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SOME CHARACTERIZATION AND DISTORTION THEOREMS

INVOLVING FRACTIONAL CALCULUS, GENERALIZED

HYPERGEOMETRIC FUNCTIONS, HADAMARD

PRODUCTS, LINEAR OPERATORS, AND

CERTAIN SUBCLASSES OF

ANALYTIC FUNCTIONS*

H. M. SRIVASTAVA AND SHIGEYOSHI OWA

By using a certain linear operator defined by a Hadamard product or
convolution, several interesting subclasses of analytic functions in the
unit disk are introduced and studied systematically. The various results
presented here include, for example, a number of coefficient estimates and
distortion theorems for functions belonging to these subclasses, some in-
teresting relationships between these subclasses, and a wide variety of
characterization theorems involving a certain functional, some general
functions of hypergeometric type, and operators of fractional calculus.
Some of the coefficient estimates obtained here are fruitfully applied in
the investigation of certain subclasses of analytic functions with fixed
finitely many coefficients.

§1. Introduction and Definitions

Let srf denote the class of functions of the form

(1.1) /(*)= Σ ^ + i ^ + 1 (<*i = l)

which are analytic in the unit disk % = {z: \z\ < 1}. Then a function f(z)
belonging to J/ is said to be in the class rΓ(a) if it satisfies the inequality

(1.2) R
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for a > — 1. On the other hand, a function f(z) belonging to s/ is said

to be in the class IV(a) if it satisfies the inequality

(1.3) Re [l + *jΆ}>-a (zeW)

for a > — 1. It is easily observed that

(1.4) f(z) e 1T(a) <=φ zf\z) e rT(a); iT(a) C r{a).

Throughout this paper, it should be understood that functions such as

zf\z)\f(z) and zf/\z)/f/(z), which have removable singularities at z = 0,

have had these singularities removed in statements like (1.2) and (1.3).

Let as 0 = 1, ,p) and β3 (j = l, , q) be complex numbers with

β , φ θ , - 1 , - 2 , • • • ; . / = 1 , . . . , 9 .

Then the generalized hyper geometric function pFq(z) is defined by (cf.

[16, p. 33]).

(1.5) pFQ(z) ΞΞ p F q ( a ί y >-,ap; β u , β q ; z)

where (λ)n is the Pochhammer symbol defined by

1, if 7i = 0
= W + l) (λ + 7i - 1), if n e Jί = {1, 2, 3, •}.

We note that the pFq series in (1.5) converges absolutely for |2 |<oo if

p < q + 1, and for z e ^ i f p = g + l. Furthermore, if we set

. 7 = 1

it is known (see, e.g., [16, p. 34]) that the pFq series, with p = q + 1, is

absolutely convergent for \z\ = 1 if Re(ω)>0, and conditionally con-

vergent for \z\ = 1 (z Φ ϊ) iί

- 1 < R e ( ω ) ^ 0 .

For the functions ft(z) (i — 1, 2) defined by

(1.8) /• (*) = Σ α,,π + ̂ + 1 (α<f l = 1; £ = 1, 2 ) ,
71 = 0

let /i * f2(z) denote the Hadamard product or convolution of /ΊOε) and f2(z),

defined by
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(1-9) / 1*/ 2(^) = Σ α 1 , κ + 1 α 2 , I ! + 1 2 « + 1 .
« = 0

Now define the function φ(a, c) by

(1.10) φ(a, c;z) = ± ^ ^ + 1 (cφO, - 1 , - 2 , .. . ze %) ,
»-° (c)«

so that φ(a, c) is an incomplete Beta function with [cf. Equation (1.5)]

(1.11) φ(a, c; z) = z 2F,(1, a; c; z) .

Corresponding to the function 0(α, c), Carlson and Shaffer [2] defined a

linear operator J*f(α, c) on <s/ by the convolution [2, p. 738, Equation (2.2)]

(1.12) J?(a,c)f=φ(a,c)*f

for f(z) e sf. Clearly, «5?(α, c) maps jaf onto itself, and «Sf(c, α) is an inverse

of Jδf(α, c), provided that

a Φ0, - 1 , - 2 , . . . .

Furthermore, =£?(α, α) is the identity operator, and

(1.13) τT(α) = J?(l, 2)τT(α) (α > -1)

or, inversely,

(1.14) τT(α) = Jί?(2, l)τr(α) (α > -1) .

A function f(z) belonging to s4 is said to be in the class i^ia^c, a)

if Jδ?(α, c)/ is an element of ^(a) ϊov a> — 1. Further, a function f(z)

belonging to stf is said to be in the class τF(α, c; a) if zf\z) is an element

of Ψ*(μ,c\a) for α: > — 1. Then it is easily verified that [cf. Equations

(1.13) and (1.14)]

(1.15) 1T(a, c; a) = &(1, 2)r(a, c; a) ,

(1.16) riμ, c; a) = J?(2, ΐ)iΓ(a, c; a) ,

(1.17) 1T(a) = iT(a9 a; a) = J?(l, 2)τT(a, a; a) ,

and

(1.18) rT(ά) = ϊT(a, a; a) = &(2, ΐ)iΓ(a, a; a) .

