COMPARISON THEOREMS FOR LINEAR ELLIPTIC EQUATIONS

V. B. HEADLEY

ABSTRACT. Two comparison theorems, one of pointwise type and one of integral type, will be obtained for linear elliptic equations of order 2m on an exterior domain in R^n .

1. **Introduction.** Using Gårding's inequality, we will obtain comparison theorems for the linear elliptic differential equations

(1)
$$Lu := \sum_{|\alpha|, |\beta|=0}^{m} (-1)^{|\alpha|} D^{\alpha} [A_{\alpha\beta}(x) D^{\beta} u] = 0 \quad (x \in \Omega \subseteq \mathbb{R}^n)$$

and

(2)
$$\ell u := \sum_{\alpha|,|\beta|=0}^{m} (-1)^{|\alpha|} D^{\alpha}[a_{\alpha\beta}(x) D^{\beta}u] = 0.$$

Here, Ω is an unbounded open set, the coefficient functions are sufficiently smooth, and we make use of the multi-index notation employed in [1]. Our results generalize two known comparison theorems:

- (i) work of the author [5] in which $\ell u = (-1)^m \Delta^m u + h(x)u$;
- (ii) work of Butler and Erbe [2] on the ordinary differential equations

$$L_N v + pv = 0$$

and

$$L_N v + q v = 0,$$

where L_N is a linear, disconjugate, ordinary differential operator of order N.

We remind the reader that an *N*-th order, ordinary, linear differential operator L_N is said to be *disconjugate* on an interval *J* iff the equation $L_N y = 0$ has no nontrivial solution with *N* zeros, counting multiplicities, on *J*.

This research was supported by an operating grant from the Natural Sciences and Engineering Research Council of Canada.

Received by the editors May 23, 1991.

AMS subject classification: 35B05, 34C10.

[©] Canadian Mathematical Society 1993.

REMARK 1.1. According to the Pólya-Levin disconjugacy criterion [9,7], an N-th order, ordinary, linear differential operator L_N with real-valued, locally integrable coefficients is disconjugate on a nondegenerate interval J if, and only if, there exist sufficiently smooth, nonvanishing functions $\rho_0, \rho_1, \ldots, \rho_N$ such that, in the interior of J, we have

(5)
$$L_N v = \rho_N \frac{d}{dt} \left[\rho_{N-1} \frac{d}{dt} \left[\cdots \rho_1 \frac{d}{dt} [\rho_0 v] \cdots \right] \right].$$

2. **Definitions and preliminary results.** Let G be a nonempty, open (possibly unbounded) subset of Ω . If k is a nonnegative integer, we define the seminorm $|\cdot|_{k,G}$, the weighted seminorm $|\cdot|_{k,G,w}$ and the norm $||\cdot||_{k,G}$ as follows:

(6)
$$|u|_{k,G} = \left[\sum_{|\alpha|=k} \int_{G} |D^{\alpha}u|^2 dx\right]^{1/2},$$

(7)
$$|u|_{k,G,w} = \left[\sum_{|\alpha|=k} \int_G (k!/\alpha!) |D^{\alpha}u|^2 dx\right]^{1/2}$$

(8)
$$||u||_{k,G} = \left[\sum_{j=0}^{k} |u|_{j,G}^2\right]^{1/2}.$$

The definition of $|u|_{k,G,w}$ is motivated by the following formula, which is valid for any real-valued ϕ in $C_0^{\infty}(G)$:

(9)
$$(-1)^k \int_G \phi \Delta^k \phi \, dx = \sum_{|\alpha|=k} \int_G (k!/\alpha!) |D^{\alpha} \phi|^2 \, dx.$$

To compare the seminorms $|\cdot|_{m,G}$ and $|\cdot|_{m,G,w}$, we let

(10)
$$c_0 = \max\{m! / \alpha! : |\alpha| = m\}.$$

Then it is easily seen that

(11)
$$|u|_{m,G} \le |u|_{m,G,w} \le c_0^{1/2} |u|_{m,G}.$$

In (6) and (8), when there is no danger of confusion, we will omit the subscript G.

Let the Sobolev spaces $H_k(G)$ and $H_k^0(G)$ be defined as in [4]. If G is bounded, and if there exists a nontrivial function u in $H_m^0(G) \cap C^{2m}(G)$ such that (1) holds, then G is called a *nodal domain* for L or a nodal domain for (1). If for every positive number r the region $\{x \in \Omega : |x| > r\}$ contains a nodal domain for L, then (1) is said to be *nodally oscillatory* in Ω .

