Glasgow Math. J. **55** (2013) 275–283. © Glasgow Mathematical Journal Trust 2012. doi:10.1017/S0017089512000493.

ON CERTAIN APPLICATIONS OF THE KHUKHRO–MAKARENKO THEOREM

AHMET ARIKAN

Gazi Üniversitesi, Gazi Eğitim Fakültesi, Matematik Eğitimi Anabilim Dalı 06500 Teknikokullar, Ankara, Turkey e-mail: arikan@gazi.edu.tr

HOWARD SMITH

Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA e-mail: howsmith@bucknell.edu

and NADIR TRABELSI

Laboratory of Fundamental and Numerical Mathematics, Department of Mathematics, University Ferhat Abbas of Setif, Algeria e-mail: nadir_trabelsi@yahoo.fr

(Received 23 December 2011; revised 7 May 2012; accepted 9 May 2012; first published online 2 August 2012)

Abstract. Some recent results of Khukhro and Makarenko on the existence of characteristic \mathfrak{X} -subgroups of finite index in a group G, for certain varieties \mathfrak{X} , are used to obtain generalisations of some well-known results in the literature pertaining to groups G, in which all proper subgroups satisfy some condition or other related to the property 'soluble-by-finite'. In addition, a partial generalisation is obtained for the aforementioned results on the existence of characteristic subgroups.

2000 Mathematics Subject Classification. 20F10, 20F19, 20E50.

1. Introduction. Let *F* be a free group of countable rank with basis $\{x_1, x_2, ...\}$. Then an outer commutator word of weight 1 is x_1 , and an outer commutator word ω of weight t > 1 is a word of the form

 $\omega(x_1,\ldots,x_t)=[u(x_1,\ldots,x_r),v(x_{r+1},\ldots,x_t)],$

where u, v are outer commutator words of weight r, t - r respectively. Let ω be an outer commutator word of weight t. We denote by \mathfrak{X}_{ω} the class of groups G satisfying $\omega(g_1, \ldots, g_t) = 1$ for all $g_1, \ldots, g_t \in G$, i.e. $\omega(G) = 1$.

Some recent results of Khukhro and Makarenko (see especially Lemma 2.1) establish that, for certain group-theoretic properties \mathfrak{Y} , the existence of an \mathfrak{Y} -subgroup H of finite index in a group G ensures that there is a *characteristic* \mathfrak{Y} -subgroup C of finite index in G. In the present paper we shall use these results to obtain generalisations of some well-known results on groups G, in which all proper subgroups satisfy certain conditions, in several cases the condition in question being either 'almost in the variety \mathfrak{X}_{ω} ' for some outer commutator word ω (see for example Theorem 2.4) or ' \mathfrak{X}_{ω} -by-Chernikov' (see for example Theorem 2.5). We shall also obtain a generalisation of a result on barely transitive *p*-groups (see Theorem 2.3). Recall that a group

276 AHMET ARIKAN, HOWARD SMITH AND NADIR TRABELSI

of permutations G of an infinite set Ω is called a *barely transitive* group if G acts transitively on Ω and every orbit of every proper subgroup is finite. Equivalently, G is barely transitive if G has a subgroup H such that |G:H| is infinite, $\bigcap_{g\in G} H^g = 1$ and $|K: K \cap H|$ is finite for every proper subgroup K of G, where the subgroup H is called a *point stabiliser*. Finally, in Section 4 of the paper, we obtain some partial generalisations of the Khukhro–Makarenko results.

We shall use the following notation for the given classes of groups.

 \mathfrak{A} : Abelian groups, \mathfrak{A} : Nilpotent groups, \mathfrak{S} : Soluble groups, \mathfrak{S}_d : Soluble groups of derived length at most d, \mathfrak{C} : Chernikov groups, \mathfrak{R} : Groups of finite (Prüfer) rank, \mathfrak{F} : Finite groups, \mathfrak{D} : Divisible (radicable) groups, \mathfrak{T} : Periodic groups, \mathfrak{L} : ($\mathfrak{T} \cap \mathfrak{D} \cap \mathfrak{A}$)-groups.

We also denote the class of all \mathfrak{X} -by- \mathfrak{Y} -groups by $\mathfrak{X}\mathfrak{Y}$, and $\mathfrak{X}\mathfrak{X}$ -groups by \mathfrak{X}^2 .

2. $\mathfrak{X}_{\omega}\mathfrak{C}$ -groups. We will use the following very useful result, referred to here as the Khukhro–Makarenko theorem.

LEMMA 2.1 ([9, Theorem 1], [11, Theorem 1] or [13]). If a group G has a subgroup H of finite index n satisfying the identity $\chi(H) = 1$, where χ is an outer commutator word of weight w, then G has also a characteristic subgroup C of finite (n, w)-bounded index satisfying the same identity $\chi(C) = 1$.

Before we give an application of Lemma 2.1, we prove the following lemma.