A single-valued function f(z) is said to be univalent in a domain S)

if it never takes on the same value twice, that is, if f(zx) = f(z2) for zϊ9

z2 e Q) implies that zx = z2. A set $ is said to be starlίke with respect to
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w0 e £ if the line segment joining M;0 to every other point w e δ lies entirely

in δ. If a function f(z) maps 2 onto a domain that is starlike with

respect to wQ9 then f(z) is said to be starlike with respect to w0. In par-

ticular, if w0 is the origin, then we say that f(z) is a starlike function in

2. Further, a set <? is said to be convex if the line segment joining any

two points of δ lies entirely in δ. If a function f(z) maps ^ onto a convex

domain, then we say that f(z) is a convex function in ^ .

Now let ^ denote the class of all functions in si which are unίvalent

in the unit disk ΰU. Then a function f(z) belonging to Sf is said to be

starlike of order a if and only if

(1.19) ^\MM\>a (zew)

for some a (0 <̂  a < 1). We denote by £f*(a) the class of all functions

in S? which are starlike of order a.

A function f(z) belonging to y is said to be convex of order a if and

only if

(1.20) Re {l + -^^-} >« («€ Φ)

for some a (0 <; a < 1). We denote by Jf (α) the class of all functions in

ϊf which are convex of order a.

We note that f(z) e X(cί) if and only if zf\z) e Sf*(a). We also have

(1.21) ^*(α) c ^*(0) = ^ * ,

(1.22) JT(a) g Jf(0) = ^Γ ,

and

(1.23) JT(α) C ^*(α) C ^ ,

for 0 ^ α < 1.

The classes S?*(a) and X{ci) were first introduced by Robertson [11],

and were studied subsequently by Schild [13], MacGregor [7], Pinchuk [10],

Jack [4], and others (cf, e.g., [9]). Indeed, from the above definitions of

the various subclasses of s/, it follows readily that

(1.24) ^*(α)

and

(1.25) Jf(α) C iΓ(β) C si

https://doi.org/10.1017/S0027763000000854 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000854


ANALYTIC FUNCTIONS 5

for 0 <; a < 1 and - 1 < -a ^ /3.

Finally, let ^ be the subclass of jtf consisting of functions of the form

(1.26) f(z) = Σ α w + 1 ^ + 1 (a, = 1; an + ί ^ 0, Vra e ^ ) ,
71 = 0

where, as also in (1.6), Jί = {1, 2, 3, •}, and denote by yo(tf) a n ( i ^o(^)

the classes obtained, respectively, by taking the intersections of i^(a) and

(a) with ^ that is,

(1.27) rla) = r{a) Π ̂  (α > -1)

and

(1.28) y 0̂(α:) = # Ί » Π ̂  (α > -1) .

Also let

(1.29) yo(α, c; α) = f ( α , c; α) Π 3Γ (a > -1)

and

(1.30) τΓ0(α, c; α) = τΓ(α, c; α) Π ̂  (α > - l ) .

Silverman [14] studied the subclasses 3~*{a) and ^(α) of ^ defined by

(1.31) 2Γ*{a) = y*(a) Π f (0^a<ΐ)

and

(1.32) <g(p) = jf(α) Π ̂  (0 ^ α < 1) ,

so that, upon comparison with the definitions (1.27) to (1.30), we have

(1.33) jΓ*(tf) c -ro(α, α; β) = ̂ ,(β) c J /

and

(1.34) ^( α ) c y^0(α, α; jS) = τΓ0(/3) c ^

for 0 ^ α < 1 and - 1 < -a ^ ]8.

In the present paper, we prove a number of coefficient estimates and

distortion theorems for functions belonging to the various subclasses of

s/ defined above, and derive some interesting relationships involving these

subclasses. For these subclasses we also give a wide variety of charac-

terization theorems and numerous other applications involving a certain

functional, some general functions of hypergeometric type, and operators
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of fractional calculus. By using some of the coefficient estimates obtained

in Section 2, certain further subclasses of analytic functions with fixed

finitely many coefficients are studied systematically.

§2. Coefficient estimates

The various coefficient estimates (given by Theorem 2.1 to Theorem

2.4 below) lay the foundation of our systematic study of the subclasses of

$0 defined in the preceding section.

THEOREM 2.1. Let the function f(z) be defined by (1.1). If

(2.1) Σ nta\n\¥¥
n=l (1 + a)n I (C)n

for a > — 1. then f(z) e f ( α , c; α). TΛe result (2.1) is sharp.

Proof We need to prove that (2.1) implies

(2.2) R

for α > — 1. And, in order to establish the inequality (2.2), it is sufficient

to deduce from (2.1) that

(2.3)

for a > — 1.
Indeed, since

n, c)f(z)γ
{a, c)f(z)

- 1 < 1 + a (ze<%)

(2.4)

we have

(2.5)

JS?(α,

- 1

i = 1) ,

(o).
S"Ί (c).

i - Σ (o).
(c),

- ^ 1 + a ,

provided that

(2.6) :
(c), (c).

https://doi.org/10.1017/S0027763000000854 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000854


ANALYTIC FUNCTIONS 7

which is equivalent to (2.1).

Clearly, the result (2.1) is sharp for the functions given by

(2.7) f(z) = z + | L t φ £ k a » + ' (n e Jί) ,
(2 + a)n(a)n

which completes the proof of Theorem 2.1.

