INDECOMPOSABLE REPRESENTATIONS OF THE EUCLIDEAN ALGEBRA $\mathfrak{e}(3)$ FROM IRREDUCIBLE REPRESENTATIONS OF $\mathfrak{s l}(4, \mathbb{C})$

ANDREW DOUGLAS ${ }^{\boxtimes}$ and JOE REPKA

(Received 26 July 2010)

Abstract

The Euclidean group $E(3)$ is the noncompact, semidirect product group $E(3) \cong \mathbb{R}^{3} \rtimes \mathrm{SO}(3)$. It is the Lie group of orientation-preserving isometries of three-dimensional Euclidean space. The Euclidean algebra $\mathfrak{e}(3)$ is the complexification of the Lie algebra of $E(3)$. We embed the Euclidean algebra $\mathfrak{e}(3)$ into the simple Lie algebra $\mathfrak{s l}(4, \mathbb{C})$ and show that the irreducible representations $V(m, 0,0)$ and $V(0,0, m)$ of $\mathfrak{s l}(4, \mathbb{C})$ are $\mathfrak{e}(3)$-indecomposable, thus creating a new class of indecomposable $\mathfrak{e}(3)$-modules. We then show that $V(0, m, 0)$ may decompose.

2010 Mathematics subject classification: primary 17B10; secondary 17B20.
Keywords and phrases: Euclidean algebra, indecomposable representations, Lie algebra embedding.

1. Introduction

The Euclidean group $E(3)$ is the noncompact, semidirect product group $E(3) \cong$ $\mathbb{R}^{3} \rtimes \mathrm{SO}(3)$. It is the Lie group of orientation-preserving isometries of threedimensional Euclidean space. The Euclidean algebra $\mathfrak{e}(3)$ is the complexification of the Lie algebra of $E(3)$. Its finite-dimensional irreducible representations are not very interesting, but classifying its indecomposable representations remains a significant challenge. We remind the reader that a representation is irreducible if it has no proper subrepresentations. It is indecomposable if it is not isomorphic to a direct sum of two nonzero subrepresentations.

Although a full classification of $\mathfrak{e}(3)$-indecomposable representations remains elusive, constructing large classes of indecomposable representations that may be classified is a viable option. Towards this end, in the current paper we embed the Euclidean algebra $\mathfrak{e}(3)$ into the simple Lie algebra $\mathfrak{s l}(4, \mathbb{C})$ and examine certain irreducible representations of $\mathfrak{s l}(4, \mathbb{C})$ to determine whether or not they remain indecomposable upon restriction to $\mathfrak{e}(3)$ under this embedding.

[^0](C) 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

This direction of research has been pursued, for instance, by Douglas and Premat [3], who showed that irreducible $\mathfrak{s l}(3, \mathbb{C})$-modules remain $\mathfrak{e}(2)$ indecomposable, and later by Casati et al. [2], who established that irreducible $\mathfrak{s l}(3, \mathbb{C})$ - and $\mathfrak{s o}(5, \mathbb{C})$-modules remain indecomposable modules of the Diamond Lie algebra under appropriate embeddings. The Diamond Lie algebra is a central extension of the Poincaré Lie algebra in two dimensions.

In the current paper, we show that the irreducible representations $V(m, 0,0)$, and $V(0,0, m)$ of $\mathfrak{s l}(4, \mathbb{C})$ remain $\mathfrak{e}(3)$-indecomposable for all nonnegative integers m, thus creating a new class of $\mathfrak{e}(3)$-indecomposable modules. We then present examples in low dimension, based upon which we will conjecture that $V(0, m, 0)$ is not indecomposable for any nonnegative integer m.

The paper is organized as follows. In Section 2 we describe the basis and commutation relations of $\mathfrak{e}(3)$. Section 3 records information about the simple Lie algebra $\mathfrak{s l}(4, \mathbb{C})$, and its irreducible representations that will be employed in the following section. In Section 4 we embed $\mathfrak{e}(3)$ into $\mathfrak{s l}(4, \mathbb{C})$, and show that the $\mathfrak{s l}(4, \mathbb{C})$ irreducible representations $V(m, 0,0)$ and $V(0,0, m)$ remain $\mathfrak{e}(3)$-indecomposable under this embedding. The final section includes the presentation of examples illustrating the decomposition of $V(0, m, 0)$.

2. The Euclidean algebra $\mathfrak{e}(3)$

The Euclidean algebra $\mathfrak{e}(3)$ is the complexification of the Lie algebra of the Euclidean Lie group E (3). For a more detailed discussion of $E(3)$, and the calculation of its Lie algebra we refer the reader to [5]. The Euclidean algebra $\mathfrak{e}(3)$ has basis $E, H, F, P_{0}, P_{ \pm}$, and nonzero commutation relations,

$$
\begin{align*}
& {[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H,} \\
& {\left[H, P_{ \pm}\right]= \pm 2 P_{ \pm}, \quad\left[E, P_{0}\right]=-P_{+}, \quad\left[F, P_{0}\right]=-P_{-} \text {, }} \tag{2.1}\\
& {\left[F, P_{+}\right]=-2 P_{0}, \quad\left[E, P_{-}\right]=-2 P_{0} .}
\end{align*}
$$

One can easily see that $\langle E, H, F\rangle \cong \mathfrak{s l}(2, \mathbb{C})$, and that $\left\langle P_{0}, P_{ \pm}\right\rangle$is an abelian ideal of $\mathfrak{e}(3)$.