Using integration by parts, we can easily show that if G is any nonempty, open (possibly unbounded) subset of Ω , then for every real-valued ϕ in $C_0^{\infty}(G)$ we have:

(12)
$$\int_{G} \phi L\phi \, dx = \sum_{|\alpha| = |\beta| = m} \int_{G} A_{\alpha\beta}(x) \, D^{\alpha} \phi D^{\beta} \phi \, dx + \int_{G} \phi^{2} A_{0,0}(x) \, dx$$
$$+ \sum_{|\alpha| + |\beta| = 1}^{2m - 1} \int_{G} A_{\alpha\beta} D^{\alpha} \phi D^{\beta} \phi \, dx$$
$$:= f_{G}[L;\phi] + \int_{G} \phi^{2} A_{0,0}(x) \, dx$$

and

(13)
$$\int_{G} \phi \ell \phi \, dx = \sum_{|\alpha| = |\beta| = m} \int_{G} a_{\alpha\beta}(x) D^{\alpha} \phi D^{\beta} \phi \, dx + \int_{G} \phi^{2} a_{0,0}(x) \, dx$$
$$+ \sum_{|\alpha| + |\beta| = 1}^{2m-1} \int_{G} a_{\alpha\beta} D^{\alpha} \phi D^{\beta} \phi \, dx$$
$$:= f_{G}[\ell; \phi] + \int_{G} \phi^{2} a_{0,0}(x) \, dx.$$

Define the set $K(L; \Omega)$ as follows:

(14)
$$K(L;\Omega) = \left\{ \sum_{|\alpha|=|\beta|=m} A_{\alpha\beta}(x)\xi^{\alpha+\beta} : x \in \Omega, \xi \in \mathbb{R}^n, |\xi|=1 \right\};$$

and define $K(\ell; \Omega)$ by replacing $A_{\alpha,\beta}$ in (14) with $a_{\alpha\beta}$.

We will suppose that the differential operators L and ℓ are uniformly strongly elliptic in the following sense: there exist constants E_0 , e_0 , and e_1 such that

(15)
$$0 < E_0 := \inf K(L; \Omega)$$

and

(16)
$$0 < e_0 := \inf K(\ell; \Omega) \le \sup K(\ell; \Omega) := e_1.$$

Modifying the well-known proof of the global version of Gårding's inequality [1, Theorem 7.6], we can establish the following two results.

LEMMA 2.1. Suppose that the principal coefficient-functions $A_{\alpha,\beta}$ ($|\alpha| = |\beta| = m$) are uniformly continuous on Ω , and that the intermediate coefficient-functions $A_{\alpha\beta}$ ($1 \le |\alpha| + |\beta| \le 2m - 1$) are bounded and measurable on Ω . Let G be any nonempty, open subset of Ω and let $f_G[L; \phi]$ be as in (12). Then there exist constants $c_1 \in (0, \infty)$ and $c_2 \in [0, \infty)$ such that, for every real-valued ϕ in $C_0^{\infty}(G)$, we have:

(17)
$$f_G[L;\phi] \ge c_1 E_0 \|\phi\|_{m,G}^2 - c_2 |\phi|_{0,G}^2.$$

The constant c_1 may be expressed explicitly in terms of the integers m and n; the constant c_2 may be expressed explicitly in terms of the following quantities: $\sup\{|A_{\alpha\beta}(x)| : x \in \Omega; 1 \le |\alpha| + |\beta| \le 2m - 1\}$, m, n, E_0 , and the modulus of continuity for the principal coefficients.

LEMMA 2.2. Suppose that the regularity hypotheses in Lemma 2.1 hold, with $A_{\alpha\beta}$ replaced by $a_{\alpha\beta}$. Let G be any nonempty, open subset of Ω , and let $f_G[\ell; \phi]$ be as in (13). Then there exist positive constants c_5 and c_6 such that, for every real-valued ϕ in $C_0^{\infty}(G)$, we have:

(18)
$$f_G[\ell;\phi] \le c_5 |\phi|_{m,G}^2 + c_6 |\phi|_{0,G}^2$$

The constants c_5 and c_6 may be expressed explicitly in terms of the following quantities:

https://doi.org/10.4153/CMB-1993-024-9 Published online by Cambridge University Press

166

 $m, n, e_1, \sup\{|a_{\alpha,\beta}(x)| : x \in \Omega; 1 \le |\alpha| + |\beta| \le 2m - 1\}$ and the modulus of continuity for the principal coefficients.