COROLLARY 2.1. Let the function f(z) be defined by (1.1). //

(9 #\ v ( ~̂~ a'n \n < i

Vz °/ Z J Z . — —-T— 1 α « +1 ^ 1
w=i (1 + or)TO

/or α > — 1, Z/ierc f(z)eir{a). The result (2.8) is sharp for the functions

given by

(2.9) f(z) = ( 1 + k g (we/).
(2 + Qr)n

Remark 2.1. In its special case when — 1 < α: ̂  0, Corollary 2.1

yields the corresponding result for the class £f*(a) due to Silverman [14,

p. 110, Theorem 1].

THEOREM 2.2. Let the function f(z) be defined by (1.1). If

(2.10) ^^ (2)n(2 + a)n

(1 + a)n

for a > — 1, then f(z) e iΓ(a, c; a). The result (2.10) is sharp.

Proof. Since f(z) e Ψ*(a, c; a) if and only if

we have the theorem if we replace an + ] in Theorem 2.1 by [(2)7lαn + 1

Further, the result (2.10) is sharp for the functions given by

(2.11) f(z) = Z + (1)n(\±«ϊMn_Zn + l (n 6 Jf) .

(2)n(2 + α)n(α)n

COROLLARY 2.2. Let the function f(z) be defined by (1.1). If

(2.12) f]i^ί?Jl«k
(l)(l + )

/or α > — 1, then f(z)ei/r(a). The result (2.12) is sharp for the functions

given by
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(2.13)
(2)n(2 + α ) n

Remark 2.2. If, in Corollary 2.2, we assume that — 1 < a ^ 0, we

shall obtain the corresponding result for the class X{a) due to Silverman

[14, p. 110, Corollary].

For the classes f~0(
α> c'> ex) a n d ^ofe c, ex), we next prove Theorem 2.3

and Theorem 2.4 below.

THEOREM 2.3. Let the function f(z) be defined by (1.26). Then f(z) e

yo(α, c; a) if and only if

(2.14)
n=i (1 + a)n(c)n

for a > — 1, where (a)J(c)n > 0. The result (2.14) is sharp.

Proof. Assume that (2.14) holds true. Then it follows immediately

from Theorem 2.1 that f(z) e "ΓQ(a, c; a).

Conversely, assume that f(z) e ^ ( α , c, ex). Then, by definition,

(2.15) R f z[Se{a, c)f(z)]'
' I <?{a,c)f{z)

= Re > -a

for a > — 1 and z e <&. Choose values of z on the real axis so that

(a, c)f(z)Y
Se{a, c)f(z)

is real. Upon clearing the denominator in (2.15) and letting z-+l~, we

get

(2.16) 1 - Σ ^Ά-\an+ι\
n=l ( l ) n (c) n

which implies (2.14). Further, by taking the functions defined by

(2.17) f(z) = Z- (1 + «)n(c)n zn + l {R

(2 + a)n(a)n
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we can prove that the result (2.14) is sharp.

COROLLARY 2.3. Let the function f(z) defined by (1.26) be in the class

yo(α, c; a) with (a)J(c)n > 0. Then

(2.18) |On+1 ^ ^ W|On+1| < ^ ^ W Y
(2 + a)Ja)n

The result (2.18) is sharp for the functions f(z) given by (2.17).

COROLLARY 2.4. Let the function f(z) be defined by (1.26). Then f(z)

e i^oia) if and only if

(2.19) ±^±^k\an+1\^l
»=i (1 + a)n

for a > — 1. The result (2.19) is sharp for the functions given by

(2.20) f(z) = z - U ± ^ k z * + 1 (n e Jί) .
(2 + ά)n

Remark 2.3. For # constrained by — 1 < # <̂  0, Corollary 2.4 cor-

responds to a result for the class ^*(a) proved by Silverman [14, p. 110,

Theorem 2].

THEOREM 2.4. Let the function f(z) be defined by (1.26). Then f(z) e

#"0(α, c; a) if and only if

(2.21) ±<&<1±}Ά
( l ) («=i (l) n (l + a)n(c)n

for a > — 1, where (a)J(c)n > 0. The result (2.21) is sharp.

Proof. The proof of Theorem 2.4 is much akin to that of Theorem

2.3, and we skip the details involved. Equality in (2.21) is indeed attained

by the functions given by

(2,22) f(z) = z - ^ ^ ^ ^
(2)(2)n(2 + α)n(α)n

COROLLARY 2.5. Let the function f(z) defined by (1.26) be in the class

la, c; a) with (a)J(c)n > 0. Then

(2)n(2 + a)n{a)n

The result (2.23) is sharp for the functions f{z) given by (2.22).
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COROLLARY 2.6. Let the function f(z) be defined by (1.26). Then f(z) e

(a) if and only if

/or or > — 1. The result (2.24) is sharp for the functions given by

(2.25) f{z) = Z- fflrXl + *)n zn + l (Λ 6 Λθ .

Remark 2.4. Corollary 2.6 corresponds, for — 1 < a <I 0, to a result

for the class tf(a) given by Silverman [14, p. I l l , Corollary 2].

§3. Distortion theorems

With a view to determining the extreme points of the classes i^oia, c; a)

and τΓ0(α, c; a), we first prove

LEMMA 3.1. The class i^0(a9 c; a) with (a)J(c)n > 0 is convex considered

as a linear space over the field of real numbers.