3. The simple Lie algebra $\mathfrak{s l}(4, \mathbb{C})$ and its irreducible representations

The special linear algebra $\mathfrak{s l}(4, \mathbb{C})$ is the 15 -dimensional Lie algebra of traceless 4×4 matrices with complex entries. It is the simple Lie algebra of type A_{3}. Let $\left\{x_{i}, y_{i}, h_{j}, 1 \leq i \leq 6,1 \leq j \leq 3\right\}$ be the Chevalley basis of $\mathfrak{s l}(4, \mathbb{C})$ defined by

$$
\begin{align*}
& a h_{1}+b h_{2}+c h_{3}+d x_{1}+e x_{2}+f x_{3}+g x_{4}+h x_{5}+i x_{6} \\
& +d^{\prime} y_{1}+e^{\prime} y_{2}+f^{\prime} y_{3}+g^{\prime} y_{4}+h^{\prime} y_{5}+i^{\prime} y_{6} \\
& \quad=\left(\begin{array}{cccc}
a & d & -g & i \\
d^{\prime} & b-a & e & -h \\
-g^{\prime} & e^{\prime} & c-b & f \\
i^{\prime} & -h^{\prime} & f^{\prime} & -c
\end{array}\right) \tag{3.1}
\end{align*}
$$

For $i=1,2$, or 3 , define $\Lambda_{i} \in \mathfrak{h} *$ by $\Lambda_{i}\left(h_{j}\right)=\delta_{i j}$. For each $\lambda=m_{1} \Lambda_{1}+m_{2} \Lambda_{2}+$ $m_{3} \Lambda_{3} \in \mathfrak{h} *$ with nonnegative integers m_{1}, m_{2}, m_{3} there exists a finite-dimensional irreducible $\mathfrak{s l}(4, \mathbb{C})$-module $V\left(m_{1}, m_{2}, m_{3}\right)$ which can be realized as the quotient of the universal enveloping algebra $\mathcal{U}(\mathfrak{s l}(4, \mathbb{C}))$ by the left ideal J_{λ}, generated by $x_{i}, h_{i}-\lambda\left(h_{i}\right), y_{i}^{1+\lambda\left(h_{i}\right)}, 1 \leq i \leq 3$ (here the action of $\mathcal{U}(\mathfrak{s l}(4, \mathbb{C})$) on itself and on $V\left(m_{1}, m_{2}, m_{3}\right)$ is given by left multiplication). We will denote the element $1+J_{\lambda}$ of $V\left(m_{1}, m_{2}, m_{3}\right)$ by v_{λ}, or simply v if there is no ambiguity.

We describe here a basis of irreducible $\mathfrak{s l}(4, \mathbb{C})$ representations due to Littelman [7] (as reported in [1] in a more general setting).

THEOREM 3.1 [7]. For nonnegative integers m_{1}, m_{2}, m_{3}, let $V\left(m_{1}, m_{2}, m_{3}\right)$ be the finite-dimensional irreducible representation of $\mathfrak{s l}(4, \mathbb{C})$ with highest weight $\lambda=$ $m_{1} \lambda_{1}+m_{2} \lambda_{2}+m_{3} \lambda_{3}$. Then the following is a basis of $V\left(m_{1}, m_{2}, m_{3}\right)$:

$$
\begin{equation*}
\mathcal{B}_{\lambda}=\left\{y_{1}^{\left(a_{1}^{1}\right)} y_{2}^{\left(a_{2}^{2}\right)} y_{1}^{\left(a_{1}^{2}\right)} y_{3}^{\left(a_{3}^{3}\right)} y_{2}^{\left(a_{2}^{3}\right)} y_{1}^{\left(a_{1}^{3}\right)} v\right\}, \quad \text { where } y_{i}^{(a)}=\frac{y_{i}^{a}}{a!} \text {, } \tag{3.2}
\end{equation*}
$$

subject to the following constraints:

$$
\begin{gather*}
0 \leq a_{1}^{3} \leq m_{1}, \\
a_{1}^{3} \leq a_{2}^{3} \leq m_{2}+a_{1}^{3}, \\
a_{2}^{3} \leq a_{3}^{3} \leq m_{3}+a_{2}^{3}, \tag{3.3}\\
0 \leq a_{1}^{2} \leq m_{1}-2 a_{1}^{3}+a_{2}^{3}, \\
a_{1}^{2} \leq a_{2}^{2} \leq m_{2}+a_{1}^{3}+a_{1}^{2}-2 a_{2}^{3}+a_{3}^{3}, \\
0 \leq a_{1}^{1} \leq m_{1}-2\left(a_{1}^{3}+a_{1}^{2}\right)+a_{2}^{3}+a_{2}^{2} .
\end{gather*}
$$