LEMMA 2.2. Let G be a group and let ω be an outer commutator word of weight $t \ge 2$; then $G^{(t-1)} \le \omega(G)$. In particular,

(i) if $\omega(G) = 1$, then G is in \mathfrak{S}_{t-1} , i.e. $\mathfrak{X}_{\omega} \leq \mathfrak{S}_{t-1}$,

(ii) if G is a perfect group, then $\omega(G) = G$.

Proof. We proceed by induction on t. If t = 2, then $G^{(t-1)} = G^{(1)} = G' = \omega(G)$. Now assume that $t \ge 3$; then there exist outer commutator words σ , τ of weight $1 \le t_1$, $t_2 < t$, respectively, such that $t = t_1 + t_2$ and $\omega = [\sigma, \tau]$, and then $\omega(G) = [\sigma(G), \tau(G)]$. By induction hypothesis, we have $G^{(t_1-1)} \le \sigma(G)$ and $G^{(t_2-1)} \le \tau(G)$. Put $m = \max\{t_1, t_2\}$, then

$$G^{(m)} = [G^{(m-1)}, G^{(m-1)}] \le [G^{(t_1-1)}, G^{(t_2-1)}] \le [\sigma(G), \tau(G)] = \omega(G).$$

Clearly $t_1 + t_2 \ge m + 1$ and thus $t - 1 \ge m$. So $G^{(t-1)} \le G^{(m)} \le \omega(G)$ and the induction is complete.

(i) If $\omega(G) = 1$, then $G^{(t-1)} = 1$. So G is in \mathfrak{S}_{t-1} .

(ii) Assume that G is a perfect group. Since $G^{(t-1)} \le \omega(G)$, we have $G^{(t-1)} = G$, and hence $G = \omega(G)$, as desired.

As an application of the Khukhro–Makarenko theorem we present the following result.

THEOREM 2.3. Let G be a locally finite barely transitive p-group with a point stabiliser H and let ω be an outer commutator word of weight t. If $H \in \mathfrak{X}_{\omega}$, then $G' \neq G$ and $G' \in \mathfrak{X}_{\omega}$.

Proof. Let N be a proper normal subgroup of G; then $N \cap H \in \mathfrak{X}_{\omega}$. Since $|N : N \cap H|$ is finite, by Lemma 2.1, N has a characteristic subgroup $K \in \mathfrak{X}_{\omega}$ such that $N/K \in \mathfrak{F}$. It is well known that G has no proper subgroup of finite index, so $N/K \leq Z(G/K)$. It follows that $N' \leq K$ and that $N' \in \mathfrak{X}_{\omega}$. Since there exists a chain $\{N_i : i \in I\}$ of proper normal subgroups of G such that $G = \bigcup_{i \in I} N_i$, it follows that

$$G' = \bigcup_{i \in I} N'_i.$$

Consequently, we have $G' \in \mathfrak{X}_{\omega}$ and $G \neq G'$ by Lemma 2.2(ii).

Theorem 2.3 generalises [1] and [2, Theorem 2], and by using Lemma 2.2(i) we can obtain the same results as those in [1] and [2, Theorem 2]. The structure of imperfect locally finite barely transitive groups is described in [7].

Let $v(x_1, \ldots, x_s)$ and $u(x_1, \ldots, x_t)$ be two words. Then the composite of v and u, $v \circ u$ is defined as follows:

$$v \circ u = v(u(x_1,\ldots,x_t),\ldots,u(x_{(s-1)t+1},\ldots,x_{st})).$$

If v is an outer commutator word and u is a word, then it is well known that $v \circ u(G) = v(u(G))$ for any group G (see for example [16, Lemma 2.5]).

We will use this definition to describe the structure of certain groups.

Let \mathfrak{Y} be a class of groups. Recall that a group G is called a minimal non- \mathfrak{Y} -group if every proper subgroup of G is a \mathfrak{Y} -group, but G itself is not. The minimal non- \mathfrak{Y} -groups are denoted by $MN\mathfrak{Y}$.

Now define the word θ as $\theta(x, y) = [x, y]$, which will be used in the sequel.

THEOREM 2.4. Let G be an $MN\mathfrak{X}_{\omega}\mathfrak{F}$ -group, where ω is an outer commutator word of weight t > 1. If G has no infinite simple images, then the following properties hold.

(i) G has no proper subgroup of finite index and no simple images.

(ii) $N' \in \mathfrak{X}_{\omega}$ for every proper normal subgroup N of G.

(iii) G is not perfect, $G \in \mathfrak{X}_{\omega}(\mathfrak{L} \cap \mathfrak{C})$ and $G' \in \mathfrak{X}_{\omega}$. In particular, $G \in \mathfrak{S}_t$.

(iv) $(\omega \circ \theta)(G) = 1$, *i.e.* $G \in \mathfrak{X}_{\omega \circ \theta}$.

Proof. We first assume that G has a proper subgroup K of finite index. Since $K \in \mathfrak{X}_{\omega}\mathfrak{F}$, K has a normal subgroup $L \in \mathfrak{X}_{\omega}$ such that $K/L \in \mathfrak{F}$. Hence, $\operatorname{core}_{G}L \in \mathfrak{X}_{\omega}$ and has finite index in G, i.e. $G \in \mathfrak{X}_{\omega}\mathfrak{F}$. But this is a contradiction. So G has no proper subgroup of finite index and it has no simple images. Thus (i) holds.