Proof. Let the functions ft(z) (ί = 1, 2) defined by [cf Equation (1.8)]

(3.1) ft(z) = έ aun+ιz
n+ί (α i f l = 1; α i t n + 1 ^ 0, V/z e Jί)

n = 0

be in the class Ψ~0(a, c; a). Then we need only prove that the function

λfiz) + (1 - λ)flz) (0 S A ̂  1)

is also in the class "V0(α, c; α). Note that

(3.2) Λ/Xz) + (1 -

which, by virtue of Theorem 2.3, yields

(3β3) g g + ̂ ° )»a ia l i n + 1 l + (1 - Λ
«=i (1 + a)n(c)n

(2 + a)n(a)n ]n , , (Λ ^ y^ (2 + odn(a)n

(1 + )(c)

^ 1

This evidently completes the proof of Lemma 3.1.
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Since the class i^^a, c; a) is convex, as we have shown in Lemma 3.1,

it does have some extreme points given by Lemma 3.2 and Theorem 3.1

below.

LEMMA

(3.4)

and

(3.5)

3.2. Let

fn(z) = *
(1

(2

U(Z) = 2

+ a)n(c)n
+ α)n(α)π

(n e JO

with (a)J(c)n > 0. Then f(z) e rΓJ(a, c; a) if and only if it can be expressed

in the form

(3.6) f(z) = Σ Un(z) ,
71 = 0

where λn ^ 0, "in e Jί U {0}, and

(3.7) Σ λn = 1 .
71 = 0

Remark 3.1. Stated simply, Lemma 3.2 asserts that the family i^ϋ(a, c; a)

is an infinite-dimensional simplex with definite vertices defined by certain

extremal conditions.

Proof We first assume that the function f(z) has the expression (3.6),

that is, that

(3.8) f(z) = Z - ^ ^
n=i (2 + a)n(a)n

Substituting from (3.8) into the left-hand side of (2.14), we have

/o n\ fi (2 + a)n(a)n (1 + a)n(c)n ; f, . . ; ^ -,

»=i (1 + α)n(c)n (2 + a)Ja)n «=i

which (in view of Theorem 2.3) implies that f(z) e i^Q(a, c; a).

For the converse, we assume that f(z) ef^a, c; a) with {a)J{c)n > 0.

Making use of Corollary 2.3, we may write

/q IΛ\ (2 + Cc)n(a)n I 1

(1 + a)n{c)n

and
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(3.11) λ, = 1 - Σ λn .
n = l

We thus have the expression (3.6).

The following result on the extreme points of the class i^^ia, c; a)

follows immediately from Lemma 3.2.

THEOREM 3.1. The extreme points of the class -f~0(a,c;a) with (ά)J(c)n

> 0 are the functions fn(z) (n ^> 0) given by (3.4) and (3.5).

In precisely the same manner, we can establish

THEOREM 3.2. The extreme points of the class τF0(α, c; a) with (a)J{c)n

> 0 are the functions fn(z) (n ^ 0) given by (3.4) and

(3.12) fn{z) = z - %>% + ^% % ^ z (ne/).
(2)n(2 + a)n(a)n

Remark 3.2. As already observed in Remark 3.1, each of Theorem 3.1

and Theorem 3.2 can indeed be restated in terms of infinite-dimensional

simplexes.

Corresponding to Theorem 3.1 and Theorem 3.2, we now prove the fol-

lowing distortion theorems for functions belonging to the classes ^Q(a, c a)

and iΓ0(a, c; a).

THEOREM 3.3. Let the function f(z) defined by (1.26) be in the class

rro(a, c; a) with (α)n/(c)n > 0 and a ^ c. Then

(3.13) \z\ - %±^ i ^%^W £ 1/(2)1 = \z\ + i ^
(2 + a)a (2 + a)

for ze°tt. Furthermore, if either

a ^ 0 and c ^ min (|α, a — 1)

or

- 1 <a <0 and c > -1 ,

then

(3.14) 1 - ^ ± ^ _ | * | ύ l/'(*)l ^ 1 + ^ ^
(2 + )α

(2 + a)

for zeW. The results (3.13) and (3.14) are

Proof. We first note that the extremal function is one of the extreme

points. Since
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(1 + a)n(c)n
(2 + a)n(a)n

,n+1

is a decreasing function of ny we have, for fn{z) (n 7> 0) defined by (3.4)

and (3.5),

(3.15) fM) < I/«(*)! ύ —ΛC—l«l) (z e Φ) ,

which readily yields the assertion (3.13) of Theorem 3.3.

To prove the assertion (3.14) of Theorem 3.3, we note that

(3.16) \f'(z)\ ^ 1 - max
. (l)n(2 + a)n(a)n

and

(3.17) \f\z)\ ^ 1 + max f ( 2 j w ( 1 + a]n(f\n

nejf I (l)n(2 + a)n(a)n

for ze%. Thus we need only prove that the function

(3.18) CKfl, c, a, n, \z\) = (?h%±ψβk-\z\»

is decreasing in n (ne Jf). For \z\ Φ 0,

(3.19) G(α, c, α , n, \z\) ̂  G(α, c, α , n + 1, |«|)

if and only if

(3.20) G^ca.nM)

= (τι + 1)(Λ + 2 + α)(n + a) - (n + 2)(n + 1 + a)(n + c) |

Since Gx(a, c, a, n,\z\) is a decreasing function of \z\ for fixed α, c, α, n,

we have

(3.21) GM c, a, n, \z\) ^ G,(a, c, α , n, 1)

= (Λ + l)(α - c)(n + 2 + a)- a(n + c)

provided that α, c, α: are constrained to satisfy either set of the inequali-

ties preceding (3.14). Appropriate substitutions in (3.16) and (3.17) lead to

the assertion (3.14) of Theorem 3.3.