The $\mathfrak{s l}(4, \mathbb{C})$ irreducible representations $V(m, 0,0)$, and $V(0,0, m)$ are the focus of the current paper. Note that $V(m, 0,0) \cong V(0,0, m)^{*}$. In the special case $V(m, 0,0)$, the basis relations of Equation (3.3) for $\mathcal{B}_{(m, 0,0)}$ reduce to

$$
\begin{align*}
& 0 \leq a_{1}^{3}=a_{2}^{3}=a_{3}^{3} \leq m, \\
& 0 \leq a_{1}^{2}=a_{2}^{2} \leq m-a_{1}^{3}, \tag{3.4}\\
& 0 \leq a_{1}^{1} \leq m-a_{1}^{3}-a_{1}^{2} .
\end{align*}
$$

The following lemma will be used below.
LEMMA 3.2. Suppose that $0 \leq a+b+c \leq m$. Then the element $y_{1}^{a} y_{4}^{b} y_{6}^{c} v \in V$ (m, $0,0)$ is a nonzero scalar multiple of the element $y_{1}^{(a)} y_{2}^{(b)} y_{1}^{(b)} y_{3}^{(c)} y_{2}^{(c)} y_{1}^{(c)} v \in \mathcal{B}_{(m, 0,0)}$.
Proof. From Equation (3.4), we can see that the element $y_{1}^{(a)} y_{2}^{(b)} y_{1}^{(b)} y_{3}^{(c)} y_{2}^{(c)} y_{1}^{(c)} v$ with $0 \leq a+b+c \leq m$ is a member of $\mathcal{B}_{(m, 0,0)}$.

We first show that $y_{2}^{b} y_{1}^{b} y_{6}^{c} v$ is a nonzero scalar multiple of $y_{4}^{b} y_{6}^{c} v$. Since $\left[y_{1}, y_{6}\right]=$ $\left[y_{2}, y_{6}\right]=\left[y_{4}, y_{6}\right]=0$, it suffices to show that $y_{2}^{b} y_{1}^{b} v$ is a nonzero scalar multiple of $y_{4}^{b} v$. Let $b=1$; using the fact that $y_{2} v=0$, we obtain

$$
\begin{equation*}
y_{2} y_{1} v=-y_{4} v . \tag{3.5}
\end{equation*}
$$

Assume that $y_{2}^{i} y_{1}^{i} v=-\alpha_{i} y_{4}^{b} v$ for all i such that $1 \leq i \leq b-1<m$, with α_{i} a nonzero scalar. Then, using $\left[y_{2}, y_{4}\right]=0$ and $\left[y_{1}, y_{2}\right]=y_{4}$,

$$
\begin{align*}
y_{2}^{b} y_{1}^{b} v & =y_{2}^{b-1} y_{1} y_{2} y_{1}^{b-1} v-\alpha_{b-1} y_{4}^{b} v \\
& =y_{2}^{b-2} y_{1} y_{2}^{2} y_{1}^{b-1} v-2 \alpha_{b-1} y_{4}^{b} v \\
& \vdots \tag{3.6}\\
& =y_{2} y_{1} y_{2}^{b-1} y_{1}^{b-1} v-(b-1) \alpha_{b-1} y_{4}^{b} v \\
& =-\alpha_{b-1} y_{4}^{b} v-(b-1) \alpha_{b-1} y_{4}^{b} v \\
& =-b \alpha_{b-1} y_{4}^{b} v .
\end{align*}
$$

We now show that $y_{3}^{c} y_{2}^{c} y_{1}^{c} v$ is a nonzero scalar multiple of $y_{6}^{c} v$, proceeding by induction on c. If $c=1$, using the fact that $y_{2} v=y_{3} v=0$,

$$
\begin{equation*}
y_{3} y_{2} y_{1} v=-y_{3} y_{4} v=-y_{6} v \tag{3.7}
\end{equation*}
$$

Assume that $y_{3}^{i} y_{2}^{i} y_{1}^{i} v=\beta_{i} y_{6}^{i} v$ for all i such that $1 \leq i<c<m$, where β_{i} is an nonzero scalar. We show that it holds for $i=c$. Note that from the above work we have $y_{2}^{c} y_{1}^{c} v=\alpha y_{6}^{c} v$ for a nonzero scalar α, and that $\left[y_{3}, y_{6}\right]=0$, so

$$
\begin{align*}
\frac{1}{\alpha} y_{3}^{c} y_{2}^{c} y_{1}^{c} v & =y_{3}^{c} y_{4}^{c} v \\
& =y_{3}^{c-1} y_{4} y_{3} y_{4}^{c-1} v-\beta_{c-1} y_{6}^{c} v \\
& =y_{3}^{c-2} y_{4} y_{3}^{2} y_{4}^{c-1} v-2 \beta_{c-1} y_{6}^{c} v \tag{3.8}\\
& \vdots \\
& =y_{3} y_{4} y_{3}^{c-1} y_{4}^{c-1} v-(c-1) \beta_{c-1} y_{6}^{c} v \\
& =-c \beta_{c-1} y_{6}^{c} v
\end{align*}
$$

We have shown that $y_{3}^{c} y_{2}^{c} y_{1}^{c} v$ is a nonzero scalar multiple of $y_{6}^{c} v$, and that $y_{2}^{b} y_{1}^{b} y_{6}^{c} v$ is a nonzero scalar multiple of $y_{4}^{b} y_{6}^{c} v$, from which the result follows.

