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Abstract. Some recent results of Khukhro and Makarenko on the existence of
characteristic X-subgroups of finite index in a group G, for certain varieties X, are
used to obtain generalisations of some well-known results in the literature pertaining
to groups G, in which all proper subgroups satisfy some condition or other related to
the property ‘soluble-by-finite’. In addition, a partial generalisation is obtained for the
aforementioned results on the existence of characteristic subgroups.
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1. Introduction. Let F be a free group of countable rank with basis {x1, x2, . . . }.
Then an outer commutator word of weight 1 is x1, and an outer commutator word ω

of weight t > 1 is a word of the form

ω(x1, . . . , xt) = [u(x1, . . . , xr), v(xr+1, . . . , xt)],

where u, v are outer commutator words of weight r, t − r respectively. Let ω be an
outer commutator word of weight t. We denote by Xω the class of groups G satisfying
ω(g1, . . . , gt) = 1 for all g1, . . . , gt ∈ G, i.e. ω(G) = 1.

Some recent results of Khukhro and Makarenko (see especially Lemma 2.1)
establish that, for certain group-theoretic properties Y, the existence of an Y-subgroup
H of finite index in a group G ensures that there is a characteristic Y-subgroup C of
finite index in G. In the present paper we shall use these results to obtain generalisations
of some well-known results on groups G, in which all proper subgroups satisfy certain
conditions, in several cases the condition in question being either ‘almost in the variety
Xω’ for some outer commutator word ω (see for example Theorem 2.4) or ‘Xω-by-
Chernikov’ (see for example Theorem 2.5). We shall also obtain a generalisation
of a result on barely transitive p-groups (see Theorem 2.3). Recall that a group
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of permutations G of an infinite set � is called a barely transitive group if G acts
transitively on � and every orbit of every proper subgroup is finite. Equivalently, G
is barely transitive if G has a subgroup H such that |G : H| is infinite,

⋂
g∈G Hg = 1

and |K : K ∩ H| is finite for every proper subgroup K of G, where the subgroup H
is called a point stabiliser. Finally, in Section 4 of the paper, we obtain some partial
generalisations of the Khukhro–Makarenko results.

We shall use the following notation for the given classes of groups.
A: Abelian groups,
N: Nilpotent groups,
S: Soluble groups,
Sd : Soluble groups of derived length at most d,
C: Chernikov groups,
R: Groups of finite (Prüfer) rank,
F: Finite groups,
D: Divisible (radicable) groups,
T: Periodic groups,
L: (T ∩ D ∩ A)-groups.
We also denote the class of all X-by-Y-groups by XY, and XX-groups by X2.

2. XωC-groups. We will use the following very useful result, referred to here as
the Khukhro–Makarenko theorem.

LEMMA 2.1 ([9, Theorem 1], [11, Theorem 1] or [13]). If a group G has a subgroup
H of finite index n satisfying the identity χ (H) = 1, where χ is an outer commutator
word of weight w, then G has also a characteristic subgroup C of finite (n, w)-bounded
index satisfying the same identity χ (C) = 1.

Before we give an application of Lemma 2.1, we prove the following lemma.

LEMMA 2.2. Let G be a group and let ω be an outer commutator word of weight
t ≥ 2; then G(t−1) ≤ ω(G). In particular,

(i) if ω(G) = 1, then G is in St−1, i.e. Xω ≤ St−1,
(ii) if G is a perfect group, then ω(G) = G.

Proof. We proceed by induction on t. If t = 2, then G(t−1) = G(1) = G′ = ω(G). Now
assume that t ≥ 3; then there exist outer commutator words σ , τ of weight 1 ≤ t1, t2 < t,
respectively, such that t = t1 + t2 and ω = [σ, τ ], and then ω(G) = [σ (G), τ (G)]. By
induction hypothesis, we have G(t1−1) ≤ σ (G) and G(t2−1) ≤ τ (G). Put m = max{t1, t2},
then

G(m) = [G(m−1), G(m−1)] ≤ [G(t1−1), G(t2−1)] ≤ [σ (G), τ (G)] = ω(G).