Now let N be a proper normal subgroup of G. Since $N \in \mathfrak{X}_{\omega}\mathfrak{F}$, N has a characteristic subgroup $S \in \mathfrak{X}_{\omega}$ of finite index in N by Lemma 2.1. Put $\overline{G} := G/S$, then $\overline{G} = C_{\overline{G}}(\overline{N})$, since G/S has no proper subgroup of finite index and so we have $[G, N] \leq S$. Since \mathfrak{X}_{ω} is subgroup-closed, $N' \in \mathfrak{X}_{\omega}$, and thus (ii) holds.

Now assume that G is perfect. Since G has no simple images, it is a union of a chain of proper normal subgroups. If N is a proper normal subgroup of G, then $N' \in \mathfrak{X}_{\omega}$ by (ii) and so G = G' is a union of \mathfrak{X}_{ω} -groups. So $G \in \mathfrak{X}_{\omega}$, a contradiction.

Thus, G is not perfect and G/G' has a proper subgroup R/G' such that $G/R \in \mathfrak{L} \cap \mathfrak{C}$. Now by Lemma 2.1, R has a characteristic subgroup $W \in \mathfrak{X}_{\omega}$ such that $G/W \in \mathfrak{C}$. Since G/W has no proper subgroup of finite index, we have $G/W \in \mathfrak{L} \cap \mathfrak{C}$.

Consequently, $G \in \mathfrak{X}_{\omega}(\mathfrak{L} \cap \mathfrak{C})$. In particular, $G' \leq W$ and hence $G' \in \mathfrak{X}_{\omega}$. In particular, $G \in \mathfrak{S}_t$ by Lemma 2.2(i). So (iii) holds.

Finally, since $G' \in \mathfrak{X}_{\omega}$, we have $(\omega \circ \theta)(G) = \omega(G') = 1$, and (iv) holds.

The following is the $\mathfrak{X}_{\omega}\mathfrak{C}$ version of Theorem 2.4.

THEOREM 2.5. Let G be an $MN\mathfrak{X}_{\omega}\mathfrak{C}$ -group. If G has no infinite simple images, then the following are satisfied.

(i) *G* has no proper subgroup of finite index and no simple images.

(ii) $N' \in \mathfrak{X}_{\omega \circ \theta}$ for every proper normal subgroup N of G, i.e. $N \in \mathfrak{X}_{\omega \circ \theta^2}$.

(iii) *G* is not perfect and $G \in \mathfrak{X}_{\omega \circ \theta}(\mathfrak{L} \cap \mathfrak{C})$. In particular, $G' \in \mathfrak{X}_{\omega \circ \theta}$ and $G \in \mathfrak{S}_{t+1}$.

Proof. By a similar argument to that used in the proof of Theorem 2.4, G has no proper subgroup of finite index. So (i) holds.

Now let N be a proper normal subgroup of G, then it has a normal subgroup $S \in \mathfrak{X}_{\omega}$ such that $N/S \in \mathfrak{C}$. So N/S has a normal subgroup $R/S \in \mathfrak{L} \cap \mathfrak{C}$ such that $N/R \in \mathfrak{F}$. Since R/S is in $\mathfrak{A}, R \in \mathfrak{X}_{\omega \circ \theta}$. By Lemma 2.1 N has a characteristic subgroup $M \in \mathfrak{X}_{\omega \circ \theta}$ such that $N/M \in \mathfrak{F}$ and hence $N' \leq M$, i.e. $N' \in \mathfrak{X}_{\omega \circ \theta}$. So (ii) holds.

Suppose next that G has a non-trivial \mathfrak{C} -image G/N. Then N has a normal subgroup $S \in \mathfrak{X}_{\omega}$ such that $N/S \in \mathfrak{C}$ and N/S has a normal subgroup $M/S \in \mathfrak{L} \cap \mathfrak{C}$ such that $N/M \in \mathfrak{F}$. So $N \in \mathfrak{X}_{\omega \circ \theta} \mathfrak{F}$. By Lemma 2.1 N has a characteristic subgroup $T \in \mathfrak{X}_{\omega \circ \theta}$ with $N/T \in \mathfrak{F}$. This implies that $G/T \in \mathfrak{C}$, and hence $G/T \in \mathfrak{L} \cap \mathfrak{C}$ by (i) and $G \in \mathfrak{X}_{\omega \circ \theta}(\mathfrak{L} \cap \mathfrak{C})$ in this case.

Now if G is perfect, then as in the proof of Theorem 2.4, G is a union of proper normal subgroups and so we have $G \in \mathfrak{X}_{\omega \circ \theta^2}$, and hence $\omega(G) = 1$, a contradiction. So G is not perfect and G/G' has a proper normal subgroup R/G' such that $G/R \in \mathfrak{L} \cap \mathfrak{C}$. By the previous argument $G \in \mathfrak{X}_{\omega \circ \theta}(\mathfrak{L} \cap \mathfrak{C})$ and so $G' \in \mathfrak{X}_{\omega \circ \theta}$ and $G \in \mathfrak{S}_{t+1}$ by Lemma 2.2(i). Thus, (iii) holds.