Finally, the bounds of (3.13) and (3.14) are attained by the function
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(3.22) f{z) = z _
a)a

COROLLARY 3.1. Let the function f(z) defined by (1.26) be in the class

yo(α, c; a) with {a)J(c)n > 0 and a^c. Then the unit disk °tt is mapped

onto a domain that contains the disk \w\ < r0, where r0 is given by

(3.23) /•„ = l —
a)c

(2 + a)a

+ a

COROLLARY 3.2. Let the function f(z) defined by (1.26) be in the class

). Then

(3.24)

for zefy. Furthermore

(3.25)
2 + α ' 2 + α ' '

/or zefy. The results (3.24) and (3.25) are sharp for the function

(3.26) /(*) = z - (λ±£L
\2 + a

Remark 3.3. In its special case when —1 < a <^ 0, Corollary 3.2 yields

the corresponding distortion theorem for the class ^*(a) proved by Silver-

man [14, p. I l l , Theorem 4].

Applying the above technique mutatis mutandis, we can prove

THEOREM 3.4. Let the function f(z) defined by (1.26) be in the class

iΓ^(a, c; a) with (a)n/(c)n > 0 and a ^ c. Then

/f l \ _ /-I i \

(3.27)
2(2 + a)a

for zeW. Furthermore

(3.28) 1

2(2 + a)a

I %^\z\^\f\z)\^l + %^\z\
(2 + a)a (2 + a)a

for ze%. The results (3.27) and (3.28) are sharp for the function

(3.29) f(z) = z - £ + «* z> .
2(2 + a)a
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COROLLARY 3.3. Let the function f(z) defined by (1.26) be in the class

τF0(α, c; a) with (a)J(c)n > 0 and a ^ c. Then the unit disk °U is mapped

onto a domain that contains the disk \w\ < ru where rλ is given by

(3.30) 7\ = 1 - ( 1 + °^c

2(2 + a)a

COROLLARY 3.4. Let the function f(z) defined by (1.26) be in the class

a). Then

for zeW. Furthermore

(3.32) 1 -l\±±)\z\ ύ \f'(z)\
\2 + /

) \ \ ύ \f()\ + (
a / \2 + a

for ze&. The results (3.31) and (3.32) are sharp for the function

(3.33) f(z) ^ z - 1 + a z 2 .
2(2 + a)

§4. Starlikeness and convexity

For — 1 < a <ί 0, the classes ^(α) and yΓ(cy) become, respectively, the

class of starlike functions of order a and the class of convex functions of

order α. Naturally, therefore, we are interested in the starlikeness for

functions belonging to the class "V^a, c; a) and the convexity for functions

belonging to the class ^ 0 ( α , c α). We begin by proving

THEOREM 4.1. Let the function f(z) defined by (1.26) be in the class

Ψ*la, c; a) with (a)J(c)n > 0. Then f(z) is starlike of order δ (0 <: δ < 1)

in the disk \z\ < r2, where

(4.1) r2 = infΓ (1 ~ « 2 +
«^L(n + l - 5 X l

Proof. It is sufficient to prove that

for ^1 < r2. Note that
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(4.3) zf'(z)
f(z)

Σ>K+il|z|B

i -ΣK + 1 | | z |

< i _ §

if and only if

(4.4) S ( Λ + χ - ^ ) i α - i l

By means of Theorem 2.3, we need only find the values of \z\ for which

(4.5) |*|« <; - g ; ~ δ)f+a}(f{ . (n 6
( + 1 3 ) ( 1 + ) ( )

a)n(c)n

which obviously completes the proof of Theorem 4.1.

COROLLARY 4.1. Let the function f(z) defined by (1.26) be in the class

"Γoia). Then f(z) is starlike of order δ (0 <L δ < 1) in the disk \z\ < r8,

where

(4.6) r^infί V ~ M + «)* Γ.

Similarly, by applying Theorem 2.4 instead of Theorem 2.3, we have

THEOREM 4.2. Let the function f(z) defined by (1.26) be in the class

IT,{a, c; a) with (a)J(c)n > 0. Then f{z) is convex of order δ (0 < δ < 1)

in the disk \z\ < r2, where r2 is given by (4.1).

COROLLARY 4.2. Let the function f(z) defined by (1.26) be in the class

iΓ0(a). Then f(z) is convex of order δ (0 ̂  δ < 1) in the disk \z\ < r3, where

r3 is given by (4.6).

§ 5. Further applications of Theorem 2.3 and Theorem 2.4

We deduce several interesting relationships between the various sub-

classes of si as further consequences of Theorem 2.3 and Theorem 2.4. We

first state

THEOREM 5.1. Let (a)J(c)n > 0. Then

(5.1) if la, c; a) C -rJa, c; - — ^ — ) .

The result is the best possible.
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Proof. Let the function f(z) defined by (1.26) belong to the class

7Γ0(α, c; a) with (a)J(c)n > 0. Noting also that

(2 - -*-)

V 3 + α /w

for a > — 1 and n e «yΓ, we thus find that

. (2- A-)(«),
(5.3) ^ V rf + «/» ,_ ,

\ o + a / w

^ (2)n(2 + α)n

n=i (1)Λ(1 + αr)n(c)n

by Theorem 2.4. This implies that

o +

and, since the result is the best possible for the function f(z) given by

(3.29), we have completed the proof of Theorem 5.1.