Clearly t1 + t2 ≥ m + 1 and thus t − 1 ≥ m. So G(t−1) ≤ G(m) ≤ ω(G) and the induction
is complete.

(i) If ω(G) = 1, then G(t−1) = 1. So G is in St−1.
(ii) Assume that G is a perfect group. Since G(t−1) ≤ ω(G), we have G(t−1) = G, and

hence G = ω(G), as desired. �
As an application of the Khukhro–Makarenko theorem we present the following

result.
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THEOREM 2.3. Let G be a locally finite barely transitive p-group with a point stabiliser
H and let ω be an outer commutator word of weight t. If H ∈ Xω, then G′ �= G and
G′ ∈ Xω.

Proof. Let N be a proper normal subgroup of G; then N ∩ H ∈ Xω. Since |N : N ∩
H| is finite, by Lemma 2.1, N has a characteristic subgroup K ∈ Xω such that N/K ∈ F.
It is well known that G has no proper subgroup of finite index, so N/K ≤ Z(G/K). It
follows that N ′ ≤ K and that N ′ ∈ Xω. Since there exists a chain {Ni : i ∈ I} of proper
normal subgroups of G such that G = ⋃

i∈I Ni, it follows that

G′ =
⋃

i∈I

N ′
i .

Consequently, we have G′ ∈ Xω and G �= G′ by Lemma 2.2(ii). �
Theorem 2.3 generalises [1] and [2, Theorem 2], and by using Lemma 2.2(i) we can

obtain the same results as those in [1] and [2, Theorem 2]. The structure of imperfect
locally finite barely transitive groups is described in [7].

Let v(x1, . . . , xs) and u(x1, . . . , xt) be two words. Then the composite of v and u,
v ◦ u is defined as follows:

v ◦ u = v(u(x1, . . . , xt), . . . , u(x(s−1)t+1, . . . , xst)).

If v is an outer commutator word and u is a word, then it is well known that v ◦ u(G) =
v(u(G)) for any group G (see for example [16, Lemma 2.5]).

We will use this definition to describe the structure of certain groups.
Let Y be a class of groups. Recall that a group G is called a minimal non-Y-

group if every proper subgroup of G is a Y-group, but G itself is not. The minimal
non-Y-groups are denoted by MNY.

Now define the word θ as θ (x, y) = [x, y], which will be used in the sequel.

THEOREM 2.4. Let G be an MNXωF-group, where ω is an outer commutator word
of weight t > 1. If G has no infinite simple images, then the following properties hold.

(i) G has no proper subgroup of finite index and no simple images.
(ii) N ′ ∈ Xω for every proper normal subgroup N of G.

(iii) G is not perfect, G ∈ Xω(L ∩ C) and G′ ∈ Xω. In particular, G ∈ St.
(iv) (ω ◦ θ )(G) = 1, i.e. G ∈ Xω◦θ .

Proof. We first assume that G has a proper subgroup K of finite index. Since
K ∈ XωF, K has a normal subgroup L ∈ Xω such that K/L ∈ F. Hence, coreGL ∈ Xω

and has finite index in G, i.e. G ∈ XωF. But this is a contradiction. So G has no proper
subgroup of finite index and it has no simple images. Thus (i) holds.

Now let N be a proper normal subgroup of G. Since N ∈ XωF, N has a
characteristic subgroup S ∈ Xω of finite index in N by Lemma 2.1. Put G := G/S,
then G = CG(N), since G/S has no proper subgroup of finite index and so we have
[G, N] ≤ S. Since Xω is subgroup-closed, N ′ ∈ Xω, and thus (ii) holds.

Now assume that G is perfect. Since G has no simple images, it is a union of a chain
of proper normal subgroups. If N is a proper normal subgroup of G, then N ′ ∈ Xω by
(ii) and so G = G′ is a union of Xω-groups. So G ∈ Xω, a contradiction.

Thus, G is not perfect and G/G′ has a proper subgroup R/G′ such that
G/R ∈ L ∩ C. Now by Lemma 2.1, R has a characteristic subgroup W ∈ Xω such that
G/W ∈ C. Since G/W has no proper subgroup of finite index, we have G/W ∈ L ∩ C.
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Consequently, G ∈ Xω(L ∩ C). In particular, G′ ≤ W and hence G′ ∈ Xω. In particular,
G ∈ St by Lemma 2.2(i). So (iii) holds.

