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Nexuses, sphalerons, and fractional
topological charge

8.1 Introduction to nexuses and junctions

So far, it may appear that center vortices are embedded Abelian objects. But center
vortices can be extended to non-Abelian objects in several ways. We describe
two: the first we call junctions, representing the merging and branching of vortex
lines (or sheets, in d = 4) without the necessity of monopole-like objects called
nexuses; the second are nexuses themselves [1, 2, 3, 4], which are modifications of
’t Hooft–Polyakov monopoles but with their magnetic flux bundled into tubes that
are parts of center vortices. The most interesting property of nexuses is that, along
with center vortices, they admit the formation of quantum lumps of nonintegral
topological charge [5, 6, 7, 8, 9, 10].1 Nexuses do not change the picture of
confinement given in this book in any material way, although this is not completely
obvious. But they enter in a crucial way into a reinterpretation of Polyakov’s [12]
discussion of confinement in the d = 3 Georgi–Glashow model, as we indicate at
the end of this section [2, 13].

Note that we continue to use the notation of Chapter 7. All sections are in Euclidean
space, except for Section 8.3.2, which is in Minkowski space.

8.1.1 Junctions

Junctions are thick points (d = 3) or lines (d = 4) where a vortex can branch into
other vortices [14, 15]. It is easy to draw them in d = 3, where they look like
vacuum Feynman graphs. Figure 8.1 shows a simple example with four junctions
in SU (3), where three lines meet at each junction (up to N lines can meet at an
SU (N) junction, each associated with a distinct flux matrix Qj ).

1 In SU (2), sphalerons (see Section 8.3) can carry half-integral topological charge [11] as lines that form when
an ordinary instanton is split in half and the halves are pulled apart.
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168 Nexuses, sphalerons, and fractional topological charge

2 23 3

1

1

Figure 8.1. A junction and an antijunction in SU (3). The numbers labeling the
lines are the values of the index i in the flux matrix Qi of each vortex line.

Suppose that one of the loops with lines labeled 2 and 3 meets the line labeled 1
at the origin 0. In the neighborhood of the origin, the junction term of the gauge
potential is

Ai(x) = 2π

i
εijk∂j

3∑
a=1

∫
0
dz(a)k Qa {M [z(a) − x] −0[z(a) − x]}, (8.1)

where the Qa are the three k = 1 matrices of SU (3) discussed earlier.2 Because∑3
Qj = 0, the objection to open vortex lines, raised in Section 7.4.2, no longer

applies; the would-be monopole charge, which is the sum of the Qi , vanishes.
For N > 3, there are configurations where some of the lines have higher flux: a
k-vortex arises from associating a sum Q1 +Q2 + · · · with a single line integral.3

Because of this feature, junction lines are not topologically stable, but they can
be entropically stable because the total configurational entropy of two or more
junction lines is greater than the entropy of a fewer number. Whether they actually
are entropically stable depends on a comparison of action and entropy, which we
do not attempt here.

Every junction has an action above and beyond the action per length of the vortices
to which it is attached. Generally, this action depends on the geometry of the
junction (e.g., it vanishes if lines 2 and 3 of Figure 8.1 are collapsed into one).
The case in which the three junction lines meet at right angles has the d = 3 value
2πm/g2 [1].

8.1.2 Nexuses, magnetic charge, and topological charge

In NAGTs where all gluons have mass (not necessarily equal, so we contem-
plate Higgs–Kibble effects here, as in the Georgi–Glashow model), the radially

2 Note that the lines are oriented, and they either all go in or all go out of the junction at the origin. We need not
specify the upper limits of integration, which are irrelevant to the present discussion.

3 For SU (3), there is no nontrivial junction with k > 1.
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8.1 Introduction to nexuses and junctions 169

Figure 8.2. An SU (2) nexus, showing two tubes of field lines.

symmetric long-range magnetic field of the ’t Hooft–Polyakov monopole is
squeezed into two or more flux tubes, as shown in Figure 8.2. These flux tubes,
which must close either at infinity or on an antinexus, have magnetic flux quantized
in the center of the gauge group, just as for center vortices, and for exactly the same
reason: gluon wave functions must be single valued on transport around one of the
tubes. In fact, these tubes are nothing but pieces of center vortices, divided up by
closed nexus and antinexus world lines. So in the simplest case of two flux tubes,
each tube has the same �1 homotopy exemplified in Eq. (7.40), except that each
tube has a different representative of the set of matrices Qj (k). It will turn out that
the total flux of the two tubes together is just that of a ’t Hooft–Polyakov monopole
for every SU (N ).

The field lines from the nexus shown in Figure 8.2 must close, which requires the
presence of an antinexus. So a simple d = 4 case of a center vortex with nexuses
is a torus, with a nexus world line and an antinexus world line (nonintersecting)
wrapped around it. These world lines effectively divide the center vortex into
regions of different orientation; the center vortex as a whole is nonorientable. This,
it turns out, is crucial to the formation of topological charge.

Let us reduce the topological charge to its topological essentials by saving only the
long-range pure-gauge parts of vortices and nexuses, which have singular fields on
their Dirac surfaces and lines. There are several ways to think of this topological
charge:

1. It is formed when a nexus world line links to a center-vortex surface
[7, 8, 9, 10, 16].

2. It is measured by the usual
∫
GG̃ topological charge integral, which can be

interpreted both as the signed intersection number of nonorientable surfaces
and as the vortex-nexus linking number [7, 8, 9, 10, 16]. A special case of
this occurs when vortices carry twist or writhe [5, 6, 7, 8, 9, 10, 16].