COROLLARY 5.1.

(5.4) iΠa) C
0 + a

result is the best possible for the function f(z) given by (3.33).

THEOREM 5.2. Let (d)J(c)n > 0. Then, if a^c,

(5.5) Πa, c;a)d <rQ(a) ,

and, if a < c,

(5.6) τ r o ( a , c ; a ) 3 ^ o ( a ) .

Proof Note that (a)J(c)n is an increasing function of TZ if α ^ c, and

is decreasing in 72 if a < c. By using Theorem 2.4 and Corollary 2.6, we

complete the proof of Theorem 5.2.

Similarly, we have

THEOREM 5.3. Let (a)J(c)n > 0. Then, if a :> c,
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(5.7) iria, c;a)d IT la) ,

and, if a < c,

(5.8) iro(a,c;a)Z)iro(a) .

§6. Subclasses of yo(α, c; a) and iΓQ(a9c;a) with fixed finitely many

coefficients

We introduce the subclasses Tk(a, c; a) and ί^k(a, c; a) of analytic

functions with fixed finitely many coefficients. In view of Corollary 2.3,

we denote by i^k(a, c; a) the subclass of ^ 0 ( α , c; a) consisting of functions

of the form

(*«+i ^ 0) ,(6.1)

where

(6.2)

k

• _ (1 + a)Λc)i
1 (2 + α)4(σ)4 '

(oJ./Cc), > 0,

- Σ

and

< 1

Jfc

< = 1

In view of Corollary 2.5, we also denote by Ψ*k(a, c; a) the subclass

of τF0(α, c; α) consisting of functions of the form

(α»+i^0),(6.3)

where

(6.4)

Moreover,

(6.5)

and

(6.6)

k

f(z) = z — 2 Bίpίz
ι+]

__ (i).(i + ^).(c).

(2)i(2 + <*X(αX '

(α)n/(c)n > 0 ,

we define the classes

' - 7 1 a 4
n= k + 1

0 < <
= P« =

and 0 <

y t(α) and

' = ^,(α,α

= iTt(a,a;

by

THEOREM 6.1. Let the function f(z) be defined by (6.1). Then f(z) e

fc(α, c; α) i/ and onZ^ if
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(6.7) Σ # ^ 1 # « - £ i - ΣA .

T/ie result (6.7) is sharp.

Proof. Putting

(6.8) at = A(Pt (ί = l , . . ,A)

in (2.14), we have (6.7). Further, the result (6.7) is sharp for the function

of the form

(6.9) /(«) = 2 - Σ

(2 + a)M,

COROLLARY 6.1. Let the function f(z) be defined by (6.1) with a = c.

(z) e i^icia) if and only if

(6.10) Σ | + 4 α n + ^ l
«=*+i (1 + a)n *-i

TΛe result (6.10) is sharp for the function

(6.11) /(*) = 2ί - έ A ± _ ^ i - ^ + i

< = l (2 + ah

l-ΣPι)
^ ί = 1 J zn + 1 (n>k

)

THEOREM 6.2. Let the function f(z) be defined by (6.3). Then f(z) e

(a, c; a) if and only if

result (6.12) is sharp for the function

(6.13) f(z) = z-ΣBtPiZi+1

ί = l

(l)n(l + α)n(c) n ( l -ΣA)

- ^ ^ - i - z ^ 1 (n > AJ + 1) .
(2)n(2 + α)n(α)n

The proof of Theorem 6.2 is much akin to that of Theorem 6.1, and

we omit the details involved.
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COROLLARY 6.2. Let the function f(z) be defined by (6.3) with a = c.

Then f(z) e 1^k(a) if and only if

Y1 (2)w(2 + <x)n < i _

77&e result (6.14) is sharp for the function

(6.15) /(») = ^ - Σ ( )
i i (2)(2), (2 + αJ

(2),(2 + α), v

With the aid of Theorem 6.1 and Theorem 6.2, we can find the extreme

points of the classes ir

k(a,c; a) and iΓk(a,c; a) by using the techniques

detailed in Section 3.

THEOREM 6.3. The extreme points of the class Ϋ"k(a, c; a) with (a)J(c)n

> 0 are

(6.16) fkλ

and

(6.17) /»+i(*) = * - Σ '

^ k + 1) ,
(2 + a)n{a)n

where At is given by (6.2).

THEOREM 6.4. The extreme points of the class iΓk(a9 c; a) with (a)J(c)n

> 0 are

(6.18) fk + 1(z) = z - Σ j

(6.19) fn + 1(z) = z - Σ •
ΐ = l

(2)n(2 + α),(α),

iϋ/iere JBJ ίs ^iuen 6^ (6.4).

> k
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§7. Characterization theorems involving the functional / β(f)

Let fβ(f) denote a functional defined by

(7.1) ///)
Zβ

for f(z)es/ and for a real number β > — 1. The functional /β(f), when

/3 e «yΓ, was studied by Bernardi [1]. In particular, the functional JΊif) was

considered earlier by Liber a [5] and Livingston [6].

Remark 7.1. Clearly, /β(f) defined by (7.1) is a particular solution of

the ordinary first-order linear differential equation

tg'(t) + βg(t) = (β + ΐ)f(t)

at the point t = z. Furthermore, by comparing (7.1) and (1.12), we have

/,(/) = J?(β + 2, β + ΐ)f.