Finally, since G′ ∈ Xω, we have (ω ◦ θ )(G) = ω(G′) = 1, and (iv) holds. �
The following is the XωC version of Theorem 2.4.

THEOREM 2.5. Let G be an MNXωC-group. If G has no infinite simple images, then
the following are satisfied.

(i) G has no proper subgroup of finite index and no simple images.
(ii) N ′ ∈ Xω◦θ for every proper normal subgroup N of G, i.e. N ∈ Xω◦θ2 .

(iii) G is not perfect and G ∈ Xω◦θ (L ∩ C). In particular, G′ ∈ Xω◦θ and G ∈ St+1.

Proof. By a similar argument to that used in the proof of Theorem 2.4, G has no
proper subgroup of finite index. So (i) holds.

Now let N be a proper normal subgroup of G, then it has a normal subgroup
S ∈ Xω such that N/S ∈ C. So N/S has a normal subgroup R/S ∈ L ∩ C such that
N/R ∈ F. Since R/S is in A, R ∈ Xω◦θ . By Lemma 2.1 N has a characteristic subgroup
M ∈ Xω◦θ such that N/M ∈ F and hence N ′ ≤ M, i.e. N ′ ∈ Xω◦θ . So (ii) holds.

Suppose next that G has a non-trivial C-image G/N. Then N has a normal subgroup
S ∈ Xω such that N/S ∈ C and N/S has a normal subgroup M/S ∈ L ∩ C such that
N/M ∈ F. So N ∈ Xω◦θF. By Lemma 2.1 N has a characteristic subgroup T ∈ Xω◦θ
with N/T ∈ F. This implies that G/T ∈ C, and hence G/T ∈ L ∩ C by (i) and G ∈
Xω◦θ (L ∩ C) in this case.

Now if G is perfect, then as in the proof of Theorem 2.4, G is a union of proper
normal subgroups and so we have G ∈ Xω◦θ2 , and hence ω(G) = 1, a contradiction.
So G is not perfect and G/G′ has a proper normal subgroup R/G′ such that G/R ∈
L ∩ C. By the previous argument G ∈ Xω◦θ (L ∩ C) and so G′ ∈ Xω◦θ and G ∈ St+1 by
Lemma 2.2(i). Thus, (iii) holds. �

3. Applications to MNSnC and MNSnF-groups. Since a group is in SC if and
only if it is in SF, we see that a group is in MNSC if and only if it is in MNSF.

We know that the celebrated example of Heineken and Mohamed (see [15,
Theorem 6.2.1]) is an MNAF-group which is in AC. So an MNSnF-group (for a
positive integer n) is not in general an MNSnC-group.

The locally graded groups with all proper subgroups in SF are classified by
[6, Theorem C], as follows

THEOREM 3.1. Let G be a locally graded group with all proper subgroups in SF.
Then either

(i) G is locally soluble, or
(ii) G ∈ SF, or

(iii) G is S-by-PSL(2,F), or
(iv) G is S-by-Sz(F),

where F is an infinite locally finite field with no infinite proper subfields.

By the remark above, we see that Theorem 3.1 also gives a classification of the
locally graded groups with all proper subgroups in SC.

If G is a countable locally graded simple group with all subgroups in SF (or in
SC), then a super-inert subgroup R (see [6] for the definition) of G either has non-trivial
Hirsch–Plokin radical or is in F, hence G is locally finite [6, Theorem 2]. So by [12]
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G is isomorphic either to PSL(2, �) or to Sz(�) for some infinite locally finite field �

containing no infinite proper subfield.

THEOREM 3.2. There are infinite locally finite simple MNS2F and MNS3F-groups.

Proof. Let G := PSL(2, �) or G := Sz(�) for some infinite locally finite field �

containing no infinite proper subfield. In the first case every proper subgroup is either
in A2 or in F and so in S2F by [4, Example 3]. Clearly G /∈ S2F. So G ∈ MNS2F.