3. It can be interpreted in terms of a monopole magnetic charge, as defined
by a standard integral of the type

∫ �B · d�S over a closed two-sphere [17].

In all cases, the topological charge is divided into nonintegral parts. Generically, two
closed surfaces intersect in an even number of points4; in this case, the topological

4 The points actually have an extension of size ∼1/m if we save short-range parts of the gauge fields.
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170 Nexuses, sphalerons, and fractional topological charge

charge associated with each such point is quantized in units of 1/N , but the total
charge is integral if the surfaces are compact. Later we will see that self-intersection
effects from twist and writhe [18] can lead to topological charge that is nonintegral
but otherwise of any size.

Standard textbooks say that topological charge is manifested through instantons,
which are compact lumps of integrally quantized topological charge. Actually, there
is no reason for any given compact lump of topological charge to have any particular
value, integral or otherwise. It may (and does) happen that the compact lumps carry
nonintegral charge, but in such a way that the global topological charge, integrated
over all Euclidean four-space, is an integer. This integrality result, however, is not
automatic but depends on the assumption of compactification of the three-space
bounding d = 4 space at infinity to a three-sphere S3. The gauge potentials carrying
topological charge now involve a map from the three-sphere to these potentials.
The gauge group SU (N) is either SU (2) or has SU (2) as a proper subgroup, and
SU (2) is topologically equivalent to S3. So these maps are just maps of S3 to S3.
Another way of speaking of these maps is through the homotopy

�3(SU (2)) ∼ Z. (8.2)

This one is easy; it just says that all maps of S3 onto itself consist of an integral
number of wrappings of one sphere onto another.5 So in a d = 4 space whose
boundary can be compactified, the total topological charge has to be an integer.
However, this does not require that compact lumps of topological charge have
integral charge, as instantons do, and we have already seen that nonintegral lumps
do exist in the forms of nexus-vortex intersections and related objects. Global com-
pactification simply requires that the sum of all the charges, integral or nonintegral,
be an integer.

8.2 Nexuses in SU (N)

8.2.1 The SU(2) nexus

The first step [1, 16] is to find the gauge representative of an SU (2) nexus in d = 3.
There are infinitely many choices; a simple one is

U = exp
[ i

2
φ�τ · r̂

]
, (8.3)

where the �τ are Pauli matrices and other symbols have their usual meaning. Later
we will see that the generalization to SU (N) is quite straightforward. From this

5 Because any SU (N ) has SU (2) as a subgroup, it turns out that �3(SU (N )) � Z for all N , so our arguments
about integrality of topological charge apply for all gauge groups.
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8.2 Nexuses in SU (N ) 171

gauge representative, we can find the Dirac-string fields; they are

1

2
εijkGij = −

(τ3

2i

)
ẑiε(z)2πδ(x)δ(y). (8.4)

These differ crucially from the corresponding Abelian expression by the factor
ε(z), showing that the field lines reverse direction at the origin, which is where this
Dirac nexus sits.

This Dirac nexus is beginning to show features like those of the nexus in Figure 8.2.
To find the appropriate kinematics, form the gauge representative Ai → U∂iU

−1,
and by inspection, choose for the full potential

Aj = εjak

2i
τar̂k[F − 1 +G cosφ] + 1

2i
(τi − r̂iτ · r̂)G sinφ + φ̂j

τ · r̂
2i

B1, (8.5)

with

F = F (ρ, z); G = G(ρ, z); B1 = B1(ρ). (8.6)

The function B1 carries the thick flux tube of the center vortex (but with oppositely
directed flux on the two halves of the z-axis), and so this kinematics describes a
compound of a thick center-vortex flux tube and the nearly pointlike core of the
nexus, just as in Eq. (7.21):

B1 = 1

ρ
−mK1(mρ). (8.7)

Choose boundary conditions to make the gauge potential approach the pure gauge
based on the gauge representative of Eq. (8.3):

ρ, z → ∞ : F → 0, G → −1 (8.8)

ρ, z → 0: F → +1, G → 0.

There is no analytic solution to these coupled, nonlinear, partial differential equa-
tions, and no one has yet solved them numerically. However, there is a simple and
useful variational approximation [1] using trial functions with a single variational
parameter λ:

F = λ2

λ2 + r2
; G = − ρr

λ2 + ρr
. (8.9)

These obey the correct boundary conditions. To find the nexus energy, calculate
the entire Hamiltonian with these functions and subtract from it the energy of the
pure vortex. One finds, after carrying out the usual variational steps, a nexus energy
3.22(4πm)/g2.

https://doi.org/10.1017/9781009402415.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.009


172 Nexuses, sphalerons, and fractional topological charge

8.2.2 The SU(N) nexus

All this generalizes to SU (N), although (just as with junctions) there are many
new geometries. Note that a nexus, as the boundary between two regions of a
vortex with differing field strengths, cannot have its tubes of chromomagnetic field
separated into two bundles arbitrarily. It is essential that a center vortex decorated
with a nexus give rise to precisely the same element of the center group, as found
by transporting the gauge representative around a closed curve linking with the
vortex for each flux tube. So for any nexus that has exactly two flux tubes, as in
Figure 8.2, if one of the tubes carries flux matrix Q1, e.g., then the other must carry
another Qj (and similarly for higher-flux matrices).

An elementary calculation shows that for any two choices of Qk, their difference
Qi −Qj is a Pauli matrix τ3 for an embedded SU (2). This means that all entries
are zero, except for one +1 (in the j th position along the diagonal) and one −1 (in
the ith position). So we can write, e.g.,

Q1 = −1

2
τ3 + R(12), Q2 = 1

2
τ3 + R(12),

R(12) = diag

(
−1

2
+ 1

N
,−1

2
+ 1

N
,

1

N
, . . .