3. Applications to $MN\mathfrak{S}_n\mathfrak{C}$ and $MN\mathfrak{S}_n\mathfrak{F}$ -groups. Since a group is in $\mathfrak{S}\mathfrak{C}$ if and only if it is in $\mathfrak{S}\mathfrak{F}$, we see that a group is in $MN\mathfrak{S}\mathfrak{C}$ if and only if it is in $MN\mathfrak{S}\mathfrak{F}$.

We know that the celebrated example of Heineken and Mohamed (see [15, Theorem 6.2.1]) is an $MN\mathfrak{AF}$ -group which is in \mathfrak{AC} . So an $MN\mathfrak{S}_n\mathfrak{F}$ -group (for a positive integer *n*) is not in general an $MN\mathfrak{S}_n\mathfrak{C}$ -group.

The locally graded groups with all proper subgroups in \mathfrak{SF} are classified by [6, Theorem C], as follows

THEOREM 3.1. Let G be a locally graded group with all proper subgroups in \mathfrak{SF} . Then either

(i) G is locally soluble, or

(ii) $G \in \mathfrak{S}\mathfrak{F}$, or

(iii) G is \mathfrak{S} -by-PSL(2, \mathfrak{F}), or

(iv) G is \mathfrak{S} -by- $Sz(\mathfrak{F})$,

where *F* is an infinite locally finite field with no infinite proper subfields.

By the remark above, we see that Theorem 3.1 also gives a classification of the locally graded groups with all proper subgroups in \mathfrak{SC} .

If G is a countable locally graded simple group with all subgroups in \mathfrak{SF} (or in \mathfrak{SC}), then a super-inert subgroup R (see [6] for the definition) of G either has non-trivial Hirsch–Plokin radical or is in \mathfrak{F} , hence G is locally finite [6, Theorem 2]. So by [12]

G is isomorphic either to $PSL(2, \mathbb{F})$ or to $Sz(\mathbb{F})$ for some infinite locally finite field \mathbb{F} containing no infinite proper subfield.

THEOREM 3.2. There are infinite locally finite simple $MN\mathfrak{S}_2\mathfrak{F}$ and $MN\mathfrak{S}_3\mathfrak{F}$ -groups.

Proof. Let $G := PSL(2, \mathbb{F})$ or $G := Sz(\mathbb{F})$ for some infinite locally finite field \mathbb{F} containing no infinite proper subfield. In the first case every proper subgroup is either in \mathfrak{A}^2 or in \mathfrak{F} and so in $\mathfrak{S}_2\mathfrak{F}$ by [4, Example 3]. Clearly $G \notin \mathfrak{S}_2\mathfrak{F}$. So $G \in MN\mathfrak{S}_2\mathfrak{F}$.

In the second case every proper subgroup of G is in \mathfrak{F} or is \mathfrak{N}_2 -by-locally cyclic (i.e. in $\mathfrak{S}_3\mathfrak{F}$) by the proof of [5, Lemma 2]. Consequently, G is in $MN\mathfrak{S}_3\mathfrak{F}$.

Let G be a group, H a subgroup of G; then the *isolator* $I_G(H)$ of H in G is defined as

 $I_G(H) = \{x \in G \mid \text{ there is a non-zero integer } n \text{ such that } x^n \in H\}.$

We prove the following general lemma.

LEMMA 3.3. Let ω be an outer commutator word of weight t, and let H be a subgroup of the locally nilpotent torsion-free group G. Then

$$\omega(I_G(H)) \le I_G(\omega(H)).$$

Proof. First let U and V be subgroups of G. Then with the notation of [14, Section 2.3] we have $I_G(U) \sim U$ and $I_G(V) \sim V$. It follows that $[I_G(U), I_G(V)] \sim [U, V]$ by [14, 2.3.5]. So we see that

$$[I_G(U), I_G(V)] \leq I_G([U, V]).$$

Now we proceed by induction on t. If t = 1, then the result is immediate. If t > 1, then $\omega = [\varphi, \delta]$ for some outer commutator words φ and δ of weights $1 \le t_1 < t$, $1 \le t_2 < t$ such that $t_1 + t_2 = t$. By induction hypothesis and the above remark, we have

$$\omega(I_G(H)) = [\varphi(I_G(H)), \delta(I_G(H))] \le [I_G(\varphi(H)), I_G(\delta(H))]$$
$$\le I_G([\varphi(H), \delta(H)]) = I_G(\omega(H)),$$

and the proof is complete.