In the second case every proper subgroup of G is in F or is N2-by-locally cyclic
(i.e. in S3F) by the proof of [5, Lemma 2]. Consequently, G is in MNS3F. �

Let G be a group, H a subgroup of G; then the isolator IG(H) of H in G is defined
as

IG(H) = {x ∈ G | there is a non-zero integer n such that xn ∈ H}.

We prove the following general lemma.

LEMMA 3.3. Let ω be an outer commutator word of weight t, and let H be a subgroup
of the locally nilpotent torsion-free group G. Then

ω(IG(H)) ≤ IG(ω(H)).

Proof. First let U and V be subgroups of G. Then with the notation of [14, Section
2.3] we have IG(U) ∼ U and IG(V ) ∼ V . It follows that [IG(U), IG(V )] ∼ [U, V ] by [14,
2.3.5]. So we see that

[IG(U), IG(V )] ≤ IG([U, V ].

Now we proceed by induction on t. If t = 1, then the result is immediate. If
t > 1, then ω = [ϕ, δ] for some outer commutator words ϕ and δ of weights 1 ≤ t1 < t,
1 ≤ t2 < t such that t1 + t2 = t. By induction hypothesis and the above remark, we
have

ω(IG(H)) = [ϕ(IG(H)), δ(IG(H))] ≤ [IG(ϕ(H)), IG(δ(H))]

≤ IG([ϕ(H), δ(H)]) = IG(ω(H)),

and the proof is complete. �
THEOREM 3.4. Let G be a locally nilpotent torsion-free group.
(i) If all proper subgroups of G are in XωT, then G ∈ Xω.
(ii) If all proper subgroups of G are in XωR, then G ∈ Xω(R ∩ N). In particular, G

is in S.

Proof. (i) Let K be a proper subgroup of G. Then K has a normal subgroup N ∈ Xω

such that K/N ∈ T, and so IK (N) = K . By Lemma 3.3

ω(K) = ω(IK (N)) ≤ IK (ω(N)) = IK (1) = 1.

This means that every proper subgroup K of G is in Xω.
If G is not finitely generated, then every finitely generated subgroup of G is in Xω,

and thus G ∈ Xω. Otherwise, G is finitely generated, and by [18, 5.2.21] it has a normal
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subgroup H ∈ Xω of finite index, since it is nilpotent. Hence, IG(H) = G and as above
ω(G) = 1. So G ∈ Xω.

(ii) Assume for a contradiction that G is not in XωR, and first suppose that G has
a proper normal subgroup of N such that G/N is in R. Then N has a normal subgroup
M such that M ∈ Xω and N/M ∈ R. By [10, Theorem 3], we may assume that M is
characteristic in N so that M is normal in G. Clearly G/M is in R, so G ∈ XωR, a
contradiction. Therefore, G has no proper images which are in R and hence it is perfect.

Let H be any proper normal subgroup of G and let K be a characteristic subgroup
of H such that K ∈ Xω and H/K ∈ R. If T/K denotes the torsion subgroup of H/K ,
then T ∈ XωT and hence T ∈ Xω by (i). Since torsion-free locally nilpotent R-groups
are in N [18, Theorem 6.36], we have H/T ∈ N. So H/T has a finite characteristic
series whose factors are torsion-free A ∩ R-groups. If U is such a factor, then G/CG(U)
is nilpotent by [17, Part 2, Lemma 6.37] and hence G = CG(U) since G is perfect. We
deduce that H/T is contained in the hypercentre of G/T , which equals the centre,
as G is perfect. Thus, H/T ≤ Z(G/T) and so H ′ ≤ T . We deduce that H ′ ∈ Xω. As
before, since there exists a chain {Ni : i ∈ I} of proper normal subgroups of G such
that G = ⋃

i∈I Ni, it follows that G = G′ = ⋃
i∈I N ′

i . Consequently, we have G ∈ Xω, a
contradiction. Therefore, G ∈ XωR.