)
. (8.10)

The matrix R12 commutes with the generators of the embedded SU (2). Now it is
elementary to find a gauge representative of a two-tube nexus:

U = e(iφτ ·̂r/2)eiφR(12), (8.11)

where, of course, the Pauli matrices are in the embedded SU (2). The magnetic
charge of the nexus can be identified with the eigenvalues of the embedded τ3,
which are ±1, as would be required for a ’t Hooft–Polyakov monopole.

8.2.3 Nexus magnetic charge

How do we detect the nexus magnetic charge and relate it to topological charge?
Because there is a strong connection between the nexus and the ’t Hooft–Polyakov
monopole, the procedure [17] somewhat resembles that for the ’t Hooft–Polyakov
monopole. The main difference is that there is no Higgs–Kibble field for the
nexus in a QCD-like theory. In the ’t Hooft–Polyakov monopole, the presence
of this Higgs–Kibble field in the adjoint of SU (2) breaks the gauge symmetry to
SU (2)/U (1), a space homotopic to the two-sphere S2, and the surviving long-range
magnetic field can be identified with, say, the 3 direction in group space. After a
suitable projection onto this unbroken U (1) subspace, the magnetic charge of the
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21

2

Figure 8.3. The inner black dot represents a nexus that we label A, and the lines
represent its associated flux tubes with fluxes described by Q1,2. The outer circle
represents the plain vortex surface B with flux described by Q2.

’t Hooft–Polyakov monopole is measured through the integral∫
�

d�S · �B = Qmag, (8.12)

where� is an arbitrary closed surface surrounding the monopole; the integral yields
an integral magnetic charge Qmag. This corresponds to the homotopy that maps
this broken gauge group onto the two-sphere:

�2(SU (2)/U (1)) = �2(S2) = Z, (8.13)

where Z is the group of integers.

There is a sense in which nexuses also display this homotopy, although this is
suspicious because there is no symmetry breaking for the nexus for QCD-like
theories, and the homotopy �2(G) is trivial for every non-Abelian gauge group
G. What in fact happens is that nexuses really display topological charge and the
homotopy above [17] is simply a disguised form of the usual topological charge
integral:

Qtopo = − 1

16π2

∫
d4x TrGμνG̃μν. (8.14)

We evaluate this integral for the generic intersection of the static nexus already
displayed with Dirac fields G(A)

μν (see Eq. (8.4)) and a plain center vortex that we
call (B), as in Figure 8.3. The static nexus is the horizontal line with incoming flux
matrix Q1 on the left and −Q2 on the right. The center vortex surface (B) is a
closed surface with the topology of S2 characterized by the matrix Q2. The vortex
and the nexus intersect at two points, and these are where the topological charge
density is located. The topological charge of the overlap between (A) and (B) is

Qtopo = − 1

8π2

∫
d4x Tr G̃(B)

μν G(A)
μν = 1

4π i

∫
dσμν TrQ2G(A)

μν , (8.15)
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174 Nexuses, sphalerons, and fractional topological charge

where in the second equality, we replaced G̃(B)
μν by its Dirac-surface form. For

SU (2), there are only two Q-matrices: Q1 = −Q2 = τ3/2. Clearly, this second
equality is precisely the magnetic charge integral Qmag, which we now see is equal
to Qtopo; both are equal to unity.

For general SU (N), give nexus (A) the Q-matrices Qa,Qc, and give the vortex
(B) the Q-matrix Qb. Now the trace factor is

TrQb (Qa −Qc) = δab − δcb. (8.16)

This, of course, has only the integral values 0,±1, vanishing if b is not equal to
either a or c. The topological charge depends very much on the surface surrounding
the nexus, unlike the purely artificial surface used to define the magnetic charge
of a ’t Hooft–Polyakov monopole. As advertised, the total topological charge is
integral, with a fractional charge of TrQbQa = δab − (1/N ) at the crossing of flux
line a with the vortex surface. All this can be generalized to more complicated
vortices and nexuses, but we will not do that here.

8.2.4 Topological charge as an intersection number
for nonorientable vortex surfaces

Here we display the intersection number form of Qtopo [7, 8, 9, 10, 16]. Start with
the vortex field strength in the Dirac-surface limit:

GA
μν(x) = 2πQA

i

∫
dσ̃ A

μν(z) δ(x − z(A)), (8.17)

where QA is one of the flux matrices Q and dσ̃ A
μν(z) is the dual surface element

for the surface A characteristic of the vortex. The standard topological charge of
Eq. (8.14) is, in terms of the sum of vortex field strengths,

Qtopo =
∑
A,B

Tr(QAQB)I (A,B), (8.18)

where I (A,B) is an intersection number:

I (A,B) = εμναβ

∫
1

2
dσA

μν

1

2
dσB

αβ δ(z(A) − x(B)). (8.19)

The intersection number is ±1 for every transverse intersection of a point on surface
A with a point on surface B (transverse means that the normals to the surfaces at
the point of intersection span Euclidean four-space).

We are on the road to getting lumps of fractional topological charge localized at the
intersection points because the trace factor Tr(QAQB) always has a denominator
of N for SU (N). Unfortunately, at this stage of the game, we always get zero
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Figure 8.4. Two closed oriented lines in d = 2 have a total intersection number
of zero because the two intersections have opposite orientation and cancel.

Figure 8.5. Two closed lines in d = 2, one with an SU (2) nexus-antinexus pair.
They have a total intersection number of 1 because the two intersections have the
same orientation.

from Eq. (8.18) [7, 8, 9, 10, 16, 17]. The reason is that when two closed oriented
surfaces intersect, the total intersection number is zero. One can see this from the
corresponding geometry in two dimensions, as shown in Figure 8.4. We will give
a formal proof that the total intersection number is zero in d = 4 very shortly.