Thus, although some of the statements of this section can alternatively

be proved by using this simple relationship together with the obvious fact

that

β + 2 H

our demonstration of the characterization theorems involving the functional

<fβ(f) will b e based upon the following result.

LEMMA 7.1 (Jack [4]). Let w(z) be regular in the unit disk °tt with

w(0) = 0. Then, if \w(z)\ attains its maximum value on the circle \z\ = r

(0 <̂  r < 1) at a point zQ9 we can write

(7.2) ZQW(Z0) = mw(z0) ,

where m is real and m ^ 1.

We now state our first characterization theorem involving the func-

tional fβ(f).

THEOREM 7.1. Let the function f(z) defined by (1.1) by in the class

y{a^ c; a). Then, for β ^ a > —1, /β{f) is also in the class i^{a, c; a).

Proof. Define the function w(z) by

__ 1 - ( 1 + 2a)w(z) ] ( ) χ ]

Then it is clear that w(0) = 0.
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Differentiating both sides of (7.3) logarithmically, we have

(a, c)f β

z[J?(a,c)fβ(f)]' J?(a,c)fβ(f)

2(1 + a)zw'{z)

(1 + 2a)w(z)]

Note that

(7.5) z[J?(a, c)fβ(f)Y = (β + \)<e{a, c)f(z) - β<?(a, c)/β(f) ,

which readily yields

(7.6) z*ma, c)fβ(fψ = (β + ΐ)z[^(a, c)f(z)]' - (β + l

Substituting from (7.5) and (7.6) into (7.4), we have

(7 Ί) (β + l)z[J?(a,c)f(z)]' _ (β + l)^(α, c)f(z)

\se[μ, c)/β(f)Y na, c)/β(f)
2(1 + a)zw'(z)

(1 + 2a)w(z)]

or, equivalently,

(7 g ) (β + l)^f(α, c)f{z) Γ z\<e{a, c)f(z)Y _ z[<?(a, c)f
z[£>(a, c)/β(f)Y L <?{a, c)f(z) <£{a, c)j?β(f)

= _ 2(1 + cc)zw'(z)

(1 + 2a)w(z)]

It follows from (7.5) that

= 1 +
z[J?(a, c)/β(f)Y ^ z[<?{a, c)/β(f)Y

_ (β + 1) - (1 + la - β)w(z)
1 - (1 + 2a)w(z)

which, in conjunction with (7.8), yields

n m ^(a,c)f(z)Y = 1 - (1 + 2a)w(z)
K " ' &(a, c)f(z) 1 + w(z)

2(1 + a)zw'(z)

[1 + w(z)][(β + 1) - (1 + 2a - β)w(z)]

Assume that there exists a point z , e Φ such that

max \w(z)\ = \w(zo)\ = 1 [w(z0) Φ — 1] .
UlSUol
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Then, by using Lemma 7.1, we can write

zow'(zo) = mw(zQ) (m is real and m ^> 1) .

Applying Lemma 7.1 to w(z) at z0, and putting w(zQ) = eiθo (ί = V—~ϊ), we

observe that

(7 Π) Re /4^(α,c)/(zo)y\ = R e ( 1 - (1 + 2a)w(zQ)
I Jί*(α, c)/(*0) i I 1 + κ>(*o)

2(1 + a)mw(z,)- R e ,
\[1 + w(zo)][(β + 1) - (1 + 2a - β)w(zQ)]

= — a — — (1 + a)(β — a)(l + cos ΘQ) ^ — a ,

where, for convenience,

(7.12) Δ = [(β- a)(l + cos θ0) + (1 + 2a - β) sin2 ΘQ]2

+ sin2 βo[(j8 — a) — (1 + 2a: — j8) cos ΘQ]2 .

Clearly, (7.11) contradicts the hypothesis that f(z) e i^(a, c; a). Hence \w(z)\

< 1 for zetf/, which implies that

(7.13) Re [*W*>o)lAΠL\ = Re ( i ^ O ^ - M ^ ) > _ . ,
I <?(a,c)fβ(f) ) I l + w(z) J

that is, that f β{f) e i^(a, c; a). This evidently completes the proof of Theo-

rem 7.1.

COROLLARY 7.1. Let the function f(z) defined by (1.1) be in the class

τr(a, c; a). Then, for β^a> - 1 ,

(7.14) js?(α, c)/β(f) e <f* and fβ(J?(a,c)f(z))e<7*.

Proof The first assertion in (7.14) follows easily from Theorem 7.1.

Noting that

(7.15) ^(α, c)/β(f) = Λ(JS?(α, c)/(z)) ,

we have the second assertion in (7.14).

THEOREM 7.2. Let the function f(z) defined by (1.1) be in the class

τΓ(α, c; a). Then, for β 2> a > — 1, <///) is αZso in ί/ie class iΓ(a, c; α).

Proof Since

(7.16) /(«) e τT(α, c; α ) φ=φ 2/^) e T{af c; a),
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we need only prove that

(7.17) z[

Indeed, with the aid of Theorem 7.1, we observe that

f(z) e 1T(a, c; a) 4=Φ zf\z) e r(a, c; a)

which completes the proof of Theorem 7.2.

COROLLARY 7.2. Let the function f(z) defined by (1.1) be in the class

if {a, c; a). Then, for β^a> - 1 ,

(7.18) &(a,c)/β(f)ejr and fβ(J?(a,c)f(z))eJT.

