Glasgow Math. J. 52 (2010) 195-204. © Glasgow Mathematical Journal Trust 2009.
doi:10.1017/S0017089509990322.

TRANSFORMATION AND REDUCTION FORMULAE
FOR DOUBLE ¢-SERIES OF TYPE &3

CANGZHI JIA and XIANGDE ZHANG

Department of Mathematics, Northeast University, Shenyang 110005, PR China
e-mail: cangzhijia@yahoo.com.cn, zhangxdneu@yahoo.com.cn

(Received 2 December 2008; accepted 1 June 2009)

Abstract. By applying the Sears non-terminating transformations, we establish
four general transformation theorems for double basic hypergeometric series of type

21
5 o . Moreover, several transformation, reduction and summation formulae on the

double basic hypergeometric series CD%T, dD;(l); nd QDE:SM are also derived through

parameter specialisation.
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1. Introduction. For two indeterminates x and ¢, the shifted factorial is defined
by

n—1

(x;@o=1 and (=[]0 -¢% with n=12...
k=0

When |¢| < 1, we have the following well-defined infinite product expressions:

(=10 and (g = 2P o yez

o (q"x; oo
For the sake of brevity, we also write the factorial product compactly as

la,b, ..., c;qln = (@ Dub; @ - .. (¢;@n.

Following Gasper and Rahman [3], the basic hypergeometric series is defined by

| = 1n(“)} lao.ar.. o angh
q’z} n;;{( ) 4 brbaal o Y

o ap, ap, ..., a
+P.
e bi, ..., by

where the base ¢ will be restricted to |¢| < 1 for non-terminating g-series.
As the g-analogue of Kampé de Fériet function, Srivastava and Karlsson
[9, p. 349] defined the generalised bivariate basic hypergeometric function by

Airss alv"‘ya)»: alv"'val‘; cl""vcs; q‘x9y
‘Dwv[ﬂl B biiby dise..dy; i,j,k} (1.22)

i o @ Glmgn (a1, - ars gluler, . ¢ qla xmy,,qi(";)+j(;)+km" (1.2b)
,31, ' ’

.y .Blu ]m+n [bls ey bua q]m[dlv ey dv, q]n (Qa q)m(Qa q)n

m,n=0
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It is not hard to check that when i, j, k € Ny, the double series @f;’;fv is convergent for
x| <1, |yl < land|q| < 1.

For double basic hypergeometric series, there are fewer instances available in the
literature [1, 2, 4-8, 10-12]. Recently, Chu and Jia [1] established eight transformations
by using the Sears transformation formulae and obtained a number of transformation,
reduction and summation formulae on ®}33, @33, ®J37 and ®%5 as special cases. As
a continuation, we will further investigate four general transformations for double
basic hypergeometric series of type CD%?, again by means of non-terminating Sears

transformation formulae. Several new transformation formulae on ®3)2, ®303, @313 are
also obtained as consequences.

’;
2. Transformations between <I>§ (l),i and <D? i o

THEOREM 2.1 (Transformation formula). For an arbitrary complex sequence
{2())}, the transformation

(a; (I)erj(C Q)zﬂ(e Q)i (bd )i o .
Z (b (])z+/(d q)z+,(q, 9)i(q; q), ace ) (2.1a)

_ [d/e. bd/ac; gl Z i (d)" le. b/a, b/c; qlila, ¢; q);

= Q. 2.1b
[d, bd Jace; gl Garlg. bdjac qiiq. dje g0 1P

holds, provided that two double series displayed above are absolutely convergent.