For any pair of ordinary vortices, we can factor out the trace factor in Eq. (8.18),
and then the resulting charge is zero. So intersections do not seem very promising
for generating topological charge. We can fix the problem by remembering nexuses
that in effect change the Q matrices, while preserving the group-center element
associated with a vortex as one moves around a given vortex surface. The simplest
case to illustrate is SU (2), where a nexus simply changes the orientation of the
chromomagnetic flux. Figure 8.5 shows two intersecting, two-dimensional closed
curves, but this time, the one on the left has a nexus and an antinexus, reversing the
orientation at each. The plain curve, on the right, encloses (is linked to) the nexus,
and because the orientation reverses on passing the nexus, the intersection numbers
are +1 at both intersections. The Q-trace is 1/2, and now the topological charge is
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176 Nexuses, sphalerons, and fractional topological charge

1/2 + 1/2 = 1. The topological charge is still localized at the intersection points
and is fractional at these points, but the total topological charge is unity.

The same thing – appearance of lumps of topological charge quantized in units of
1/N , with integral total charge – happens in d = 4 and for any SU (N) [5, 6, 7,
8, 9, 10, 16, 17]. Look at the simplest case, where a single nexus world line on
one vortex is linked to a closed vortex with no nexuses. Nexus world lines that
are unlinked contribute nothing and are omitted. With this understanding, write the
dual field strength of vortex A with nexuses as a sum:

G̃A
μν(x) = 2πQa

i

∫
Sa

dσμν δ(x − z(σ )) + 2πQb

i

∫
Sb

dσμν δ(x − z(σ )), (8.20)

where Sa is a surface bounded by the closed nexus world line � on one side, and
Sb is a surface bounded by the same world line on the other side. These boundaries
have opposite orientation, in the sense that

∂Sa = � ∂Sb = −�. (8.21)

Equation (8.20) is not literally correct because terms that exhibit the corresponding
antinexus world line, and possibly other nexuses and antinexuses, are omitted.
However, they are irrelevant to the topological charge if they are not linked to
the surface of the second vortex. This equation has another flaw: taken literally, it
violates the Bianchi identities. This is because there really is no mathematically
accurate way of modeling a nexus as an Abelian object; it is essentially non-
Abelian. One overcomes this Bianchi identity problem by smoothing the transition
from Qa to Qb over a region of size ∼1/m, as in the nexus; this smoothing has no
effect on topological properties coming from long-range effects.

Let AC
μ(x) be the Dirac-singular part of the gauge potential of a second vortex with

no nexuses. Its Dirac gauge potential is an integral over a closed surface Sc:

AC
μ(x) = −2πQc

i
εμναβ

∮
Sc

1

2
dσ ′

αβ 0(x − y(σ ′)). (8.22)

The topological charge is expressible as a linking between the vortex and the nexus
world line, completely analogous to the linking of a vortex and a Wilson loop
responsible for confinement. The Gauss formula for linking vortex surface Sc and
the closed nexus world line � is familiar from confinement:

Lk =
∮
�

dzμεμναβ

∮
Sc

1

2
dσ ′

αβ ∂ν0(z − y(σ ′)). (8.23)
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1 3

N 5

1 4

2

Figure 8.6. An SU (N ) nexus split intoN lines. The circle labeled 2 schematically
represents the plain vortex (B) of the text, and the vortex flux lines emerge from
the nexus (A). The intersections of the lines and the circle are points of topological
charge density.

Next, we show that the topological charge is essentially this link number by applying
Stokes’s theorem. Consider the expression

Qtopo = 1

2π i

∮
�

dxμ Tr
[
(Qa −Qb)A

C
μ(x)

]
(8.24)

for the topological charge. Using Stokes’s theorem on Eq. (8.24) yields an expres-
sion that is easily converted into the fundamental topological charge integral of
Eq. (8.14), evaluated with the field strengths from Eq. (8.20) and the curl of
Eq. (8.22). The minus sign in the trace factor comes from the opposite orientations,
as given in Eq. (8.21).

We can also conclude from Eq. (8.24) that the total intersection number of closed
oriented surfaces is zero by replacing the individual trace factors TrQaQc and
TrQbQc by unity.

We have earlier seen how to divide topological charge into parts 1 − (1/N ) and
1/N . Is it possible to divide this topological charge further intoN constituents, each
of charge 1/N? The answer is yes. In the center vortex of Figure 8.3, decompose
the flux matrix Q2 on the right-hand side (rhs) of the nexus as

Q2 = −Q1 −Q3 · · · −QN, (8.25)

and associate a flux tube with each of the terms in this equation, as shown in
Figure 8.6.

Each intersection of a line coming from the nexus (A) with the circle (B) is a point
of topological charge 1/N , with the sum being unity, as before. Is it probable that
an elementary nexus would split into N lines, as shown? Not if action alone were
the only consideration because the N lines each have an action per unit area the
same as that of the two lines of an elementary nexus. But as we have learned,
entropy is equally important, so this N -line splitting should not be less probable
than a 2-line nexus.
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Figure 8.7. A curve turned into a ribbon by adding the curve of the dotted line.

How might one see the effect of fractional topological charge, especially because
topological charge is integrally quantized globally? Perhaps the most important
way is to study the topological susceptibility χ , which is quadratic in Qtopo. This
is defined as χ = 〈Q2

topo〉/V4, where V4 is the volume of space-time. Witten [19]
and Veneziano [20] have given a large-N formula relating the η′ mass to χ , which
suggests that the vacuum energy as a function of the θ -angle depends not on θ but
on θ/N , as topological charge fractionation would give. This is discussed further
in [16].

