
m∗

m∗ − (p + 1 − m)

and observe that m < p + 1 < m∗, so that 0 < p + 1 − m < m∗ − m. Then m <

m∗ − (p + 1 − m) < m∗. From now on the norm spaces correspond to functions defined
in R

N . Thus,

‖vM‖Lm∗(k+1)

� c
1/(k+1)
2

(
k + 1

(km + 1)1/m

)1/(k+1)

λ1/((1+k)m)‖vM‖L(k+1)ml‖vM‖(p+1−m)/(m(k+1))
Lm∗ .

Letting M → ∞ yields

‖u‖Lm∗(k+1) � (c2λ
1/m‖u‖(p+1−m)/m

Lm∗ )1/(k+1)‖u‖L(k+1)ml

(
k + 1

(km + 1)1/m

)1/(k+1)

.

Define k1 as (k1 + 1)ml = m∗. Note that k1 + 1 = m∗/ml > 1 and therefore

‖u‖Lm∗(k1+1) � (c2λ
1/m‖u‖(p+1−m)/m

Lm∗ )1/(k1+1)‖u‖Lm∗

(
k + 1

(km + 1)1/m

)1/(k1+1)

.

By induction, we define (kn + 1)ml = m∗(kn−1 + 1). Then kn + 1 = (m∗/ml)n and

‖u‖Lm∗(kn+1)

� (c2λ
1/m‖u‖(p+1−m)/m

Lm∗ )
∑n

j=1 1/(kj+1)
n∏

j=1

((
kj + 1

(kjm + 1)1/m

)1/
√

kj+1)1/
√

kj+1

‖u‖Lm∗

and hence

‖u‖Lm∗(kn+1) � (c2λ
1/m‖u‖(p+1−m)/m

Lm∗ )
∑n

j=1 1/(kj+1)c
∑n

j=1 1/
√

kj+1
3 ‖u‖Lm∗ .
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Since
∞∑

j=1

1
kj + 1

=
∞∑

j=1

(
ml

m∗

)j

=
1

1 − (ml/m∗)
− 1 =

m∗

m∗ − ml
− 1 =

m

m∗ − (p + 1)
,

we obtain

‖u‖L∞ � c4λ
1/(m∗−(p+1))‖u‖(p+1−m)/(m∗−(p+1))+1

Lm∗

= c4λ
1/(m∗−(p+1))‖u‖(m∗−m)/(m∗−(p+1))

Lm∗ .

By (2.6), we obtain the desired estimate. �
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