Proof. Recalling the g-analogue of the Kummer-Thomae—Whipple transformation
[3, p- 359, Appendix I11.9],

a, ¢, el bd [a’/a bd/ce; gl a, bjc, bje
3¢ b, dl4 3¢

“ace | [d, bd/ace; qls b, bd/ce
we can reformulate the double sum in (2.1a) as follows:

] )

o0

(a; 9)i(c; q); . |:e da, q’c }
—Q
2 Gt ad a2 | gb gd | ace

> la,eql . [@d/e,bd]ac;qls | [e,b/a,b/c
i [

.5, a1, (i, bdjace: gl *?2 | @'b. bdjac

Jj=0

q“'d]

4 —

e
q’d]

Writing the last double sum explicitly, we see that it coincides with (2.1b). O

J=

[d/e bd/ac; qlo la, ¢; q); . e,bja,b/c
=4, bdjace; g, Z 0.5, dJe. g, 92 [W, bd jac| 4

When the Q-sequence is specified by

[ula uZa "'7u)n;q]j w/ (2.3)
[U], V2, ..., v/L;q]]

Q) =

the last theorem gives us a very general transformation between two non-terminating

: 2:T;n 0:3;:A+2
double series @57, and 77 1.
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In the proof of the last theorem, if we apply, instead of (2.2), the Hall
transformation [3, p. 359, Appendix I11.10]

a, ¢, e
3¢2 |: b d

then we can establish another transformation formula.

bd _ e, bd/ac, bd/ce; qlo ¢ b/c,d/c, bd/ace
= [b.d, bdjace;qls 7| bdjac,bd/ce

q; c] , 2.4

THEOREM 2.2 (Transformation formula). For an arbitrary complex sequence
{Q())}, the transformation

ad (a Q)Hr](c q)l+](e q)l (bd)sz . 2 5
Z B s it s 0 \ace ) OO (2.52)

_ [c, bd/ac, bd/ce; qlos ~— Z i i [b/c,d/c, bd/ace; qli(a; q);

Q> 2.5b
[b. d. bdjace: gl Gdjce. ol bdjac g gy, 0 @)

holds, provided that two double series displayed above are absolutely convergent.

Under specification (2. 3) thls theorem yields a transformation between two non-
terminating double series d>20 -, and U3t

1: 1 N
We remark that the relation q’?:?i and CDZ 0. +1 has first been discovered in [1].

2.1 Non-terminating reduction formula for @g (1] g Specifying in Theorem 2.1 with

N [d/e’a’ﬁ;q]j(i>j
U=, \ap

and then evaluating the sum with respect to j displayed in (2.1b) by means of the
¢-Gauss summation theorem [3, p. 354, Appendix I1.8]

s [a, b .i] _ e/a, e/biql
A e, ¢/ab; gl

2.6
;= 26)
we find after some trivial simplification the following reduction formula.

ProrosITION 2.3 (Reduction formula).
pr3|act @ d/e, a, B; q:bd/ace,b/aB
2021 p,d a, ¢ 0, 0, 0

_[d/e,bd/ac,b]a, b/ B; qlo p |:e b/a, b/c, b/ozﬁ
= TIb. d, bdjace, bjaB; qlw ‘| bdjac, bja,b/B |1

gl

Note that when a — b, then the 4¢5-series just displayed reduces to one. We can
directly get the following summation formula.

COROLLARY 2.4 (Summation formula).

3 [c: e; dfe, a, B; q:djce, b/aﬂ} _[d/e,d/e,bja, b/B; gl
3 -

ch.
! d: ) b’ o 0’ 0’ 0 [d7 d/ce, b/aIBa ‘I]oo

o=
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This summation formula can also be derived from (2.1a) by using twice the g-Gauss
summation theorem (2.6).

Similar cases occur in other propositions. But for the space limitations, we have
not listed all of the examples.

2.2 Non-terminating reduction formula for @gé% Letting in Theorem 2.1

. [ﬁ,y;q]j( bd )"
Q) = =2V T2
2 (c;q); \aeBy

and then reformulating the corresponding (2.1b) by using [1, Proposition 2.3]

o033 =1 @b dfa B, y;  qide/abe, de/bcBy
LLLf g e; de/abc; 0, 0, 1
_ ld/a.de/bep defbey:qle [a,e/b,e/c, de/bCﬂVI .6_1}

"~ [d,de/abe, de/bcBy; gl 4931 e, de/beB, de/bey |y

we can derive the following reduction formula.