THEOREM 3.4. Let G be a locally nilpotent torsion-free group. (i) If all proper subgroups of G are in $\mathfrak{X}_{\omega}\mathfrak{T}$, then $G \in \mathfrak{X}_{\omega}$. (ii) If all proper subgroups of G are in $\mathfrak{X}_{\omega}\mathfrak{R}$, then $G \in \mathfrak{X}_{\omega}(\mathfrak{R} \cap \mathfrak{N})$. In particular, G

is in \mathfrak{S} . **Proof** (i) Let K be a proper subgroup of G. Then K has a normal subgroup $N \in \mathfrak{X}$

Proof. (i) Let *K* be a proper subgroup of *G*. Then *K* has a normal subgroup $N \in \mathfrak{X}_{\omega}$ such that $K/N \in \mathfrak{T}$, and so $I_K(N) = K$. By Lemma 3.3

$$\omega(K) = \omega(I_K(N)) \le I_K(\omega(N)) = I_K(1) = 1.$$

This means that every proper subgroup *K* of *G* is in \mathfrak{X}_{ω} .

If G is not finitely generated, then every finitely generated subgroup of G is in \mathfrak{X}_{ω} , and thus $G \in \mathfrak{X}_{\omega}$. Otherwise, G is finitely generated, and by [18, 5.2.21] it has a normal

subgroup $H \in \mathfrak{X}_{\omega}$ of finite index, since it is nilpotent. Hence, $I_G(H) = G$ and as above $\omega(G) = 1$. So $G \in \mathfrak{X}_{\omega}$.

(ii) Assume for a contradiction that G is not in $\mathfrak{X}_{\omega}\mathfrak{R}$, and first suppose that G has a proper normal subgroup of N such that G/N is in \mathfrak{R} . Then N has a normal subgroup M such that $M \in \mathfrak{X}_{\omega}$ and $N/M \in \mathfrak{R}$. By [10, Theorem 3], we may assume that M is characteristic in N so that M is normal in G. Clearly G/M is in \mathfrak{R} , so $G \in \mathfrak{X}_{\omega}\mathfrak{R}$, a contradiction. Therefore, G has no proper images which are in \mathfrak{R} and hence it is perfect.

Let *H* be any proper normal subgroup of *G* and let *K* be a characteristic subgroup of *H* such that $K \in \mathfrak{X}_{\omega}$ and $H/K \in \mathfrak{R}$. If T/K denotes the torsion subgroup of H/K, then $T \in \mathfrak{X}_{\omega}\mathfrak{T}$ and hence $T \in \mathfrak{X}_{\omega}$ by (i). Since torsion-free locally nilpotent \mathfrak{R} -groups are in \mathfrak{N} [18, Theorem 6.36], we have $H/T \in \mathfrak{N}$. So H/T has a finite characteristic series whose factors are torsion-free $\mathfrak{A} \cap \mathfrak{R}$ -groups. If *U* is such a factor, then $G/C_G(U)$ is nilpotent by [17, Part 2, Lemma 6.37] and hence $G = C_G(U)$ since *G* is perfect. We deduce that H/T is contained in the hypercentre of G/T, which equals the centre, as *G* is perfect. Thus, $H/T \leq Z(G/T)$ and so $H' \leq T$. We deduce that $H' \in \mathfrak{X}_{\omega}$. As before, since there exists a chain $\{N_i : i \in I\}$ of proper normal subgroups of *G* such that $G = \bigcup_{i \in I} N_i$, it follows that $G = G' = \bigcup_{i \in I} N'_i$. Consequently, we have $G \in \mathfrak{X}_{\omega}$, a contradiction. Therefore, $G \in \mathfrak{X}_{\omega}\mathfrak{R}$.

Let N be a normal subgroup of G such that $N \in \mathfrak{X}_{\omega}$ and $G/N \in \mathfrak{R}$. If T/N denotes the torsion subgroup of G/N, then again by (i) $T \in \mathfrak{X}_{\omega}$, and since G/T is a locally nilpotent torsion-free \mathfrak{R} -group, it is in \mathfrak{N} . Therefore, $G \in \mathfrak{X}_{\omega}(\mathfrak{R} \cap \mathfrak{N})$. By Lemma 2.2(i), we deduce that G is in \mathfrak{S} , as claimed.

Let us define the outer commutator word ϕ_j for every $j \ge 0$ as follows: $\phi_0(x) = x$ and for $i \ge 1$

$$\phi_i(x_1,\ldots,x_{2^i})=[\phi_{i-1}(x_1,\ldots,x_{2^{i-1}}),\phi_{i-1}(x_{2^{i-1}+1},\ldots,x_{2^i})]$$

Then G is in \mathfrak{S} if and only if there is a positive integer n such that $\phi_n(G) = 1$.

THEOREM 3.5. Let G be a group without infinite simple images. Then the following are satisfied.