But topological charge fractionation into units of 1/N is, unfortunately, not the
whole story. Center vortices need not intersect at points to generate nonintegral
topological charge; they can do so by twist and writhe [5, 6, 7, 8, 9, 10, 16, 17].

Twist and writhe An ordinary two-dimensional ribbon can link to itself (in d = 3)
by twist and writhe, which means by deformations such that the two edges of the
ribbon would be linked (knotted) if the rest of the ribbon were missing.6 Twist and
writhe contribute to the Chern–Simons number in somewhat the same way that
intersections contribute to the topological charge [5, 6, 7, 8, 9, 10]; that is, for a
vortex with twist, writhe, or both, the integral for NCS in Eq. (8.31) is nonvanishing,
and this integral need not be integral or a multiple of 1/N .

Intuitively, twist comes from forming this ribbon from a long, open paper strip then
twisting one end a certain number of times before closing the strip by joining one
end to the other. (A half twist leads to a nonorientable Möbius strip not considered
here.) For a mathematical curve, twist and writhe need further definition, which
can be done by supplying the curve with an infinitesimally close partner, as shown
in Figure 8.7. The combination forms a ribbon whose twist and writhe are well
defined but not unique (they depend on the partner curve).

6 See Kaufmann [18] for general properties of knots and related subjects.
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Figure 8.8. A d = 3 projection of a center vortex with writhe.

Writhe seems intuitively to be different from twist, but it is not. Figure 8.8 shows
a closed curve with writhe. Playing with actual paper ribbons will show that twist
and writhe are interconvertible without tearing the paper.

Topological charge can be generated from twist and writhe only if there is a
difference in the Chern–Simons number at two boundaries that we can identify
as referring to (Euclidean) times of ±∞ so that if the vortex is to change its
Chern–Simons number, it must reconnect by crossing itself. This crossing may be
essentially Abelian and easily envisaged by imagining a motion picture of a closed
loop crossing itself, or it can be essentially non-Abelian and call for a deeper level
of visualization.

Consider, then, the closed Dirac string of a d = 3 vortex. There is a famous theorem
of such d = 3 knotted curves,

Lk = Tw +Wr, (8.26)

where Lk, a topological number and an integer, is the self-linking number, and
the terms on the right, neither of which is an integer or of topological character,
are the twist Tw and writhe Wr , respectively. The integral that defines Lk is just
the one used earlier (see Eq. (7.41)) for the linkage of two distinct curves but with
only one curve in it:

Lk =
∮
�

dxi

∮
�

dx ′
j εijk∂k0(x − x ′). (8.27)

With just one curve �, it is inevitable that the points where x = x ′ are possibly
singular. Some form of regulator is needed. The standard one is ribbon framing, as
in Figure 8.7. The original curve is turned into a ribbon by adding a second curve
�′ infinitesimally separated from � and not intersecting it; the self-link number is
defined as the Gauss link integral for these two nonintersecting curves. So �′ is the
first curve displaced by an infinitesimal amount:

�′ : x ′
i(s) = xi(s) + εni(s), (8.28)
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where ε is infinitesimal and ni(s) is a unit-vector field. The self-link number is
defined as the mutual link number of � and �′. This is, to be sure, an integer and a
topological invariant, but it depends on this new unit-vector field.

This ribbon framing would not make sense for real-world center vortices because
we have no good way of defining the framing, and even the topologically invariant
self-link is only defined modulo integers that depend on the framing. But real-
world center vortices have a finite thickness, as we know. This thickness removes
all ambiguity from the limiting process of defining self-linkage. The idea [5] is to
write the Chern–Simons number, which is the same as the linking number, for a
vortex using both the massive and the massless propagators that occur in the vortex
wave function. It then turns out that the Chern–Simons number for a plain unit-flux
vortex becomes

NCS = TrQ2
i

∮
�

dxi

∮
�

dx ′
j εijk∂k0(x − x ′)F (M|xi − x ′

i |), (8.29)

where

F (u) = 1

2

∫ u

0
dv v2e−v. (8.30)

For small u, F (u) ∼ u3, and this is more than enough to cancel the singularities at
xi = x ′

i in the rest of the integrand in Eq. (8.29). Since F (∞) = 1, vortex segments
that are far apart contribute as usual to the Chern–Simons number, and nothing is
changed.

The topological charge contained between two time slices is the difference between
two Chern–Simons numbers. For a gauge potential on a fixed-time slice, this
number is

NCS = − 1

8π2

∫
d3x εijkTr

(
Ai∂jAk + 2

3
AiAjAk

)
. (8.31)

This number is not gauge invariant; under the gauge transformation

Ai → UAiU
−1 + U∂iU

−1, (8.32)

we find

NCS → NCS + 1

8π2

∫
d3x εijkTr

[
1

3
U−1∂iUU

−1∂jUU
−1∂kU − ∂i(AjU

−1∂kU )

]
.

(8.33)

If the original gauge potential is zero, so that we are calculating the Chern–Simons
number of a pure gauge transformation, the integral in Eq. (8.33) is supposed to
be an integer, as prescribed by the homotopy of Eq. (8.2). However, this requires
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an extra assumption: that the three-space over which one integrates the Chern–
Simons density is compact, which means that the gaugeU (�x) approaches a constant
independent of direction as r → ∞. There seems to be no elementary physical
reason for assuming compactness, and in Section 8.3, devoted to the sphaleron, we
examine this assumption further (the sphaleron naturally hasNCS = 1/2, seemingly
violating compactness).