Let N be a normal subgroup of G such that N ∈ Xω and G/N ∈ R. If T/N
denotes the torsion subgroup of G/N, then again by (i) T ∈ Xω, and since G/T is
a locally nilpotent torsion-free R-group, it is in N. Therefore, G ∈ Xω(R ∩ N). By
Lemma 2.2(i), we deduce that G is in S, as claimed. �

Let us define the outer commutator word φj for every j ≥ 0 as follows:
φ0(x) = x and for i ≥ 1

φi(x1, . . . , x2i ) = [φi−1(x1, . . . , x2i−1 ), φi−1(x2i−1+1, . . . , x2i )].

Then G is in S if and only if there is a positive integer n such that φn(G) = 1.

THEOREM 3.5. Let G be a group without infinite simple images. Then the following
are satisfied.

(i) If every proper subgroup of G is in SnF for some fixed positive integer n, then either
G ∈ SnF or G ∈ Sn(L ∩ C). So if G is an MNSnF-group, then G ∈ SnC ∩ Sn+1.

(ii) If every proper subgroup of G is in SnC for some fixed positive integer n, then G ∈
SnC or G ∈ Sn+1(L ∩ C). So if G is an MNSnC-group, then G ∈ Sn+1C ∩ Sn+2.

Proof. (i) Take ω = φn. If G /∈ SnF, then G is an MNSnF-group. By Theorem 2.4
(iii) G ∈ Xφn (L ∩ C).

(ii) Again take ω = φn so that ω ◦ θ = φn+1. If G /∈ SnC, then by Theorem 2.5 (iii)
G ∈ Xφn+1 (L ∩ C), and the proof is complete. �

The following lemma will be generalised in Section 4 (see Lemma 4.1), but since
the ‘soluble’ version of the lemma is useful here, we shall prove it.

LEMMA 3.6 (c.f. [3, Proposition 1]). Let G be in T ∩ N, A ∈ Sn (n ≥ 1) a normal
subgroup of G such that G/A ∈ L. Then also G ∈ Sn.

Proof. We proceed by induction on n. If n = 1, then A is in A and hence A ≤
CG(A). So T := G/CG(A) ∈ L is isomorphic to a subgroup of Aut A. By [3, Lemma 1],
A ≤ Z(G), and by [15, Section 5.3.5] G is in A. Now let n > 1 and consider G/A(n−1).
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Then

G/A(n−1)

A/A(n−1)
∈ L and A/A(n−1) ∈ Sn−1.

By induction hypothesis G/A(n−1) ∈ Sn−1 and thus G(n−1) = A(n−1). This implies that
G(n) = 1 and G ∈ Sn, as desired. �

THEOREM 3.7. Let G be a locally graded T-group and suppose that every proper
subgroup of G is in SnC for some fixed positive integer n. If G contains a normal N-
subgroup N such that G/N ∈ C, then G ∈ SnC.

Proof. Assume for a contradiction that G is an MNSnC-group. Since G has no
proper subgroup of finite index, we have G/N ∈ L or G = N. Hence, G′ �= G and thus
1 �= G/G′ ∈ L. If N = G, then we have the contradiction that G is in A by [18, Section
5.2.5], since G is in T ∩ N. So N �= G and hence N has a normal subgroup S ∈ Sn such
that N/S ∈ C. So N/S contains a maximal L-subgroup R/S such that N/R ∈ F. By
Lemma 3.6, R ∈ Sn. Therefore, we can assume by Lemma 2.1 that R is characteristic in
N and hence R is normal in G. So G/R is in C. Consequently, G ∈ SnC, a contradiction,
and the proof is complete. �

4. NC-groups with certain characteristic subgroups.

LEMMA 4.1. Let G be in T ∩ N, N a normal subgroup of G, ω an outer commutator
word of weight t ≥ 2 such that ω(N) = 1. If G/N is in A ∩ D, then ω(G) = 1.