- (i) If every proper subgroup of G is in $\mathfrak{S}_n\mathfrak{F}$ for some fixed positive integer n, then either $G \in \mathfrak{S}_n\mathfrak{F}$ or $G \in \mathfrak{S}_n\mathfrak{C} \cap \mathfrak{C}$). So if G is an $MN\mathfrak{S}_n\mathfrak{F}$ -group, then $G \in \mathfrak{S}_n\mathfrak{C} \cap \mathfrak{S}_{n+1}$.
- (ii) If every proper subgroup of G is in $\mathfrak{S}_n\mathfrak{C}$ for some fixed positive integer n, then $G \in \mathfrak{S}_n\mathfrak{C}$ or $G \in \mathfrak{S}_{n+1}(\mathfrak{L} \cap \mathfrak{C})$. So if G is an $MN\mathfrak{S}_n\mathfrak{C}$ -group, then $G \in \mathfrak{S}_{n+1}\mathfrak{C} \cap \mathfrak{S}_{n+2}$.

Proof. (i) Take $\omega = \phi_n$. If $G \notin \mathfrak{S}_n \mathfrak{F}$, then G is an $MN\mathfrak{S}_n \mathfrak{F}$ -group. By Theorem 2.4 (iii) $G \in \mathfrak{X}_{\phi_n}(\mathfrak{L} \cap \mathfrak{C})$.

(ii) Again take $\omega = \phi_n$ so that $\omega \circ \theta = \phi_{n+1}$. If $G \notin \mathfrak{S}_n \mathfrak{C}$, then by Theorem 2.5 (iii) $G \in \mathfrak{X}_{\phi_{n+1}}(\mathfrak{L} \cap \mathfrak{C})$, and the proof is complete.

The following lemma will be generalised in Section 4 (see Lemma 4.1), but since the 'soluble' version of the lemma is useful here, we shall prove it.

LEMMA 3.6 (c.f. [3, Proposition 1]). Let G be in $\mathfrak{T} \cap \mathfrak{N}$, $A \in \mathfrak{S}_n$ $(n \ge 1)$ a normal subgroup of G such that $G/A \in \mathfrak{L}$. Then also $G \in \mathfrak{S}_n$.

Proof. We proceed by induction on *n*. If n = 1, then *A* is in \mathfrak{A} and hence $A \leq C_G(A)$. So $T := G/C_G(A) \in \mathfrak{L}$ is isomorphic to a subgroup of Aut *A*. By [3, Lemma 1], $A \leq Z(G)$, and by [15, Section 5.3.5] *G* is in \mathfrak{A} . Now let n > 1 and consider $G/A^{(n-1)}$.

Then

$$\frac{G/A^{(n-1)}}{A/A^{(n-1)}} \in \mathfrak{L} \text{ and } A/A^{(n-1)} \in \mathfrak{S}_{n-1}.$$

By induction hypothesis $G/A^{(n-1)} \in \mathfrak{S}_{n-1}$ and thus $G^{(n-1)} = A^{(n-1)}$. This implies that $G^{(n)} = 1$ and $G \in \mathfrak{S}_n$, as desired.

THEOREM 3.7. Let G be a locally graded \mathfrak{T} -group and suppose that every proper subgroup of G is in $\mathfrak{S}_n\mathfrak{C}$ for some fixed positive integer n. If G contains a normal \mathfrak{N} subgroup N such that $G/N \in \mathfrak{C}$, then $G \in \mathfrak{S}_n\mathfrak{C}$.

Proof. Assume for a contradiction that *G* is an $MN\mathfrak{S}_n\mathfrak{C}$ -group. Since *G* has no proper subgroup of finite index, we have $G/N \in \mathfrak{L}$ or G = N. Hence, $G' \neq G$ and thus $1 \neq G/G' \in \mathfrak{L}$. If N = G, then we have the contradiction that *G* is in \mathfrak{A} by [18, Section 5.2.5], since *G* is in $\mathfrak{T} \cap \mathfrak{N}$. So $N \neq G$ and hence *N* has a normal subgroup $S \in \mathfrak{S}_n$ such that $N/S \in \mathfrak{C}$. So N/S contains a maximal \mathfrak{L} -subgroup R/S such that $N/R \in \mathfrak{F}$. By Lemma 3.6, $R \in \mathfrak{S}_n$. Therefore, we can assume by Lemma 2.1 that *R* is characteristic in *N* and hence *R* is normal in *G*. So G/R is in \mathfrak{C} . Consequently, $G \in \mathfrak{S}_n\mathfrak{C}$, a contradiction, and the proof is complete.

4. MC-groups with certain characteristic subgroups.

LEMMA 4.1. Let G be in $\mathfrak{T} \cap \mathfrak{N}$, N a normal subgroup of G, ω an outer commutator word of weight $t \ge 2$ such that $\omega(N) = 1$. If G/N is in $\mathfrak{A} \cap \mathfrak{D}$, then $\omega(G) = 1$.

