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Abstract. We present near-infrared images of the circumbinary disk
surrounding the pre-main-sequence binary star, GG Tau A, obtained
with NICMOS aboard the Hubble Space Telescope. These images have a
SNR rv25 times higher than previous ground-based measurements, which
allows the spatially resolved disk to be explored in detail. The geometry
of the ring implies that the circumbinary disk is not intrinsically circular,
possibly due to interactions with the central binary star. Overall, the
circumbinary disk is redder than the central binary, with the amount of
red excess increasing with wavelength. Significant variations in color over
the 13 arcsec2 covered by the disk are also observed, raising the possibility
that disk inhomogeneities are present.

1. Introduction

GG Tau is one of the few T Tauri stars whose disk has been imaged at both
millimeter and near-infrared wavelengths and is therefore an ideal system for
the study of disk material. The massive (0.13 M 0 , Guilloteau et al. 1999)
disk surrounds a central binary star, whose components are separated by 0."25
(37 AU at d == 147 pc, Bertout et al. 1999). Originally detected in thermal
emission at millimeter wavelengths (Simon & Guilloteau 1992; Dutrey et al.
1994) the disk was subsequently observed in near-infrared scattered light in
deconvolved adaptive optics (AO) images (Roddier et al. 1996); the disk was
observed as a complete ring at H (1.65J-tm) and only a partial ring at J (1.25J-tm)
and K (2.2J-tm). Analysis of the near-infrared images offered two particularly
intriguing results. First, unusual colors for the integrated disk compared to
the central binary were derived, although the uncertainties are large (E{J-H) ==
0.65 ± 0.32, E(H-K) == -0.34 ± 0.45). Second, putative 'streamers' of material
connecting the disk and the central binary were identified, which, if real, raise
interesting possibilities for feeding of the inner circumstellar disks. In order
to study the circumbinary disk's colors and the streamers in greater detail,
we have carried out a high resolution near-infrared imaging program with the
Hubble Space Telescope (HST). Space-based observations such as these offer a
more stable point spread function (PSF) which is critical to the detection and
characterization of the extended emission.
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Figure 1. PSF subtracted NICMOS images for the filters FI10W (left),
F160W (middle) and F205W (right). North is up and east to the left in these
images. Although PSF subtraction noise dominates the central regions, the
circumbinary disk is clearly observable at radii of ,....., 1".

2. Disk Detection & Morphology

In order to estimate the properties of the circumbinary disk, models of the
central binary, obtained by PSF fitting, are subtracted from the images. The
nine observations at each wavelength allow us to construct both average maps
(see Figure 1) and standard deviation maps. The circumbinary disk is easily
detected at radii greater than rovl" at all three wavelengths,with a disk peak
surface brightness of 15.2, 14.0 and 13.4 mag/arcsec/ in FII0W, F160W and
F205W, respectively. At smaller radii the la noise level rises dramatically and
dominates (SNR < 3 per pixel) at radii less than 0."8; therefore, although the
SNR of our disk detection is a factor of rov25 higher than that of Roddier et
al. (1996), we are unable to detect the streamers in the region between the
circumbinary disk and the central stars.

A model of the two-dimensional disk geometry is constructed by analyzing
the intensity profile of the disk as a function of azimuth. For every 10 degree
segment of the disk an average radial profile is produced. Both the peak intensity
and width vary azimuthally in a correlated way. The disk intensity decreases
by a factor of rov2 from the North side to the South side, whereas the disk width
increases by a factor of rov2. Roddier et al. (1996) also saw the intensity variation
and suggested that this could be explained by the difference between forward
and backward scattering from the dust particles in the disk. Width variations in
the disk may also be due to the form of the dust particles phase function and/or
to geometric effects. The inclination and shape of the disk is explored by fitting
the intensity peaks of the profiles to an ellipse. The resulting best elliptical
fit has an eccentricity of 0.65, a semi-major axis of 1."45, and a position angle
of 2890

• Based on the assumption that the intrinsic geometry of the system
is circular, the inclination angle can be found, as was done by Roddier et al.
(1996) and Guilloteau et al. (1999). The elliptical fit to the data suggests that
the disk is inclined at 40° to our line of sight, consistent with the inclinations
found under similar assumptions by Roddier et al. (1996) and Guilloteau et al.
(1999).

Two consistency checks can be made on the assumption that the ring is
intrinsically circular. The first test requires the position angle of the disk edge
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Figure 2. (a) Optical and NIR Spectral Energy Distribution for GG Tau
and the circumbinary disk. la error bars are plotted for each point. Open
symbols refer to WFPC2 data from Ghez et aI. (1997), filled symbols are
from this work. (b) Color-color diagram of the circumbinary disk, created
by placing independent apertures across the disk. The reddening vectors are
from Rieke and Lebofsky (1985) and show 5 mag of visual extinction. The
dashed lines indicate the mean stellar color of the central binary.

247

that is physically closest to the line of sight, and which is consequently the
brightest and thinnest region, to be 900 away from the PA of the fitted ellipse.
This appears to be the case, although an offset of as much as 20° may be
present. The second test checks that the position of the true focus of the disk
is consistent with the center of mass of the system (assumed to be the center of
mass of the binary). For a circular model, we find that the true focus is offset
from the center of mass of the binary by 0."23 ± 0.01. The observed offset from
the center of mass of the binary may partly be due to geometric effects from
viewing an inclined ring in scattered light, where the edge closest to us appears
closer to the central stars than it really is. Such an effect will shift the true
focus from the center of mass along the semi-minor axis of the disk. However,
the observed position of the true focus is significantly off this line and therefore
this geometric effect, while probably occurring, does not account for the entire
offset. One possible explanation is that the ring is intrinsically non-circular
due to dynamical interactions with the central binary star (e.g., Artymowicz &
Lubow, 1994).

3. Disk Photometry

The flux density of the circumbinary disk, which covers rv13 arcsec", and that of
the central stars are shown in Figure 2a. The disk appears to re-process rvl.5%
of the stellar light in each filter.

The overall disk color excesses can be found by comparing the disk flux
densities to those of the binary system. We find that the disk is redder than the
central stars for both color indices.

E(F110W-F160W) == 0.08 ± 0.02
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E(F160W-F205W) == 0.17 ± 0.05

These red color excesses are different from those found by Roddier et al., but
are nevertheless consistent to within 2a due to the large uncertainties in the
earlier results. The more precise colors, however, do not alleviate the problem
of the observed red colors; scattered light is expected to be either blue or neutral
compared to the input spectrum, not redder.

Reddening of the starlight prior to scattering can play an important role, as
Wood et al. (1999) demonstrated in modeling the Roddier et al. (1996) results.
However, in this disk model the excess decreases with wavelength whereas the
NICMOS results show excesses that increase with wavelength. It is possible
that a population of large dust particles within the disk cause the observed red
excess.

The picture becomes more complicated when the spatially resolved disk
colors are considered. Significant changes in color are seen across the surface
of the disk (see Figure 2b). The scatter of disk colors around the stellar color
are inconsistent with ISM scattering. From reddening, one would expect to
see less scatter in F160W-F205W than in F110W-F160W. We find that the
scatter in color is a factor of 2 larger at longer wavelengths. This more detailed
investigation of the disk colors, made possible by the high resolution and dynamic
range of the NICMOS observations, show that while extinction may be present,
it alone is not responsible for the unusual colors observed. The color variations
within the disk may be indicative of inhomogeneities in the disk properties.
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