3. The main results. Our first comparison theorem is a generalization of the scalar case of [5, Theorem 3.1]. Note that in [5] we considered the case where *L* is vector-valued, and we compared the differential operator *L* with the differential operator $(-1)^m \Delta^m + h$, where $h: \Omega \to \mathbb{R}^{N \times N}$ is a continuous matrix-valued function, Δ denotes the Laplace operator, and $\Delta^m := \Delta(\Delta^{m-1})$ whenever $m \ge 2$.

THEOREM 3.1. Suppose that

(19)
$$0 < c_5 \le c_4 := c_0^{-1} c_1 E_0$$

and that for all $x \in \Omega$ we have

(20)
$$A_{0,0}(x) - a_{0,0}(x) \ge c_2 + c_6.$$

If (1) is nodally oscillatory in Ω , then (2) is also nodally oscillatory in Ω .

PROOF. If (1) is nodally oscillatory in Ω , then for every positive number *r* the region $\{x \in \Omega : |x| > r\}$ contains a nodal domain *G* for the differential operator *L*. Thus, there exists a nontrivial real-valued function *u* in $C^{2m}(G) \cap H^0_m(G)$ such that (1) holds.

Furthermore, (13), (18) (*i.e.*, Lemma 2.2) and (11) together imply that for every real-valued ϕ in $C_0^{\infty}(G)$ we have:

(21)

$$\int_{G} \phi \ell \phi \, dx = f_{G}[\ell; \phi] + \int_{G} \phi^{2} a_{0,0}(x) \, dx$$

$$\leq c_{5} |\phi|_{m,G}^{2} + \int_{G} |\phi|^{2} [a_{0,0}(x) + c_{6}] \, dx$$

$$\leq c_{5} |\phi|_{m,G,w}^{2} + \int_{G} |\phi|^{2} [a_{0,0}(x) + c_{6}] \, dx.$$

From (21), (19) and (20) we deduce that for every $\phi \in C_0^{\infty}(G; \mathbb{R}^1)$ we have

(22)
$$\int_{G} \phi \ell \phi \, dx \leq c_4 |\phi|^2_{m,G,w} + \int_{G} |\phi|^2 [A_{0,0}(x) - c_2] \, dx.$$

We also note that (12), (17) (*i.e.*, Lemma 2.1), (8) and (11) imply that for every $\phi \in C_0^{\infty}(G; \mathbb{R}^1)$ we have

(23)

$$\int_{G} \phi L \phi \, dx = f_{G}[L; G] + \int_{G} \phi^{2} A_{0,0}(x) \, dx$$

$$\geq c_{1} E_{0} \|\phi\|_{m,G}^{2} + \int_{G} |\phi|^{2} [A_{0,0}(x) - c_{2}] \, dx$$

$$\geq c_{1} E_{0} |\phi|_{m,G}^{2} + \int_{G} |\phi|^{2} [A_{0,0}(x) - c_{2}] \, dx$$

$$\geq c_{0}^{-1} c_{1} E_{0} |\phi|_{m,G,w}^{2} + \int_{G} |\phi|^{2} [A_{0,0}(x) - c_{2}] \, dx$$

$$= c_{4} |\phi|_{m,G,w}^{2} + \int_{G} |\phi|^{2} [A_{0,0}(x) - c_{2}] \, dx.$$

It follows, from (22) and (23), that for every real-valued ϕ in $C_0^{\infty}(G)$ we have

(24)
$$\int_{G} \phi \ell \phi \, dx \leq \int_{G} \phi L \phi \, dx.$$

Since *u* is in $H^0_m(G) \cap C^{2m}(G)$ and satisfies (1), and since $C^{\infty}_0(G)$ is dense in $H^0_m(G)$, it follows from (24) that

(25)
$$\int_G u \ell u \, dx \le \int_G u L u \, dx = 0.$$

A standard variational argument [6, 3] may now be employed to find a nonempty open set $G' \subseteq G$ such that zero is the smallest eigenvalue of the boundary-value problem

(26)
$$\ell y = \lambda y, \quad y \in H^0_m(G') \cap C^{2m}(G').$$

Thus, we have shown that for every positive number r the equation $\ell y = 0$ has a non-trivial solution y, with a nodal domain $G' \subseteq G \subseteq \{x \in \Omega : |x| > r\}$. The proof of Theorem 3.1 is now complete.

Before formulating and proving our next comparison theorem, we recall some ideas and results from [2].

Suppose that the functions ρ_1, \ldots, ρ_N introduced in Remark 1.1 have the property that for each $j \in \{1, \ldots, N\}$ we have $\rho_j \in C^{N-j}(J; (0, \infty))$. Define the quasiderivatives L_0v, \ldots, L_Nv in the usual way:

(27)
$$L_0 v = \rho_0 v, \ L_j v = \rho_j \frac{d}{dt} (L_{j-1} v) \quad (1 \le j \le N).$$

Furthermore, let $\Gamma := \{i_1, ..., i_k\}$ and $\Lambda := \{j_1, ..., j_{N-k}\}$ be subsets of $\{0, 1, ..., N-1\}$ such that $0 < i_1 < i_2 < \cdots < i_k \le N-1$ and $0 \le j_1 < j_2 < \cdots < j_{n-k} \le N-1$.