Proof. We proceed by induction on t. If t = 2, then ω(x, y) = [x, y] and

ω(N) = [N, N] = 1,

i.e. N is in A. So G/CG(N) is in A ∩ D and isomorphic to a subgroup of Aut N. By
[3, Lemma 1] G = CG(N) and thus N ≤ Z(G). Applying [18, 5.3.5] we have that G is
in A. Let t > 2; then ω = [ψ, φ] for some outer commutator words ψ, φ of weight
1 ≤ t1, t2 < t such that t = t1 + t2. Now G/N is in L and ψ(N/ψ(N)) = 1. If t1 > 1,
then by induction hypothesis ψ(G/ψ(N)) = 1, i.e. ψ(G) ≤ ψ(N). Clearly ψ(N) ≤ ψ(G)
and it follows that ψ(G) = ψ(N). If also t2 > 1, then similarly φ(G) = φ(N), and we
have

ω(G) = [ψ(G), φ(G)] = [ψ(N), φ(N)] = 1,

as required. So we may assume that t2 = 1 and hence t1 > 1, since t > 2. (If t1 = 1, then
a similar argument works.) Then ω(N) = [ψ(N), N] = 1 and hence N ≤ CG(ψ(N)).
We also have that ψ(N) is in A. Then G/CG(ψ(N)) is in A ∩ D and isomorphic to a
subgroup of Aut ψ(N). So by [3, Lemma 1] ψ(N) ≤ Z(G); in other words [ψ(N), G] = 1.
It follows that

ω(G) = [ψ(G), G] = [ψ(N), G] = 1,

and the proof is complete. �
THEOREM 4.2. Let G be a T-group and let N ∈ Nc ∩ Xω be a normal subgroup of G

such that G/N ∈ C for some outer commutator word ω. Then G contains a characteristic
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(even invariant under all surjective endomorphisms) subgroup S ∈ Nc ∩ Xω such that
G/S ∈ C.

Proof. Let W := 〈Nα| α ∈ Aut G〉, then W is characteristic in G and W/N ∈ C.
By [8, Lemma 4.7] W is in N. We also have that W/N has a normal A ∩ D-subgroup
R/N ∈ R such that W/R is in F. Now by Lemma 4.1 we have R ∈ Nc ∩ Xω. By
Lemma 2.1 W has characteristic (even invariant under all surjective endomorphisms)
subgroups S1 ∈ Nc and S2 ∈ Xω such that W/Si is in F for i = 1, 2. Put S = S1 ∩ S2,
then |W : S| < ∞ and S is contained in Nc ∩ Xω. Since W is characteristic in G, we see
that S is characteristic in G, and since G/W ∈ C and W/S is finite, we have G/S ∈ C.
The proof is complete. �

If we take ω = γc+1, then

Nc ∩ Xω = Nc ∩ Nc = Nc.

Hence, we obtain the following result.

COROLLARY 4.3. Let G be a T-group and let N ∈ Nc be a normal subgroup of G
such that G/N ∈ C. Then G contains a characteristic (even invariant under all surjective
endomorphisms) subgroup S ∈ Nc such that G/S ∈ C.

Corollary 4.3 sharpens [8, Lemma 4.7] and generalises [3, Lemma 3] and [9,
Corollary 1(i)] in the periodic case.

In [8, p. 321] Hartley gives an example that shows that the ‘periodicity’ condition
cannot be removed from the hypothesis of Corollary 4.3 and defined Chernikov-
subnormality (C-subnormality, in short) as follows:

A subgroup N of a group G is called C-subnormal in G if there is a finite series

N = N0 � N1 � · · · � Nr = G

such that Ni+1/Ni ∈ C for 0 ≤ i ≤ r − 1.

COROLLARY 4.4. Let G be a T-group containing a C-subnormal subgroup N ∈ Nc.
Then G contains a characteristic (even invariant under all surjective endomorphisms)
subgroup S ∈ Nc such that G/S ∈ C.

Proof. The result follows by Corollary 4.3 and a simple induction. �
We can give an immediate application of Corollary 4.3 by considering the following

result due to Hartley.

THEOREM 4.5 [8, Theorem B]. If G is a locally finite group admitting an involutory
automorphism φ such that CG(φ) is in C, then both [G, φ]′ and G/[G, φ] are in C.

As Shumyatsky mentions in [19, p. 160], if we take N = C[G,φ]([G, φ]′), then N ∈ N2,
G/N ∈ C and N is φ-invariant. So by Corollary 4.3, G has a characteristic subgroup
S ∈ N2 such that G/S ∈ C.