PRrROPOSITION 2.5 (Reduction formula).

b,d: —; ¢ 0, 0, 0
_la,bd/ac, bd/aep, bd/aey; gl b/a,d/a, bd/ace, bd/aefy .
~[b,d, bd/ace, bd/aeBy:; qls bd/ac, bd/aeB, bd/aey e

o212 [a,c: e By qibd/ace,bd/aeﬂy}
2:0;1 .

2.3 Terminating reduction formula for qbg(l)g Setting in Theorem 2.1

[d/e, B, v:ql;

a=q" and Q0)= TR

and then rewriting the corresponding (2.1b) by [1, Proposition 2.6]

Q033 =1 b qd Boys qiq. g "a/By

1:1;1 d: ql_nbc/d; o, 07 07 1
[d/b, d/c; ql [a/ﬂ,a/y;q]oo4¢3[ g, B, vy, d/bc a q}
[d.djbe;qly [ona/Byiqle L d/b, dfc, gy a| "]

we find the following reduction formula.

PROPOSITION 2.6 (Reduction formula).
e3[4 et e dfe Boys qiq'bd/ce.q
2021 pod: —; ¢, ¢g""By/b; 0, 0, 0

_ ld/e.b/B.b)y:dl [q‘”,e,b/c,b/ﬂy‘ . ]
T . d. b/Byigh ‘b/B. by g erd| T
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Under replacements 8 — b/e and y — ¢, the last 4¢s3-series reduces to a ¢;-
series. Evaluating it by the g-Chu—Vandermonde convolution formula [3, p. 354,
Appendix 11.6]

—n
, a
201 [q

4

q; q] _ (C/fl; Dn 2.9)
(e @

we obtain the following closed formula.

COROLLARY 2.7 (Summation formula).

P12 g " c: e bledle; q:q'bd/ce,q| _ [b/c,d/c, e qly
2000 bod: = g'7"c/e; 0, 0, 0 | T [bd,e/c;qly

2.4 Terminating reduction formula for dbg(l)% . Putting in Theorem 2.1
(@ 9)i(B: q);
(q'~"cea/bd; q);

and then transforming the corresponding (2.1b) by [1, Proposition 2.9]
q)013;4 —: a» b’ qnda q_n’ d/aa Ol, ﬁ) q: q_ne/ab3 q
LL2 g e; g "e/ab, gbaB/e; 0, 0, 1
_y la, qd/e; ql, [e/a, e/b; q]oo4 é [q‘”, d/a, gbaje, qbB/e " g]
[d, qab/e; gl le, e/abiqlo | ¢""/a, qd/e, gbape | T b ]’

we deduce the following reduction formula.

a=q " and Q@)= q

ProPOSITION 2.8 (Reduction formula).

b,d: —; ¢""ceaB/bd; 0, 0, 0

_ e, bd/cea, bd/cep; qln " qg ", b/c,d/c, bd/ceap
~[b,d, bd/ceaB;ql, 493 gt /e, b cea, b/ cep

o212 [q‘”, c: e o, B; q: q"bd/ce, q}
2:0;1

q;q:|.

When o — b/e and B — ¢""'d, the last 4¢;-series reduces to a ,¢;-series.
Evaluating it by the g-Chu—Vandermonde convolution formula (2.9) again, we obtain
the following summation formula.

COROLLARY 2.9 (Summation formula).

o212 [q",c: e; bje, ¢"'d; q:q'bd]ce, q} _ [e d/CQQ]n<b>n
2:0;1 - ’

bod: —: ¢ 0, 0, 0 [b.d;ql, \e

2.5 Terminating reduction formula for @;ég Taking in Theorem 2.1

a=q " and Q@)=

[b/e,d]e, B; 4, (q"ey )"
[c, V4] B
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and then rewriting the corresponding (2.1b) by [1, Proposition 2.10]

q>023;3 [_ . qnd7 bv C; qin7 d/ba ﬂ’ q: qine/bcv qnby/:B]
LLL| -

e; Vs 0, 0, 1
. [b.gb/e;qly [e/b,e/c; gl [q‘”,d/b, v/B.,q "e/bc v q}

= [ gbe/eql, [eefbeqle 1T 1=n1/b, g~e/b

we have the following reduction formula.