4. Representations of $\mathfrak{e}(3)$ from irreducible representations of $\mathfrak{s l}(\mathbf{4}, \mathbb{C})$

We may embed $\mathfrak{e}(3)$ into $\mathfrak{s l}(4, \mathbb{C})$ as follows:

$$
\begin{align*}
\phi: \mathfrak{e}(3) & \hookrightarrow \mathfrak{s l}(4, \mathbb{C}) \\
E & \mapsto x_{2}+x_{6} \\
H & \mapsto h_{1}+2 h_{2}+h_{3} \\
F & \mapsto y_{2}+y_{6} \tag{4.1}\\
P_{+} & \mapsto-2 x_{4} \\
P_{0} & \mapsto x_{1}-y_{3} \\
P_{-} & \mapsto 2 y_{5} .
\end{align*}
$$

In this section we will show that $V(m, 0,0)$, and $V(0,0, m)$ are $\mathfrak{e}(3)$-indecomposable under the embedding ϕ. Since $V(0,0, m)^{*} \cong V(m, 0,0)$, the following proposition reduces this to showing that $V(m, 0,0)$ is $\mathfrak{e}(3)$-indecomposable.
Proposition 4.1. Suppose that V is a finite-dimensional representation of $\mathfrak{e}(3)$. Then V is indecomposable if and only if its dual (that is, contragredient) V^{*} is indecomposable.
Proof. Suppose that the representation V decomposes: $V=V_{1} \oplus V_{2}$. Then it is easy to see that the natural decomposition $V^{*}=V_{1}^{*} \oplus V_{2}^{*}$ of vector spaces is in fact a decomposition of representations. The converse follows from the fact that $V^{* *} \cong V$.

The following lemmas will be used to establish the indecomposability of $V(m, 0,0)$ and $V(0,0, m)$ in Theorem 4.6 below.

Lemma 4.2. Let v be the maximal vector of $V(m, 0,0)$, and $0 \leq i+j+k \leq m$; then

$$
\begin{gather*}
H \cdot y_{1}^{i} y_{4}^{j} y_{6}^{k} v=(m-2(j+k)) y_{1}^{i} y_{4}^{j} y_{6}^{k} v, \tag{4.2}\\
E \cdot y_{1}^{i} y_{4}^{j} y_{6}^{k} v=\eta_{1}(i, j, k) y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v+\eta_{2}(i, j, k) y_{1}^{i+1} y_{4}^{j-1} y_{6}^{k} v, \tag{4.3}\\
P_{+} \cdot y_{1}^{i} y_{4}^{j} y_{6}^{k} v=\eta_{+}(i, j, k) y_{1}^{i} y_{4}^{j-1} y_{6}^{k} v, \tag{4.4}\\
P_{0}^{i} \cdot y_{1}^{i} v=\Pi_{t=1}^{i} t(m-t+1) v, \tag{4.5}
\end{gather*}
$$

where

$$
\begin{gather*}
\eta_{1}(i, j, k)=k(m-i-j-k+1), \quad \eta_{2}(i, j, k)=-j, \tag{4.6}\\
\eta_{+}(i, j, k)=-2 j(m-i-j-k+1) \tag{4.7}
\end{gather*}
$$

Proof. We prove only Equations (4.2) and (4.3). The other equations are proved in a similar fashion. Since $\left[H, y_{1}\right]=0,\left[H, y_{4}\right]=-2 y_{4}$, and $\left[H, y_{6}\right]=-2 y_{6}$, Equation (4.2) follows from a simple count of weights:

$$
\begin{equation*}
H \cdot y_{1}^{i} y_{4}^{j} y_{6}^{k} v=(m-2(j+k)) y_{1}^{i} y_{4}^{j} y_{6}^{k} v \tag{4.8}
\end{equation*}
$$