For any point *a* in the interval *J*, the *first right extremal point* $\theta_1(\Gamma, \Lambda; a)$ for (3) is defined to be the first point $s \in J \cap (a, \infty)$ for which there exists a nontrivial solution of (3) satisfying the boundary conditions

(28)
$$\begin{cases} L_i v(a) = 0, & (i \in \Gamma) \\ L_j v(s) = 0, & (j \in \Lambda) \end{cases}$$

Similarly, we can define $\tilde{\theta}_1(\Gamma, \Lambda; a)$, the first right extremal point for (4).

The differential equation (3) is said to be (Γ, Λ) -*disconjugate* on *J* iff for every $a \in J$ the first right extremal point $\theta_1(\Gamma, \Lambda; a)$ is nonexistent.

The pair (Γ, Λ) is said to be *admissible* iff for every integer $b \in \{1, ..., N-1\}$, at least *b* members of the sequence $(i_1, ..., i_k, ..., j_1, ..., k\}$ are less than *b*.

The following known criterion for (Γ, Λ) to be admissible will be needed in the proof of our next comparison theorem.

PROPOSITION 3.2 (SEE [2, P. 216]). The pair (Γ, Λ) is admissible if, and only if, for every pair of points a and s in J satisfying a < s, there exists no nontrivial solution of the differential equation $L_N y = 0$ satisfying (28).

REMARK 3.3. We now prove a comparison theorem which extends [2, Theorem 2.5]. To facilitate the statement of the theorem, we introduce some additional notation. We define the differential operators M_0 and M_1 as follows:

(29)
$$M_0 u := (-1)^m c_4 \Delta^m u + [A_{0,0}(x) - c_2] u,$$

(30)
$$M_1 u := (-1)^m c_5 \Delta^m u + [a_{0,0}(x) + c_6] u.$$

Suppose that there exists $r_0 \ge 0$ such that the interior of *J* is the open interval (r_0, ∞) , and suppose that there exists $x^0 \in \mathbb{R}^n$ such that $\Omega \supset \{x \in \mathbb{R}^n : |x - x^0| \ge r_0\}$. For any positive *r*, let $S_r = \{x \in \mathbb{R}^n : |x| = r\}$. Define the real-valued functions h_j ($2 \le j \le 7$) as follows:

(31)
$$h_2(r) = \min\{A_{0,0}(x) - c_2 : x \in S_r\}$$
 whenever $r \in J$,

(32)
$$h_3(x) = h_2(|x|)$$
 whenever $x \in \Omega$,

(33)
$$h_4(r) = \max\{a_{0,0}(x) + c_6 : x \in S_r\}$$
 whenever $r \in J$,

(34)
$$h_5(x) = h_4(|x|)$$
 whenever $x \in \Omega$,

(35)
$$h_6(r) = \min\{0, h_2(r)\}$$
 whenever $r \in J$,

(36)
$$h_7(x) = h_6(|x|)$$
 whenever $x \in \Omega$.

Following [2, p. 216], we will suppose that $h_6(r)$ is not identically zero and that $h_4(r) < 0$. Define the differential operators M_3 and M_4 as follows:

(37)
$$M_3 u := (-1)^m c_5 \Delta^m u + h_5(x) u$$

and

(38)
$$M_4 u := (-1)^m c_4 \Delta^m u + h_7(x) u.$$

Let $\Delta_{|x|}$ denote the radially symmetric form of the Laplace operator. In other words, if |x| = r, then

(39)
$$\Delta_r = r^{n-1} \frac{d}{dr} \left(r^{1-n} \frac{d}{dr} \right).$$

Furthermore, let M_5 and M_6 denote the radially symmetric forms of the differential operators M_3 and M_4 , respectively. In other words, let

(40)
$$M_5 v = (-1)^m c_5 \Delta_r^m v + h_4(r) v$$

(41)
$$M_6 v = (-1)^m c_4 \Delta_r^m v + h_6(r) v,$$

where h_4 and h_6 are defined in (33) and (35), respectively.

V. B. HEADLEY

THEOREM 3.4. Suppose that for all $r \in J$ we have

(42)
$$\int_{r}^{\infty} t^{1-n} |h_4(t)| \, dt \ge \int_{r}^{\infty} t^{1-n} |h_6(t)| \, dt$$

If (1) is nodally oscillatory in Ω , then so is (2).