PropoSITION 2.10 (Reduction formula).
p213 |4 et e bledfe B; q:q'bd/ce, q"ey/p
202 b d: —; ¢,V 0, 0, 0

_[e’bd/ce;q]”qb q", ble, dle, y/B| .
T b digl q'" /e, bd/ce, 4|

2.6 Terminating reduction formula for @g(l)f Setting in Theorem 2.1
bje, Bsdl; (d'dy Y
a=q" and Q(],):[/eﬁq]/<q )/)
(r:9) B
and then reformulating the corresponding (2.1b) by [1, Proposition 2.11]

U3 —: a, b, ¢"d; q7", d/a, d/b, B; q:q "e/ab, ey/dS
1:1;2 d e; q_”e/ab, Vi 07 0, 1
_ (qd/e:q)u [e/a. e/b; gl (@)”4% [61”, dfa,d/b,y/B q.q}
(qab/e; q), [e, e/ab;qleo \ d gdje, d, y | 77|

we deduce the following reduction formula.

PRrOPOSITION 2.11 (Reduction formula).
pri2 |4 et e ble, By q:iq'bd/ce, q"dy[cB
2 bd: =y 0, 0, 0
(d/c q)n [ n’ Cv b/ea y/ﬂ . i|
=@an L gea by [T

2.7 Non-terminating reduction formulae for @ g(l); and @%ég Specialising in

Theorem 2.2 with

[b/@, a, :Bz q]j (%)j
[c, baB/c; q);

and then evaluating the corresponding (2.5b) by means of [1, Proposition 2.5]

Q) =

034|—: a, b, ¢; dja, d/b, o, B; q:delabc,e
Pria |:d e; de/abe, cap; 0,0, 1 (2.132)
[e/c, de/ab; gl d/a, d/b, ca, B
= ; , 2.13b
le, de/abc; qloo 493 d, de/ab, caf ge/c ( )

we find the following reduction formula.
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PrOPOSITION 2.12 (Reduction formula).

213 a,c: e bje, a, B; q:bd/ace, bd/ac
2021b,d: — ¢, bap/e; 0, 0, 0
_[d/a, bd/ce; gl a,b/e, bajc, bB/c dJa
= d, bd/ace; gl b, bd/ce,bap/c | T '

Similarly, letting in Theorem 2.2

[b/é‘, d/ev «, ﬁa q]j bd g
la, ¢, bdap/ace; q); <_)

Q(j) =

and then evaluating the corresponding (2.5b) by (2.13a)—(2.13b) again, we get the
following reduction formula.

PROPOSITION 2.13 (Reduction formula).
P2l a,c: e bje, dje, a, B; q:bd/ace, bd/ac
203 (p,d: —; a, ¢, bdaf/ace; 0, 0, 0

e, bd/ae, bd/ce; gl b/e,d/e, bda/ace, bdB/ace
~[b, d, bd/ace; gl Y53 bd/ae, bd/ce, bdaB/ace

q;e].

215 21
3. Transformations between @’ o and 5 02

THEOREM 3.1 (Transformation formula). For an arbitrary complex sequence
{Q())}, the transformation

— (@9 Qinj (;9)i (b/e;q) (ﬁ)i ; 3.1
g(b;q)w(d;@w (¢: )i (4; 9)(c: )y \ ace 20) (3.1a)

_[d/a, bd]ce; Q]oo Z( )i la, b/e; qlivj(b/c; q)i Q) (3.1b)

" [d, bd/ace; gl b, bd/ce; qlivj(q; 9)i(q; 9);
holds, provided that two double series displayed above are absolutely convergent.

Under specification (2.3), this theorem becomes a transformation between two
non-terminating double series d%;é?iill and @%gé?ﬁ.