Nexuses in the Georgi–Glashow model In a famous paper, Polyakov [12]
explained confinement in the d = 3 Georgi–Glashow model as due to ’t Hooft–
Polyakov monopoles, with a long-range spherically symmetric magnetic field,
thereby exemplifying dual superconductivity as a confining mechanism. (The
Georgi–Glashow model is an SO(3) NAGT coupled to a Higgs–Kibble field in
the adjoint representation, which gives masses to two charged gauge bosons, leav-
ing the third one, which we call the photon, massless.) In fact [2, 13], confinement
in the Georgi–Glashow model is actually an example of center-vortex confinement
with asymmetric nexuses, whose world lines lie in center-vortex sheets, as we have
already shown for QCD-like gauge theories with no symmetry breaking. Polyakov
works in the limit v � g3, where v is the Higgs–Kibble VEV and g3 is the gauge
coupling. In this, the semiclassical limit, the ’t Hooft–Polyakov monopole has a
very large action. Because there must be a monopole condensate, Polyakov points
out that a Meissner mass is induced for the photon, just as in ordinary super-
conductivity. This mass, however, is exponentially small in v/g3 and is ignored
by Polyakov, who then can claim that the semiclassical excitations of the gauge
field are indeed ’t Hooft–Polyakov monopoles. But as long as v is finite, the ’t
Hooft–Polyakov monopole becomes a nexus because its magnetic field can no
longer be long range. The size of the nexus is exponentially large and, at distances
scaled by other parameters of the theory, looks very much like a ’t Hooft–Polyakov
monopole. Nonetheless, as a matter of principle, for (fundamental representation)
Wilson loops that are large compared to the nexus thickness, confinement is by
the center vortices in which the nexus is embedded. This becomes clear [13] as
the VEV v is reduced; at some point, when v ≤ g3, the Higgs–Kibble mass of the
charged gauge bosons, proportional to vg3, is too small to avoid infrared instabil-
ity, a dynamical gauge-boson mass of O(g2

3) is induced, and the nexus (and center
vortices) begin to look like the symmetrical ones of a QCD-like theory.

8.3 The QCD sphaleron

There are three gauge-field configurations known as sphalerons. Usually the word
sphaleron7 refers to a massive spherically symmetric d = 3 electroweak soliton

7 Coined by Klinkhamer and Manton [21].
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with a gauge-boson mass driven by a Higgs field [22]. The sphaleron’s topological
properties were first noted for electroweak theory by Manton [22], where it
occurred as a classical saddlepoint on a noncontractible loop in the d = 3 + 1
configuration space of gauge potentials, describing the top of the tunneling barrier
of minimum energy between vacua with topological charges differing by unity.
There is another sphaleron in classical NAGTs corresponding to the saddlepoint at
the top of the potential barrier tunneled through by instantons. This classical object
is massless but has an arbitrary length scale set by the collective size coordinate of
its associated instanton.

There is also a quantum sphaleron in QCD-like NAGTs [23] that differs from
both of the preceding sphalerons while retaining the saddlepoint character; we call
it the QCD sphaleron. The gauge-boson mass is dynamical, there is no Higgs–
Kibble field, and there is no symmetry breaking. The QCD sphaleron has a fixed
size determined by the gluon mass, and this size actually corresponds to an upper
limit for the size of instantons and sphalerons. This sort of upper size limit is
routinely seen in computer simulations in which instantons are identified and built
into models [24] of the instanton liquid, where the size scale corresponds to a
mass of 600 MeV. The QCD sphaleron may exist transiently as some sort of glue
ball, and it also is a mediator between charge-changing events but not of the usual
topological charge. Instead, the charge associated with the QCD sphaleron is that
of the color-singlet axial current, giving the change in the flavor sum of chiralities.

Both the classical sphaleron and the QCD sphaleron can be embedded in Euclidean
four-space (d = 4) or in Minkowski space (d = 3 + 1), and these embeddings will
be the emphasis in the present chapter. (Chapter 9 discusses the sphaleron as a d = 3
object more fully.) In d = 4, the classical sphaleron is a cross section of an instanton
that solves the classical field equations. In d = 3 + 1, there is no known embedding
in a solution of the field equations, but one can find embeddings that have all the
desired properties of an evolution of topological charge in Minkowski time t

[25, 26] and define a corresponding Chern–Simons number NCS(t). By symmetry
of the tunneling process from topological charge zero to charge unity, we should
assign a Chern–Simons number or topological charge of 1/2 to the sphaleron
and describe the tunneling, in Minkowski time, as a smooth evolution of NCS(t)
from 0 to 1, passing through 1/2 at the top of the barrier. In the course of this
smooth evolution, NCS is clearly nonintegral because it gets contributions from
gauge potentials that are not pure gauge with nonvanishing field strengths. Like
the other solitons we discuss, the QCD sphaleron is fundamentally a d = 3 object
but is unstable in isolation. After discussing this basic QCD sphaleron, we defer to
Chapter 9 for further discussion of the QCD sphaleron as a pure d = 3 object and
will show [27] that, considered purely as a d = 3 object, the NCS = 1/2 sphaleron

https://doi.org/10.1017/9781009402415.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.009
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is closely connected to the properties of knots or closed d = 1 strings, embedded
in three dimensions, that are linked.

There are many potential physical applications of sphalerons, both in electroweak
theory and in QCD. Some arise through the connection, via the anomaly, of topo-
logical charge and the divergence of a current. In electroweak theory, this current
is the sum of the baryonic (B) and leptonic (L) current and leads to B + L vio-
lation. In QCD, the current with an anomalous divergence is the UA(1) current,
and helicity conservation is violated. In both cases, the violations have a tunnel-
ing interpretation. Sphaleronic configurations are also important in estimating the
(lack of) overlap at high energy between few-particle states and many-particle
states; see the references in Chapter 9. It would take almost another book to detail
such applications.