§ 8. Applications of the fractional calculus operator Ωλ

From among the various definitions of fractional calculus (that is,

fractional derivatives and fractional integrals) given in the literature cited,

we choose to recall here the following definitions which were used recently

by Owa [8] (and by Srivastava and Owa [17]):

DEFINITION 8.1. The fractional integral of order λ is defined, for a

function f(z), by

(8.D z ^

where λ > 0, f(z) is an analytic function in a simply-connected region of

the 2-plane containing the origin, and the multiplicity of (z — ζ)^"1 is

removed by requiring log (z — ζ) to be real when z — ζ > 0.

DEFINITION 8.2. The fractional derivative of order λ is defined, for a

function f(z), by

(8.2) D\f(z) = * A. Γ
Γ ( l — λ) dz J o— λ) dz J o (z — ζ)λ

where 0 ̂  λ < 1, f(z) is an analytic function in a simply-connected region

of the £-plane containing the origin, and the multiplicity of (z — ζ)~λ is

removed as in Definition 8.1 above.

DEFINITION 8.3. Under the hypotheses of Definition 8.2, the fractional

derivative of order n + λ is defined by

https://doi.org/10.1017/S0027763000000854 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000854


ANALYTIC FUNCTIONS 25

(8.3) DΓλf(z) = -^Dlf(z) >

where 0 ^ λ < 1, and n € ̂  U {0}.

Following the lines of Owa and Srivastava [9], we introduce the linear
operator Ωλ defined by

(8.4) Ωi = Γ(2 - λ)z^f(z) (λ<l)

for functions f(z) belonging to the class s/. Note that

(8.5) Ωλf = JS?(2, 2 - λ)f (λ < 1)

for functions f(z) defined by (1.1). Further, we define

(8.6) Qf=

and

(8.7) Ωnf - Ω(Ωn'xf) = Sen{% ΐ)f

with, of course, Ω°f = /(z). Then it is easily observed that

(8.8) Ωn+λf = β"(βY) = J^(2,1)^(2, 2 - λ)f = βA(βw/)

for /I < 1 and π, e J^.

We begin by proving

THEOREM 8.1. Let the function f(z) defined by (1.26) be in the class

-To(2, 2 - i; a) for λ < 1. Then

(8.9) nwwi

(8Λ0)

/or ^ e f . TΛe reswte (8.9) and (8.10) are

Proof Since /(z) e τT0(2, 2 - λ\ a), the definition of τT0(2, 2 - Λ; a) and

(8.5) give

(8.11) flY - J?(2, 2-λ)fe ria) .

Now the assertions (8.9) and (8.10) of Theorem 8.1 follow immediately from

(8.4) and Corollary 3.2.
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The results (8.9) and (8.10) are sharp for the function

/a io\ f(~\ _ ~ (1 + a)(2 — X) 2

(8.12) f(z) _ z - 2 ( 2 + α ) *

Similarly, we have

THEOREM 8.2. Let the function f(z) defined by (1.26) be in the class

τΓ0(2, 2 - λ; a) for λ < 1. Then

and

/or z e t . ΓΛβ results (8.13) αrcd (8.14) are sharp for the function

(8.15) f(z) = 2 - (1 + «X2 ~ i) g 2 .
4(2 + a )

THEOREM 8.3. Let λ<l. Then

(8.16) £

Proof. If /(β) e iT(2, 2 - λ; a), then

Hence we have

(8.17) ΩXW(2, 2-λ;oc)CL Ψ~(a) .

Applying the linear operator =S?(2, 1) in (8.17), and using (1.4), we observe

that

(8.18) if(2, ί)Ω'W(2, 2-λ a) C f ( a ) ,

which implies (8.16).

COROLLARY 8.1. Let λ < 1. Then

(8.19) Ω1+iiΓ0(2, 2-λ;a)d Πa) .

COROLLARY 8.2. Let λ<l. Then

(8.20) ΛI+1#"t(2, 2 - a α) drT^a).

Next we prove
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THEOREM 8.4. Let λ < 1. Then

(8.21) ΩλiΓ(l, 2 - λ; a) C y(α) .

Proo/. Since f(z) e 7Γ(1, 2 - λ; a) implies that f(z) e J£?(2 - Λ,

we have

(8.22) β ' τ r ( l , 2-λ\a)<Z

= JSf(2, 2 -

= JSf(2, l)τT(α) - τT(α) ,

by using the properties of the linear operator involved.

COROLLARY 8.3. Let λ < 1. jΓ/ιeτι

(8.23) Ωλ1T0(l, 2-λ;a)d rT0(a) .

COROLLARY 8.4. Let λ < 1. Then

(8.24) β'τr*(l, 2 - λ; a) C ^ Λ ( α ) .

Finally, we prove the following theorem involving generalized hyper-

geometric functions.

THEOREM 8.5. Let λ < l . Then

(8.25) zq+2Fq+ί(2, , 2, 2; 1, . . ., 1, 2 - λ; z) e β«+ 1 + i(^*(i) Π ̂ ) .

Proof. Note that

(8.26) zq+2Fq+ι& , 2, 2; 1, . . , 1, 2 - λ; z)

= ^ + 1 ( 2 , l ) J δ f ( 2 , 2 - ^ ( l , l ; 2;)

= β ^ 1 + ^ ( l , l ; « ) ,

where 0(1, 1; 2) is defined by (1.10). It is easy to show that

(8.27) 0(1, l;z)e<?*(ϊ)Π JT ,

which obviously completes the proof of Theorem 8.5.
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