Proof. Recalling transformation (2.2), we have the expression
— (@q)b/eq)y . [qfa de, e| bd }
= (@ 9)(b:9)(d: 9); ’ ¢b, ¢d|? ace

Z la.b/€: ) o) 14/, g'bd/ce; gl [q"q, b/c,g'b/e
[4.5.d: q); [q/d, bd/ace;qle | @b, ¢'bd/ce

d
a
a
45—
a

which is exactly (3.1b) when writing explicitly as a double sum. O

[ee]

_ [d/a, bd/ce; gl la, b/e; q); ()b [qfa, b/c, g'bje
~ [d.bd/jace; gl S 1q.b.bd/cerq); 2| b, g/bd)ce
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Similarly, by applying the Hall transformation (2.4), we derive the following
transformation.

THEOREM 3.2 (Transformation formula). For an arbitrary complex sequence
{Q())}, the transformation

= [a, ¢ qlisj (e:9)i [b/e. d/e; q); (ﬁ)ig ' .
MZ‘;[b, d;qlivj (¢: )i [q,a, c;q); \ace ) (3.2a)
_ [e.bd/ae, bd/ce; gl 5~ i [b/e, d/e; qlisi(bd/ace;q)i oh

[b,d, bd/ace; gl ;)e[bd/ae, bd]ce; qli+j(a; 9)i(4; 9); v (3.20)

holds, provided that two double series displayed above are absolutely convergent.

Under specification (2.3), this theorem reduces to a transformation between two

. . . 2:1;042 2:1;n
non-terminating double series ®5,," "5 and ®5," .

3.1 Semi-terminating reduction formula for CI>§(1)‘31 Setting in Theorem 3.1

l[g7"d/b, B, v:ql; ;
[a,q'~"By /b; q];

and then rewriting the corresponding expression (3.1b) by Proposition 2.6, we find the
following reduction formula.

e=¢"b and Q)=

ProPOSITION 3.3 (Reduction formula).
p2l4| @t q'bs g7, q7"d/b, B, y; q:q"d]ac, g
203 bad: ) a, ¢, qlinﬂy/b’ O’ 07 0

:(z>”[qb/d, b/B.b/viqh [d/a.d]e; gl [q‘”,b/a,b/c,b/ﬂy) . ]
b) 1b.qac/d.b]Byiql, . dfacigle ** | /8. b/y, abjd | 1]

For the special case 8 — a and y — ¢, the last 4¢3-series reduces to a ,¢;-series.
Evaluating it by (2.9), we obtain the following expression.

COROLLARY 3.4 (Summation formula).

P2 @ q'b; ¢7", q7"d/b; q:q7"d[ac.q| _ [b/a,b/c;ql.[d]a, d/c; gl
200 b,d: —  ¢'""ac/b; 0, 0, 0 [b,b/ac;ql, [d,d/ac;qle

The special case a = ¢~ of this corollary reduces to the same summation formula
as the case e = ¢"b of Corollary 2.7.

3.2 Semi-terminating reduction formula for @%ég Letting in Theorem 3.1

[Ol, ﬂa Q]/

e=q'b and Q0= T

¢
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and then reformulating the corresponding (3.1b) by Proposition 2.8, we get the
following reduction formula.

PropPosSITION 3.5 (Reduction formula).

priafac: q7'b; ¢, a, B; q:q"d/ac,q
2021p,d: —; ¢, gaaB/d; 0, 0, 0O

_an(b/a;q),, [d/a,d/c; gl " |: q ", a,gaa/d, qaB/d ‘ q_Ci|
= i) [ddjaciqle ‘O d""a/b. qac/d, qacp/d) T p |

Its special case @ = d/aq reduces further to the following identity.

COROLLARY 3.6 (Summation formula).

priz|ac: q'b; ¢7", djaq; q:q7"d/ac, q _ an(b/a;q)n [d/a,d]/c; gl
X b,d: —; G 0, 0, 0 (b:q), [d.d/ac;qls

It should be pointed out that when a = ¢~ in Proposition 3.5 and Corollary 3.6,
they reduce to, respectively, the same summation formulae as the case ¢ = ¢"b of
Proposition 2.6 and Corollary 2.9.