8.3.1 The QCD sphaleron as a d = 3 object

The ansatz for the gauge function U of the sphaleron is the well-known one for
spherically symmetric solitons,

U = exp
[ i

2
β(r)�τ · r̂

]
, (8.34)

differing from Eq. (8.3) of the nexus only in the choice of a rotation angle, which for
the sphaleron is radially symmetric. Forming the pure-gauge representative Ai →
U∂iU

−1, we infer the standard kinematics for spherically symmetric solitons:

Aj = εjak

2i
τar̂k

[
φ1(r) − 1

r

]
− 1

2i
(τj − r̂j τ · r̂)

[
φ2(r)

r

]
+ r̂j

τ · r̂
2i

H1(r). (8.35)

The boundary conditions are as follows:

φ1(∞) = cosβ(∞); φ2(∞) = − sinβ(∞); H1 → dβ

dr

∣∣∣∣
r=∞

. (8.36)

For future reference (see Chapter 9), we note that the Chern-Simons number of
U is

NCS{U } = 1

2π
[β(∞) − β(0)]. (8.37)

The equations of motion have a finite-energy solution [23] for the special choice
β(r) = π . There is no analytic solution, but there is an analytic approximation
[11, 23] based on a variational approach that gives excellent agreement with numer-
ical calculations. Use the trial functions

φ1(r) = a2 − r2

a2 + r2
; β = π ; φ2 = H1 = 0, (8.38)
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where the length a is a variational parameter. Of course, the true φ1 + 1 vanishes
exponentially as r → ∞, but our trial wave function vanishes only like 1/r2. The
variational mass turns out to be 5.44(4πm/g2), which is within half a percent of
the numerical answer, in which 5.44 is replaced by 5.41.8

One might think that if β is a half-integral multiple of π, the CS number is also a
half-integral. But Eq. (8.37) shows that NCS vanishes. Only when we embed this
sphaleron in a d = 3 + 1 context will we find a Chern–Simons number of 1/2.
In any event, we can change the Chern–Simons number arbitrarily by making a
spherical gauge transformation, although at the price of foregoing compactness.

As a solution of the spherical field equations, this β = π sphaleron is an extremum,
but it is a saddlepoint and therefore has a maximum for some parameters in a space
orthogonal to a space in which the minimum lies (in our case, this space is just
the space of the trial parameter a). For example, Ref. [11] exhibits trial functions
yielding finite energy and having β = β0 for any fixed angle β0. Let φ1c be the
exact solution for the β = π sphaleron, and define

φ ≡ φ1 + iφ2 = 1

2
(1 + φ1c) + 1

2
eiβ0 (1 − φ1c). (8.39)

Also, take H1 = 0. The new φ obeys the boundary conditions of Eq. (8.36) with
β = β0, and the associated gauge potential, constructed from φ − 1, smoothly
changes toward zero as β0 → 0 mod 2π . The trial mass function is

Ms(β0) = 1

2
(1 − cosβ0)Ms(β0 = π ), (8.40)

where Ms(β0 = π ) is the sphaleron mass. So there is a maximum at β0 = π , and
smoothly reducing β0 to zero reduces the soliton to nothing.

8.3.2 Sphalerons in four-dimensional Minkowski space

There is a very simple but apparently accurate description [25, 26] of this minimum-
height barrier that has only one dynamical degree of freedom, a simple scalar
function of time called λ(t). It nicely extends the trial function of Eq. (8.38) to
time-dependent configurations. Bitar and Chang [25] suggested that the standard
expressions for a classical instanton could be used in Minkowski space with the
simple replacement of t by λ(t) and the insertion of λ̇(t) at a particular place. These
expressions, in terms of the spherically symmetric space components of Eq. (8.35),
are

φ1 = λ2 + a2 − r2

λ2 + a2 + r2
; φ2 = −2λr

λ2 + a2 + r2
; H1 = 2λ

λ2 + a2 + r2
. (8.41)

8 Warning: in Cornwall [26], an incorrect value was used in place of 5.44. This paper also has several typos.
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To this list, we add a time component of the gauge potential,

A0 ≡ 1

2i
�τ · x̂ H2; H2 = −2λ̇

λ2 + a2 + r2
, (8.42)

and take β = 2 arctan(r/λ). This choice for β is equivalent to making a spherical
gauge transformation of the d = 3 spherical decomposition by an angle α = −π +
2 arctan(r/λ) that carries λ as a parameter with no particular dynamical significance
in d = 3.

If λ is replaced by t , these expressions are exactly those for an instanton in d = 4
of size a, which is arbitrary for the classical instanton. However, for the QCD
sphaleron and its embedding, a has a different interpretation and is determined
by the gluon mass m. As in Bitar and Chang, these embedding functions for the
QCD sphaleron are used in Minkowski space, not Euclidean space. Of course, in
Minkowski space, they are neither solutions of the equations of motion nor self-
dual, but they are still useful because they represent the tunneling barrier itself
quite accurately. Because λ in some sense is a replacement for time t , we require
that λ be an odd function of t and monotone increasing in t , and we impose the
conditions

λ(−∞) = −∞; λ(0) = 0; λ(+∞) = ∞. (8.43)

We have, consistent with the oddness in t of λ, λ̇(0) = 0 at the time t = 0, repre-
senting the top of the barrier, where A0 vanishes according to our ansatz. Then, at
t = 0 (i.e., λ = 0), the Bitar–Chang potentials reduce to the d = 3 trial function
already used in Eq. (8.38) for the QCD sphaleron plus the specification β = π .
The minimum QCD sphaleron barrier height at t = 0 is the sphaleron energy, and
the saddlepoint nature of the sphaleron becomes evident because (see Eq. (8.44)
below) as time increases, the energy decreases.