Proof. We proceed by induction on t. If t = 2, then $\omega(x, y) = [x, y]$ and

$$\omega(N) = [N, N] = 1,$$

i.e. *N* is in \mathfrak{A} . So $G/C_G(N)$ is in $\mathfrak{A} \cap \mathfrak{D}$ and isomorphic to a subgroup of Aut *N*. By [3, Lemma 1] $G = C_G(N)$ and thus $N \leq Z(G)$. Applying [18, 5.3.5] we have that *G* is in \mathfrak{A} . Let t > 2; then $\omega = [\psi, \phi]$ for some outer commutator words ψ , ϕ of weight $1 \leq t_1, t_2 < t$ such that $t = t_1 + t_2$. Now G/N is in \mathfrak{L} and $\psi(N/\psi(N)) = 1$. If $t_1 > 1$, then by induction hypothesis $\psi(G/\psi(N)) = 1$, i.e. $\psi(G) \leq \psi(N)$. Clearly $\psi(N) \leq \psi(G)$ and it follows that $\psi(G) = \psi(N)$. If also $t_2 > 1$, then similarly $\phi(G) = \phi(N)$, and we have

$$\omega(G) = [\psi(G), \phi(G)] = [\psi(N), \phi(N)] = 1,$$

as required. So we may assume that $t_2 = 1$ and hence $t_1 > 1$, since t > 2. (If $t_1 = 1$, then a similar argument works.) Then $\omega(N) = [\psi(N), N] = 1$ and hence $N \le C_G(\psi(N))$. We also have that $\psi(N)$ is in \mathfrak{A} . Then $G/C_G(\psi(N))$ is in $\mathfrak{A} \cap \mathfrak{D}$ and isomorphic to a subgroup of Aut $\psi(N)$. So by [3, Lemma 1] $\psi(N) \le Z(G)$; in other words [$\psi(N), G$] = 1. It follows that

$$\omega(G) = [\psi(G), G] = [\psi(N), G] = 1,$$

and the proof is complete.

THEOREM 4.2. Let G be a \mathfrak{T} -group and let $N \in \mathfrak{N}_c \cap \mathfrak{X}_{\omega}$ be a normal subgroup of G such that $G/N \in \mathfrak{C}$ for some outer commutator word ω . Then G contains a characteristic

(even invariant under all surjective endomorphisms) subgroup $S \in \mathfrak{N}_c \cap \mathfrak{X}_{\omega}$ such that $G/S \in \mathfrak{C}$.

Proof. Let $W := \langle N^{\alpha} | \alpha \in \text{Aut } G \rangle$, then W is characteristic in G and $W/N \in \mathfrak{C}$. By [8, Lemma 4.7] W is in \mathfrak{N} . We also have that W/N has a normal $\mathfrak{A} \cap \mathfrak{D}$ -subgroup $R/N \in \mathfrak{R}$ such that W/R is in \mathfrak{F} . Now by Lemma 4.1 we have $R \in \mathfrak{N}_c \cap \mathfrak{X}_{\omega}$. By Lemma 2.1 W has characteristic (even invariant under all surjective endomorphisms) subgroups $S_1 \in \mathfrak{N}_c$ and $S_2 \in \mathfrak{X}_{\omega}$ such that W/S_i is in \mathfrak{F} for i = 1, 2. Put $S = S_1 \cap S_2$, then $|W : S| < \infty$ and S is contained in $\mathfrak{N}_c \cap \mathfrak{X}_{\omega}$. Since W is characteristic in G, we see that S is characteristic in G, and since $G/W \in \mathfrak{C}$ and W/S is finite, we have $G/S \in \mathfrak{C}$. The proof is complete.

If we take $\omega = \gamma_{c+1}$, then

$$\mathfrak{N}_c \cap \mathfrak{X}_\omega = \mathfrak{N}_c \cap \mathfrak{N}_c = \mathfrak{N}_c.$$

Hence, we obtain the following result.

COROLLARY 4.3. Let G be a \mathfrak{T} -group and let $N \in \mathfrak{N}_c$ be a normal subgroup of G such that $G/N \in \mathfrak{C}$. Then G contains a characteristic (even invariant under all surjective endomorphisms) subgroup $S \in \mathfrak{N}_c$ such that $G/S \in \mathfrak{C}$.

Corollary 4.3 sharpens [8, Lemma 4.7] and generalises [3, Lemma 3] and [9, Corollary 1(i)] in the periodic case.

In [8, p. 321] Hartley gives an example that shows that the 'periodicity' condition cannot be removed from the hypothesis of Corollary 4.3 and defined Chernikov-subnormality (C-subnormality, in short) as follows:

A subgroup N of a group G is called \mathfrak{C} -subnormal in G if there is a finite series

$$N = N_0 \trianglelefteq N_1 \trianglelefteq \cdots \trianglelefteq N_r = G$$

such that $N_{i+1}/N_i \in \mathfrak{C}$ for $0 \leq i \leq r-1$.

COROLLARY 4.4. Let G be a \mathfrak{T} -group containing a \mathfrak{C} -subnormal subgroup $N \in \mathfrak{N}_c$. Then G contains a characteristic (even invariant under all surjective endomorphisms) subgroup $S \in \mathfrak{N}_c$ such that $G/S \in \mathfrak{C}$.

Proof. The result follows by Corollary 4.3 and a simple induction.

We can give an immediate application of Corollary 4.3 by considering the following result due to Hartley.