Since

$$
\begin{aligned}
& {\left[E, y_{1}\right]=x_{5}, \quad\left[E, y_{4}\right]=x_{3}-y_{1}, \quad\left[E, y_{6}\right]=h_{1}+h_{2}+h_{3},} \\
& {\left[x_{5}, y_{1}\right]=\left[x_{5}, y_{4}\right]=0, \quad\left[x_{5}, y_{6}\right]=-y_{1} \quad \text { and } \quad\left[x_{3}, y_{6}\right]=y_{4},}
\end{aligned}
$$

we have

$$
\begin{aligned}
E \cdot y_{1}^{i} y_{4}^{j} y_{6}^{k} v= & y_{1}^{i} E y_{4}^{j} y_{6}^{k} v+i y_{1}^{i-1} y_{4}^{j} x_{5} y_{6}^{k} v \\
= & y_{1}^{i} y_{4}^{j} E y_{6}^{k} v+j y_{1}^{i} y_{4}^{j-1} x_{3} y_{6}^{k} v-j y_{1}^{i+1} y_{4}^{j-1} y_{6}^{k} v-i k y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v \\
= & \sum_{l=0}^{k-1} y_{1}^{i} y_{4}^{j} y_{6}^{l} h_{1} y_{6}^{k-1-l} v+\sum_{l=0}^{k-1} y_{1}^{i} y_{4}^{j} y_{6}^{l} h_{3} y_{6}^{k-1-l} v \\
& \quad-j k y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v-j y_{1}^{i+1} y_{4}^{j-1} y_{6}^{k} v-i k y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v
\end{aligned}
$$

$$
\begin{align*}
= & \left(k m-k^{2}+\frac{k(k+1)}{2}\right) y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v \\
& \quad+\left(-k^{2}+\frac{k(k+1)}{2}\right) y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v \\
& \quad-j k y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v-j y_{1}^{i+1} y_{4}^{j-1} y_{6}^{k} v-i k y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v \tag{4.9}\\
= & \left(k m-k^{2}+k-j k-i k\right) y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v-j y_{1}^{i+1} y_{4}^{j-1} y_{6}^{k} v \\
= & k(m-k+1-j-i) y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v-j y_{1}^{i+1} y_{4}^{j-1} y_{6}^{k} v \\
= & \eta_{1}(i, j, k) y_{1}^{i} y_{4}^{j} y_{6}^{k-1} v+\eta_{2}(i, j, k) y_{1}^{i+1} y_{4}^{j-1} y_{6}^{k} v .
\end{align*}
$$

This concludes the proof.
Lemma 4.3 .

$$
\begin{equation*}
\operatorname{dim}(V(m, 0,0))=\sum_{i=0}^{\lfloor m / 2\rfloor}(m-2 i+1)^{2} \tag{4.10}
\end{equation*}
$$

where $\lfloor m / 2\rfloor$ is the largest integer less than or equal to $m / 2$.
Proof. Recall Weyl's character formula for the dimension of $V(\lambda)$ [6]:

$$
\begin{equation*}
\operatorname{dim}(V(\lambda))=\frac{\Pi_{\alpha>0}\langle\lambda+\delta, \alpha\rangle}{\Pi_{\alpha>0}\langle\delta, \alpha\rangle} \tag{4.11}
\end{equation*}
$$

The positive roots of A_{3} are $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}$, and $\alpha_{1}+\alpha_{2}+\alpha_{3}$. Accordingly, for $\lambda=m \lambda_{1}$, the denominator is $1 \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 3=12$, while the numerator is $(m+1) \cdot 1 \cdot 1 \cdot(m+2) \cdot 2 \cdot(m+3)$. Thus,

$$
\begin{equation*}
\operatorname{dim}(V(m, 0,0))=\frac{(m+1)(m+2)(m+3)}{6} \tag{4.12}
\end{equation*}
$$

It is then not difficult to show that

$$
\begin{equation*}
\frac{(m+1)(m+2)(m+3)}{6}=\sum_{i=0}^{\lfloor m / 2\rfloor}(m-2 i+1)^{2} \tag{4.13}
\end{equation*}
$$

For odd m, this follows easily from the familiar formula

$$
\sum_{k=1}^{N} k^{2}=\frac{N(N+1)(2 N+1)}{6}
$$

Subtracting this result from the whole sum then recovers the result for even m.
Lemma 4.4. The H-maximal vectors that occur in $V(m, 0,0)$ have weights $m-2 M$, where $0 \leq M \leq\lfloor m / 2\rfloor$. A basis for the H-highest weight vectors of H-weight m $-2 M$
is given by

$$
\begin{equation*}
w(M, i)=\sum_{j=0}^{M} \alpha_{j}(M, i) y_{1}^{i+j} y_{4}^{M-j} y_{6}^{j} v, \tag{4.14}
\end{equation*}
$$

for $0 \leq i \leq m-2 M$, where the nonzero scalars $\alpha_{j}(M, i)$ are defined recursively by

$$
\begin{gather*}
\alpha_{M}(M, i)=1 \\
\alpha_{j}(M, i)=\frac{-\alpha_{j+1}(M, i) \eta_{1}(i+j+1, M-j-1, j+1)}{\eta_{2}(i+j, M-j, j)}, \quad 0 \leq j<M . \tag{4.15}
\end{gather*}
$$

Proof. We first show the $w(M, i)$ are linearly independent. First note that, by Lemma 3.2, each summand in $w(M, i)$ is a nonzero basis vector (up to a nonzero scalar multiple) in $\mathcal{B}_{(m, 0,0)}$. By Lemma 4.2, the weight of $w(M, i)$ is $m-2 M$. So it suffices to check that $w(M, i)$ are linearly independent for fixed M, where $0 \leq M \leq\lfloor m / 2\rfloor$, and all i such that $0 \leq i \leq m-2 M$. This, however, follows easily by noting that the leading term $y_{1}^{i} y_{4}^{M} v$ of $w(M, i)$ occurs as a summand in $w\left(M, i^{\prime}\right)$ if and only if $i=i^{\prime}$.