We record here the following theorem, which is an immediate consequence of
Lemma 2.1.

THEOREM 4.6. Let G be a group and let N ∈ Xω be a normal subgroup of G for some
outer commutator word ω such that G/N ∈ C. Then G contains a characteristic (even
invariant under all surjective endomorphisms) subgroup S ∈ Xω◦θ such that G/S is finite.
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Proof. Since G/N ∈ C, there exists a normal A ∩ D-subgroup R/N of G/N such
that G/R is in F. Since N ∈ Xω and R/N is in A, we have R ∈ Xω◦θ . By Lemma 2.1
G has a characteristic subgroup (even invariant under all surjective endomorphisms)
S ∈ Xω◦θ such that G/S is in F, and the result is established. �

Of course, if we replace the condition G/N ∈ C with G/N ∈ AF in Theorem 4.6,
then the result remains true.

REFERENCES

1. A. Arıkan, On barely transitive p-groups with soluble point stabilizer, J. Group Theory
5 (2002), 441–442.

2. V. V. Belyaev and M. Kuzucuoglu, Locally finite barely transitive groups, Algebra Logic
42 (2003), 147–152 (translated from Algebra i Logika 42 (2003), 261–270).

3. B. Bruno and F. Napolitani, A note on nilpotent-by-Cernikov groups, Glasgow. Math.
J. 46 (2004), 211–215.

4. M. R. Dixon, M. J. Evans and H. Smith, Locally (soluble-by-finite) groups with all
proper non-nilpotent subgroups of finite rank, J. Pure Appl. Algebra 135 (1999), 33–43.

5. M. R. Dixon, M. J. Evans and H. Smith, Groups with all proper subgroups nilpotent-
by-finite rank, Arch. Math. 75 (2000), 81–91.

6. M. R. Dixon, M. J. Evans and H. Smith, Groups with all proper subgroups soluble-by-
finite rank, J. of Algebra 289 (2005), 135–147.

7. B. Hartley, On the normalizer condition and barely transitive permutation groups,
Algebra Logic 13 (1974), 334–340 (translated from Russian from Algebra i Logika 13 (1974),
589–602).

8. B. Hartley, Periodic locally soluble groups containing an element of prime order with
Chernikov centralizer, Quart. J. Math. Oxford Ser. 42(2) (1982), 309–323.

9. E. I. Khukhro and N. Yu. Makarenko, Large characteristic subgroups satisfying
multilinear commutator identities, J. Lond. Math. Soc. 75(2) (2007), 635–646.

10. E. I. Khukhro and N. Yu. Makarenko, Automorphically invariant ideals satisfying
multilinear identities, and group-theoretic applications, J. Algebra 320 (2008), 1723–1740.

11. E. I. Khukhro, A. A. Klyachko, N. Yu. Makarenko and Yu. B. Mel’nikova,
Automorphism invarience and identities, Bull. Lond. Math. Soc. 41 (2009), 804–816.

12. P. B. Kleidman and R. A. Wilson, A characterization of some locally finite simple
groups of lie type, Arch. Mat. 48 (1987), 10–14.

13. A. A. Klyachko and Yu. B. Mel’nikova, A short proof of Makarenko–Khukhro
Theorem on a large characteristic subgroups with identity, Sb. Math. 200 (2009), 661–664
(translated from Russian from Mat. Sb. 200 (2009), 33–36).

14. J. C. Lennox and D. J. S. Robinson, The theory of infinite soluble groups (Clarendon
Press, Oxford, UK, 2004).

15. J. C. Lennox and S. E. Stonehewer, Subnormal subgroups of groups, Oxford
Mathematical Monographs (Clarendon Press, Oxford, UK, 1987).

16. M. R. R. Moghaddam, On the Schur–Baer property, J. Austral. Math. Soc. A 31 (1981),
343–361.

17. D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Part 2 (Springer-
Verlag, New York, 1972).

18. D. J. S. Robinson, A course in the theory of groups (Springer-Verlag, New York, 1982).
19. P. Shumyatsky, Centralizers in locally finite groups, Turk. J. Math. 31 (2007), 149–170.

https://doi.org/10.1017/S0017089512000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000493