THEOREM 4.5 [8, Theorem B]. If G is a locally finite group admitting an involutory automorphism ϕ such that $C_G(\phi)$ is in \mathfrak{C} , then both $[G, \phi]'$ and $G/[G, \phi]$ are in \mathfrak{C} .

As Shumyatsky mentions in [19, p. 160], if we take $N = C_{[G,\phi]}([G,\phi]')$, then $N \in \mathfrak{N}_2$, $G/N \in \mathfrak{C}$ and N is ϕ -invariant. So by Corollary 4.3, G has a characteristic subgroup $S \in \mathfrak{N}_2$ such that $G/S \in \mathfrak{C}$.

We record here the following theorem, which is an immediate consequence of Lemma 2.1.

THEOREM 4.6. Let G be a group and let $N \in \mathfrak{X}_{\omega}$ be a normal subgroup of G for some outer commutator word ω such that $G/N \in \mathfrak{C}$. Then G contains a characteristic (even invariant under all surjective endomorphisms) subgroup $S \in \mathfrak{X}_{\omega \circ \theta}$ such that G/S is finite. *Proof.* Since $G/N \in \mathfrak{C}$, there exists a normal $\mathfrak{A} \cap \mathfrak{D}$ -subgroup R/N of G/N such that G/R is in \mathfrak{F} . Since $N \in \mathfrak{X}_{\omega}$ and R/N is in \mathfrak{A} , we have $R \in \mathfrak{X}_{\omega \circ \theta}$. By Lemma 2.1 G has a characteristic subgroup (even invariant under all surjective endomorphisms) $S \in \mathfrak{X}_{\omega \circ \theta}$ such that G/S is in \mathfrak{F} , and the result is established.

Of course, if we replace the condition $G/N \in \mathfrak{C}$ with $G/N \in \mathfrak{AF}$ in Theorem 4.6, then the result remains true.

REFERENCES

1. A. Arıkan, On barely transitive *p*-groups with soluble point stabilizer, *J. Group Theory* **5** (2002), 441–442.

2. V. V. Belyaev and M. Kuzucuoglu, Locally finite barely transitive groups, *Algebra Logic* **42** (2003), 147–152 (translated from *Algebra i Logika* **42** (2003), 261–270).

3. B. Bruno and F. Napolitani, A note on nilpotent-by-Cernikov groups, *Glasgow. Math. J.* **46** (2004), 211–215.

4. M. R. Dixon, M. J. Evans and H. Smith, Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank, *J. Pure Appl. Algebra* **135** (1999), 33–43.

5. M. R. Dixon, M. J. Evans and H. Smith, Groups with all proper subgroups nilpotentby-finite rank, *Arch. Math.* 75 (2000), 81–91.

6. M. R. Dixon, M. J. Evans and H. Smith, Groups with all proper subgroups soluble-by-finite rank, *J. of Algebra* 289 (2005), 135–147.

7. B. Hartley, On the normalizer condition and barely transitive permutation groups, *Algebra Logic* **13** (1974), 334–340 (translated from Russian from *Algebra i Logika* **13** (1974), 589–602).

8. B. Hartley, Periodic locally soluble groups containing an element of prime order with Chernikov centralizer, *Quart. J. Math. Oxford Ser.* **42**(2) (1982), 309–323.

9. E. I. Khukhro and N. Yu. Makarenko, Large characteristic subgroups satisfying multilinear commutator identities, *J. Lond. Math. Soc.* **75**(2) (2007), 635–646.

10. E. I. Khukhro and N. Yu. Makarenko, Automorphically invariant ideals satisfying multilinear identities, and group-theoretic applications, *J. Algebra* **320** (2008), 1723–1740.

11. E. I. Khukhro, A. A. Klyachko, N. Yu. Makarenko and Yu. B. Mel'nikova, Automorphism invarience and identities, *Bull. Lond. Math. Soc.* 41 (2009), 804–816.

12. P. B. Kleidman and R. A. Wilson, A characterization of some locally finite simple groups of lie type, *Arch. Mat.* 48 (1987), 10–14.

13. A. A. Klyachko and Yu. B. Mel'nikova, A short proof of Makarenko–Khukhro Theorem on a large characteristic subgroups with identity, *Sb. Math.* **200** (2009), 661–664 (translated from Russian from *Mat. Sb.* **200** (2009), 33–36).

14. J. C. Lennox and D. J. S. Robinson, *The theory of infinite soluble groups* (Clarendon Press, Oxford, UK, 2004).

15. J. C. Lennox and S. E. Stonehewer, *Subnormal subgroups of groups*, Oxford Mathematical Monographs (Clarendon Press, Oxford, UK, 1987).

16. M. R. R. Moghaddam, On the Schur–Baer property, J. Austral. Math. Soc. A 31 (1981), 343–361.

17. D. J. S. Robinson, *Finiteness conditions and generalized soluble groups*, Part 2 (Springer-Verlag, New York, 1972).

18. D. J. S. Robinson, A course in the theory of groups (Springer-Verlag, New York, 1982).

19. P. Shumyatsky, Centralizers in locally finite groups, Turk. J. Math. 31 (2007), 149-170.