We now check that $E \cdot w(M, i)=0$. Using Lemma 4.2,

$$
\begin{aligned}
& E \cdot w(M, i) \\
&= \sum_{j=0}^{M} \alpha_{j}(M, i) E \cdot y_{1}^{i+j} y_{4}^{M-j} y_{6}^{j} v \\
&= \sum_{j=1}^{M-1} \alpha_{j}(M, i)\left(\eta_{1}(i+j, M-j, j) y_{1}^{i+j} y_{4}^{M-j} y_{6}^{j-1} v\right. \\
&\left.+\eta_{2}(i+j, M-j, j) y_{1}^{i+j+1} y_{4}^{M-j-1} y_{6}^{j} v\right) \\
&+\alpha_{0}(M, i) \eta_{2}(i, M, 0) y_{1}^{i+1} y_{4}^{M-1} v \\
&+\alpha_{M}(M, i) \eta_{1}(i+M, 0, M) y_{1}^{i+M} y_{6}^{M-1} v \\
&=\left(\alpha_{0}(M, i) \eta_{2}(i, M, 0)+\alpha_{1}(M, i) \eta_{1}(i+1, M-1,1)\right) y_{1}^{i+1} y_{4}^{M-1} v \\
&+\sum_{j=1}^{M-1}\left(\alpha_{j}(M, i) \eta_{2}(i+j, M-j, j)\right. \\
&\left.+\alpha_{j+1}(M, i) \eta_{1}(i+j+1, M-j-1, j+1)\right) y_{1}^{i+j+1} y_{4}^{M-j-1} y_{6}^{j} v \\
&+\left(\alpha_{M-1}(M, i) \eta_{2}(i+M-1,1, M-1)\right. \\
&\left.+\alpha_{M}(M, i) \eta_{1}(i+M, 0, M)\right) y_{1}^{i+M} y_{6}^{M-1} v \\
&=\left(\frac{-\alpha_{1}(M, i) \eta_{1}(i+1, M-1,1)}{\eta_{2}(i, M, 0)} \eta_{2}(i, M, 0)\right. \\
&\left.+\alpha_{1}(M, i) \eta_{1}(i+1, M-1,1)\right) y_{1}^{i+1} y_{4}^{M-1} v
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j=1}^{M-1}\left(\frac{-\alpha_{j+1}(M, i) \eta_{1}(i+j+1, M-j-1, j+1)}{\eta_{2}(i+j, M-j, j)}\right. \\
& \times \eta_{2}(i+j, M-j, j) \\
& \left.+\alpha_{j+1}(M, i) \eta_{1}(i+j+1, M-j-1, j+1)\right) y_{1}^{i+j+1} y_{4}^{M-j-1} y_{6}^{j} v \\
& +\left(-\frac{\eta_{1}(i+M, 0, M)}{\eta_{2}(i+M-1,1, M-1)} \eta_{2}(i+M-1,1, M-1)\right. \\
& \left.+\eta_{1}(i+M, 0, M)\right) y_{1}^{i+M} y_{6}^{M-1} v \\
& =0
\end{aligned}
$$

We thus have

$$
\begin{equation*}
\langle w(M, i)\rangle \cong_{\mathfrak{s l}(2, \mathbb{C})} V(m-2 M) \tag{4.16}
\end{equation*}
$$

for each i and M such that $0 \leq M \leq\lfloor m / 2\rfloor$ and $0 \leq i \leq m-2 M$. By linear independence of the $w(M, i)$, we have a direct sum $\mathfrak{s l}(2, \mathbb{C})$-subrepresentation of $V(m, 0,0)$:

$$
\begin{equation*}
\bigoplus_{i=0}^{\lfloor m / 2\rfloor}(m-2 i+1)\langle w(M, i)\rangle \cong_{\mathfrak{s l}(2, \mathbb{C})} \bigoplus_{i=0}^{\lfloor m / 2\rfloor}(m-2 i+1) V(m-2 i) . \tag{4.17}
\end{equation*}
$$

By dimension considerations, Lemma 4.3 and the fact that $\operatorname{dim}(V(m-2 i))=$ $m-2 i+1$,

$$
\begin{equation*}
V(m, 0,0) \cong_{\mathfrak{s l}(2, \mathbb{C})} \bigoplus_{i=0}^{\lfloor m / 2\rfloor}(m-2 i+1) V(m-2 i) \tag{4.18}
\end{equation*}
$$