3.3 Semi-terminating reduction formulae for @33 and ®37;. Specialising in
Theorem 3.1 with

[q~"d/b, B; q; (q”by >j

(v;9); ap )’

[e. B:q) < dy )f
(v;q); \acB

and then transforming the corresponding double sum (3.1b) through Proposition 2.11,
we derive two further reduction formulae, respectively.

e=¢"b and Q)=

ProPOSITION 3.7 (Reduction formula).
p213 | @ ¢t q"bs g™ q7"d/b, B; q:q"d/ac, q"by [ap
2:0;2 b’d: —; c, V; 07 0, 0

=g"[b/a’ gc/d; ql, [d)a, d/C;q]oo4 [q‘”,a, g "d/b,y/B q,q]
b, qac/d; qly [d.djac;qlee | 4" "a/b.qg"djc,y | TT |

ProPoOSITION 3.8 (Reduction formula).
p212 | % c: ¢"b; q7", B; q:q7""d/ac,dy/acB
2:0:1 b,d: - v 0, 0, O
— [d/a7 d/C, q]OO qin» av C’ V/,B q q
[d.d/aciql ' b. qac/d. y |9}

Similarly, setting @ = ¢~ in Propositions 3.7 and 3.8, they reduce to, respectively,
the same summation formulae as the case e = ¢"b in Propositions 2.10 and 2.11.

https://doi.org/10.1017/5S0017089509990322 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089509990322

204 CANGZHI JIA AND XIANGDE ZHANG

ACKNOWLEDGEMENTS. We are thankful to the referee for his many valuable
suggestions and comments. This work is supported by the Chinese National Science
Foundation (youth grant 10801026).

REFERENCES

1. W. Chu and C. Z. Jia, Transformation and reduction formulae for double ¢g-Clausen
hypergeometric Series, Math. Meth. Appl. Sci. 31 (2008), 1-17.

2. W. Chu and H. M. Srivastava, Ordinary and basic bivariate hypergeometric
transformations associated with the Appell and Kampé de Fériet functions, J. Comput. Appl.
Math. 156 (2003), 355-370.

3. G. Gasper and M. Rahman, Basic hypergeometric series (Cambridge University Press,
Cambridge, UK, 1990).

4. P. W. Karlsson, Two hypergeometric summation formulae related to 9-j coefficients, J.
Phys. A: Math. Gen. 27 (1994), 6943-6945.

5. P. W. Karlsson, Some formulae for double Clauseian functions, J. Comput. Appl. Math.
118 (2000), 203-213.

6. S. N. Pitre and J. Van der Jeugt, Transformation and summation formulas for Kampé
de Fériet series F)(1, 1), J. Math. Anal. Appl. 202 (1996), 121-132.

7. R. P. Sighal, Transformation formulae for the modified Kampé de Fériet function,
Math. Student 39 (1972), 189-195.

8. S. P. Singh, Certain transformation formulae involving basic hyergeometric functions,
J Math. Phys. Sci. 38 (1994), 189-195.

9. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric series (Halsted
Press/Ellis Horwood Limited/John Wiley, Chichester, West Sussex, UK, 1985).

10. J. Van der Jeugt, Transformation formula for a double Clausenian hypergeometric series,
its g-analogue, and its invariance group, J. Comput. Appl. Math. 139 (2002), 65-73.

11. J. Van der Jeugt, S. N. Pitre and K. Srinivasa Rao, Multiple hypergeometric functions
and 9-j coefficients, J. Phys. A: Math. Gen. 27 (1994), 5251-5264.

12. J. Van der Jeugt, S. N. Pitre and K. Srinivasa Rao, Transformation and summation
formulas for double hypergeometric series, J. Comput. Appl. Math. 83 (1997), 185-193.

https://doi.org/10.1017/5S0017089509990322 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089509990322