For the QCD sphaleron, we treat a as a variational parameter to be determined
from the massive effective Hamiltonian. This Hamiltonian comes from inserting
the full ansatz into the d = 3 + 1 action analogous to the d = 4 massive effective
action Seff and stripping off a time integral. It is not quite the same as the static
HamiltonianHeff of Eq. (7.7) because there are contributions from the λ̇ terms. The
result [26] has the form

Hs = Heff + λ̇2

2g2
μ(λ, a,m) − λ2

2g2
κ(λ, a,m). (8.44)

The first term on the right is the static (potential) energy Heff at λ = λ̇ = 0, and
μ, κ are positive integrals [26] over the Bitar–Chang potentials and fields. The
sphaleron mass Ms is simply the extremal value of Heff . At t = 0, extremalization
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of Heff leads to

a =
√

3

2m
; Ms = 4

√
3πm

g2
. (8.45)

The saddlepoint instability of the sphaleron is evident in the negative sign for the
potential coefficient κ .

The Chern–Simons number varies smoothly with t from 0 at t = −∞ to 1 at
t = +∞. The total topological charge has the expression

Qtopo = − 1

4π2

∫
d4x Tr �E · �B

= 24a4

π

∫ ∞

0
dr r2

∫ ∞

−∞
dλ

1

(λ2 + r2 + a2)4
= 1. (8.46)

The integral to the top of the barrier (λ = 0) gives topological charge 1/2, as
expected, consistent with Eq. (8.37).

Now change variables from λ to a new variable angular q(t) = f (λ(t)), chosen
so that the kinetic energy in the Hamiltonian has the simple form q̇2/(2I ), with a
q-independent moment of inertia and with the angular properties q(t = −∞) =
0, q(t = +∞) = 2π . This has been done numerically [26], and the resulting poten-
tial looks very much like the pendulum potential ∼1 − cos q. The sphaleron is the
static but unstable point q = π with the pendulum standing on end.

The parameter β0 introduced in Eq. (8.39) for the trial wave function, considered a
function of time, is both (approximately) the phase variable q for the upside-down
pendulum and the angle to be used in NCS (see Eq. (8.37)).

8.4 Chiral symmetry breakdown, nexuses,
and fractional topological charge

Chiral symmetry breaking (CSB) for quarks in QCD is closely related to con-
finement and (via the Atiyah–Singer theorem) a condensate of topological charge.
Arguments were given long ago [28, 29, 30] that confinement was sufficient for
CSB. These works were based on a variety of phenomenological models of confine-
ment, not center vortices. Later, lattice simulations showed [31] that center vortices
(and nexuses) were not only sufficient but also necessary for quark CSB: there
was both confinement and CSB in the presence of center vortices, but when center
vortices were removed from the simulation, not only did confinement disappear,
but CSB disappeared also, as shown in Figure 8.9.

Moreover, simulations show that the CSB transition temperature, at which chiral
symmetry is restored, is very close to the deconfinement transition temperature,
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Figure 8.9. Graph of the quark condensate 〈ψ̄ψ〉 versus quark mass mq , showing
CSB at mq = 0 if center vortices are present (curve marked “Original”) but not
if they are removed (curve marked “Modified”). Reprinted with permission from
P. de Forcrand and M. D’Elia, Phys. Rev. Lett. 82 (1999) 4582, c© 1999 by the
American Physical Society.

above which center vortices are unable to confine (e.g., see Chapter 9 and Cheng
et al. [32]). This, too, suggests that confinement is necessary for CSB for quarks
because if there were another significant mechanism, it might show up once con-
finement was out of the picture.

In the picture of center vortices and nexuses supported by gluon-mass generation, it
is easy to see how this happens. Center vortices give confinement, as we know, and
nexuses, plus vortex twist and writhe, give topological charge and CSB. Removing
center vortices takes away all these effects because nexus world lines are required
to live on center vortices.

The Atiyah–Singer theorem and the Banks–Casher relation [33] (showing that CSB
requires a condensate of fermionic zero modes associated by the Atiyah–Singer
theorem with topological charge) say that there should be fermionic zero modes
(solutions of the massless Dirac equation) localized near the topological charge
produced by vortex-nexus linking. Some appropriate zero modes have been found
for just such linkings [34]. Clearly, when vortices are removed in lattice simulations,
such zero modes, and apparently the whole fermionic condensate, should vanish.

On the other hand, confinement is not always necessary for CSB. Dirac fermions9

in the adjoint representation show CSB [35, 36, 37] on the lattice, and of course,
the adjoint representation is not confined. Some other mechanism must be at work,

9 Not Majorana fermions, so supersymmetry is not an issue. In fact, Majorana fermions are impossible in
Euclidean space.
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which may be well approximated by a conventional gap equation based on one-
gluon Feynman graphs. The gluon is coupled to the adjoint with a strength 9/4
times its coupling to quarks, so it can happen that the gap equation breaks CSB
for the adjoint but not for quarks, depending on the size of αs(0) [38]. The PT
estimates for αs(0) are in a range where just this happens [39, 40].

It is only recently that powerful lattice algorithms for chiral quarks have come
into widespread use, and so there still remains much to be done in confirming
the dominant role of center vortices and nexuses in CSB for quarks. However, all
present indications are favorable.
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