This concludes the proof.
Lemma 4.5. Suppose that $0 \leq M \leq\lfloor m / 2\rfloor, 0 \leq i \leq m-2 M$. Then

$$
\begin{equation*}
P_{+}^{M} \cdot w(M, i)=\alpha_{0}(M, i)\left(\Pi_{k=1}^{M} \eta_{+}(i, k, 0)\right) y_{1}^{i} v \tag{4.19}
\end{equation*}
$$

Proof. Equation (4.4) of Lemma 4.2 implies that $P_{+}^{M} \cdot y_{1}^{i+j} y_{4}^{M-j} y_{6}^{j} v=0$ for $j>0$ since in this case the exponent of y_{4} is less than M. Further,

$$
P_{+}^{M} \cdot y_{1}^{i} y_{4}^{M} v=\left(\Pi_{k=1}^{M} \eta_{+}(i, k, 0)\right) y_{1}^{i} v
$$

follows from Lemma 4.2. The result follows.
Theorem 4.6. The $\mathfrak{s l}(4, \mathbb{C})$-modules $V(m, 0,0)$ and $V(0,0, m)$ are $\mathfrak{e}(3)$-indecomposable.
Proof. By Proposition 4.1, since $V(m, 0,0)^{*} \cong V(0,0, m)$, it suffices to show that $V(m, 0,0)$ is $\mathfrak{e}(3)$-indecomposable. Suppose that $V(m, 0,0)$ decomposes as
an $\mathfrak{e}(3)$-module:

$$
\begin{equation*}
V(m, 0,0) \cong_{\mathfrak{e}(3)} V \oplus V^{\prime} \tag{4.20}
\end{equation*}
$$

By way of contradiction, suppose that both $V \neq 0$ and $V^{\prime} \neq 0$. Then, by Lemma 4.4, each of V and V^{\prime} contains an H-highest weight vector:

$$
\begin{gather*}
\sum_{i=0}^{m-2 M} \beta_{i} w(M, i) \in V \tag{4.21}\\
\sum_{i^{\prime}=0}^{m-2 M^{\prime}} \beta_{i^{\prime}}^{\prime} w\left(M^{\prime}, i^{\prime}\right) \in V^{\prime}
\end{gather*}
$$

where $0 \leq M, M^{\prime} \leq\lfloor m / 2\rfloor$, and not all β_{i} nor all $\beta_{i}^{\prime \prime}$ are zero.
Let $i_{\text {max }}$ be maximal among i such that $\beta_{i} \neq 0$. Then, using Lemmas 4.2 and 4.5,

$$
\begin{align*}
P_{0}^{i_{\max }} & \cdot\left(P_{+}^{M} \cdot \sum_{i=0}^{m-2 M} \beta_{i} w(M, i)\right) \\
& =P_{0}^{i_{\max }} \cdot\left(\sum_{i=0}^{m-2 M} \beta_{i} \alpha_{0}(M, i)\left(\Pi_{k=1}^{M} \eta_{+}(i, k, 0)\right) y_{1}^{i} v\right) \tag{4.22}\\
& =\beta_{i_{\max }} \alpha_{0}\left(M, i_{\max }\right)\left(\Pi_{t=1}^{i_{\max }} t(m-t+1)\right)\left(\Pi_{k=1}^{M} \eta_{+}(i, k, 0)\right) v
\end{align*}
$$

Hence, since $\beta_{i_{\max }} \alpha_{0}\left(M, i_{\max }\right)\left(\Pi_{t=1}^{i_{\max }} t(m-t+1)\right)\left(\Pi_{k=1}^{M} \eta_{+}(i, k, 0)\right)$ is a nonzero scalar, we see that $v \in V$. Similarly, we may show $v \in V^{\prime}$, a contradiction. Thus it must be the case that $V(m, 0,0)$ is indecomposable.

5. Conclusions

We have shown that the irreducible $\mathfrak{s l}(4, \mathbb{C})$-modules $V(m, 0,0)$ and $V(0,0, m)$ are $\mathfrak{e}(3)$-indecomposable under the embedding described above. However, not all $\mathfrak{s l}(4, \mathbb{C})$-modules are $\mathfrak{e}(3)$-indecomposable, as the following examples illustrate. All the examples were calculated with the assistance of the GAP computer algebra system [4].

The $\mathfrak{s l}(4, \mathbb{C})$ representations $V(0,1,0)$ and $V(0,2,0)$, of dimension 6 and 20 respectively, decompose over $\mathfrak{e}(3)$ as follows:

$$
\begin{align*}
& V(0,1,0) \cong_{\mathfrak{e}(3)}\left\langle y_{2} v-y_{6} v\right\rangle \oplus\left\langle v, y_{1} y_{2} v, y_{5} v, y_{2} y_{6} v, y_{2} y_{6} v\right\rangle, \\
& V(0,2,0) \cong \cong_{\mathfrak{e}(3)}\left\langle y_{2} y_{5} v-y_{5} y_{6} v+y_{5}^{2} v\right\rangle \\
& \oplus
\end{align*}
$$

Based on these examples we conjecture that $V(0, m, 0)$ decomposes for all m. Indecomposability in the general case $V\left(m_{1}, m_{2}, m_{3}\right)$ is less clear. However, it is clear
that a class larger than $V(m, 0,0)$, and $V(0,0, m)$ does remain $\mathfrak{e}(3)$-indecomposable; for instance, the modules $V(1,0,1)$, and $V(1,1,0)$ are $\mathfrak{e}(3)$-indecomposable.

It is also interesting to note that $\mathfrak{e}(3)$ may be embedded into other simple Lie algebras. For instance, we may embed $\mathfrak{e}(3)$ into $\mathfrak{s o}(5, \mathbb{C})$, the simple Lie algebra of type B_{2}. We are currently investigating the irreducible $\mathfrak{s o}(5, \mathbb{C})$ representations restricted to $\mathfrak{e}(3)$. Embedding $\mathfrak{e}(3)$ into $\mathfrak{s l}(4, \mathbb{C})$ was investigated in the present paper since this is a natural generalization of embedding $\mathfrak{e}(2)$ into $\mathfrak{s l}(3, \mathbb{C})$ examined in [3].

Since $\mathfrak{e}(3)$ may be embedded into $\mathfrak{s o}(5, \mathbb{C})$, it naturally embeds into $\mathfrak{s o}(7, \mathbb{C})$, the simple Lie algebra of type B_{3}. An embedding is given by

$$
\begin{align*}
\phi: \mathfrak{e}(3) & \hookrightarrow \mathfrak{s o}(7, \mathbb{C}) \\
E & \mapsto x_{5} \\
H & \mapsto 2 h_{2}+h_{3} \\
F & \mapsto y_{5} \tag{5.2}\\
P_{+} & \mapsto x_{9} \\
P_{0} & \mapsto \frac{1}{2} x_{6} \\
P_{-} & \mapsto x_{1} .
\end{align*}
$$

However, irreducible representations of $\mathfrak{s o}(7, \mathbb{C})$, even in small dimension, appear to $\mathfrak{e}(3)$-decompose as the following examples in dimensions 7, 21 and 8 , respectively, illustrate:

$$
\begin{align*}
& V_{\mathfrak{s o}(7, \mathbb{C})}(1,0,0) \cong_{\mathfrak{e}(3)} \\
& V_{\mathfrak{s o}(7, \mathbb{C})}(0,1,0) \cong_{\mathfrak{e}(3)}\left\langle y_{4} v, y_{6} v, y_{1} y_{9} v\right\rangle \oplus\left\langle y_{4} v, y_{4} v\right\rangle \oplus\left\langle y_{8} v\right\rangle, \\
& \oplus\left\langle y_{8} y_{9} v, y_{8} v, y_{6} v, y_{2} y_{9} v\right\rangle \tag{5.3}\\
& \oplus\left\langle v, y_{5} v, y_{8} v, y_{7} y_{9} v\right\rangle \\
&\left.y_{5} y_{9} v, y_{4} y_{8} v, y_{6} v,-y_{2} y_{6} v, y_{9}^{2}, y_{2} y_{8} v, y_{4} y_{7} v+y_{7} v\right\rangle, \\
& V_{\mathfrak{s o}(7, \mathbb{C})}(0,0,1) \cong_{\mathfrak{e}(3)}\left\langle v, y_{5} v, y_{6} v, y_{9} v\right\rangle \oplus\left\langle y_{3} v, y_{7}, y_{8}, y_{3} y_{9} v\right\rangle .
\end{align*}
$$

Acknowledgements

A.D. would like to thank the Department of Mathematics at the University of Toronto and J.R. for their hospitality and support during the preparation of this paper.

References

[1] P. Casati, 'Irreducible SL_{n+1}-representations remain indecomposable restricted to some abelian subalgebras', J. Lie Theory 20(2) (2010), 393-407.
[2] P. Casati, S. Minniti and V. Salari, 'Indecomposable representations of the Diamond Lie algebra', J. Math. Phys. 51 (2010), 033515.
[3] A. Douglas and A. Premat, 'A class of nonunitary representations of the Euclidean algebra $\mathfrak{e}(2)$ ', Comm. Algebra 35(5) (2007), 1433-1448.
[4] 'GAP - Groups, Algorithms, Programming', Version 4.2, 2000, http://www-gap.des.st-and.ac.uk/~gap.
[5] B. C. Hall, Lie Groups, Lie Algebras, and Representations (Springer, New York, 2003).
[6] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory (Springer, New York, 1972).
[7] P. Littelmann, 'An algorithm to compute bases and representation matrices for $\mathrm{SL}_{n+1^{-}}$ representations', J. Pure Appl. Algebra 117/118 (1997), 447-468.

ANDREW DOUGLAS, Department of Mathematics, New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201, USA
e-mail: adouglas@citytech.cuny.edu
JOE REPKA, Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, ON, Canada M5S 2E4
e-mail: repka@math.toronto.edu

[^0]: The work of A.D. is partially supported by the Professional Staff Congress/City University of New York (PSC/CUNY). The work of J.R. is partially supported by the Natural Sciences and Engineering Research Council (NSERC).