PROOF. Let G be any nonempty open subset of Ω , and let ϕ be any real-valued function in $C_0^{\infty}(G)$. Then (23), (9), (7) and (29) imply that

(43)
$$\int_{G} \phi L\phi \, dx \ge c_4 |\phi|^2_{m,G,w} + \int_{G} |\phi|^2 [A_{0,0}(x) - c_2] \, dx$$
$$= \int_{G} \phi M_0 \phi \, dx.$$

If (1) is nodally oscillatory in Ω , then (43) and the arguments following (25) in the proof of Theorem 3.1 together imply that the equation

$$(44) M_0 u = 0$$

is nodally oscillatory in Ω .

Furthermore, (29), (31), (32), (35), (36) and (38) imply that

(45)
$$\int_{G} \phi M_{0} \phi \, dx = (-1)^{m} c_{4} \int_{G} \phi \Delta^{m} \phi + \int_{G} [A_{0,0}(x) - c_{2}] |\phi|^{2} \, dx$$
$$\geq \int_{G} [(-1)^{m} c_{4} \phi \Delta^{m} \phi + h_{7}(x) |\phi|^{2}] \, dx$$
$$= \int_{G} \phi M_{4} \phi \, dx.$$

Since (44) is nodally oscillatory in Ω , therefore (45) and the arguments following (25) in the proof of Theorem 3.1 together imply that the equation

$$(46) M_4 u = 0$$

is nodally oscillatory in Ω . In other words, for every positive number r_1 , the region $\{x \in \Omega : |x| > r_1\}$ contains a nodal domain for (46). Let $J_1 := J \cap (r_1, \infty)$. Then we can employ the method of spherical means (as in the proof of [3, Theorem 4.1]) to show that the ordinary differential equation

$$(47) M_6 v = 0$$

is (Γ, Λ) -nondisconjugate on J_1 in the case where $\Gamma = \Lambda = \{0, 1, ..., m-1\}$. (See (41) for the definition of M_6 .) Because of the representation (39), we can choose

(48)
$$\begin{cases} N = 2m, \quad \rho_N(r) = r^{n-1}, \, \rho_{N-1}(r) = r^{1-n}, \dots, \, \rho_1(r) = r^{1-n}, \, \rho_0(r) = 1, \\ L_N = \Delta_r^m \end{cases}$$

in (5). Since (47) is (Γ, Λ) -disconjugate on J_1 in the case where $\Gamma = \Lambda = \{0, 1, ..., m - 1\}$, it follows from (42) and [2, Theorem 2.5] that either the pair (Γ, Λ) is inadmissible or the ordinary differential equation

$$(49) M_5 v = 0$$

is (Γ, Λ) -nondisconjugate on J_1 (See (40) for the definition of M_5). But if the pair (Γ, Λ) is inadmissible, then it follows from Proposition 3.2 that there will exist two points a and s in J_1 , with a < s, such that the boundary-value problem consisting of the ordinary differential equation

(50)
$$L_n v_0 = 0 \text{ on } J_1$$

and the boundary conditions (28) (with v replaced by v_0) has at least one nontrivial solution. It follows from (48) and (39) that the boundary-value problem consisting of the partial differential equation

(51)
$$\Delta^m u_0 = 0 \text{ in } \Omega_{a,s} := \{ x \in \Omega : a < |x| < s \}$$

and the boundary conditions

(52)
$$\Delta^k u_0 = 0 \text{ on } \partial \Omega_{a,s} \quad (0 \le k \le m-1)$$

has at least one radially-symmetric nontrivial solution. (Here, $\Delta^0 u_0 := u_0$.) But since $\Delta^m u_0 := \Delta(\Delta^{m-1}u_0)$ whenever $m \ge 1$, it follows from the maximum principle that any solution of (51) and (52) has the property that

(53)
$$\Delta^{m-1}u_0 = 0 \text{ throughout } \Omega_{a,s}.$$

Furthermore, (52) implies that

(54)
$$\Delta^k u_0 = 0 \text{ on } \partial \Omega_{a,s} \quad (0 \le k \le m-2).$$

Continuing recursively, we deduce eventually that $u_0 = 0$ throughout $\Omega_{a,s}$. This contradicts the nontrivialness of u_0 , and shows that the pair (Γ, Λ) cannot be inadmissible. Thus, we have proved that (49) is (Γ, Λ) -nondisconjugate on J_1 in the case where $\Gamma = \Lambda = \{0, 1, \dots, m-1\}$. In other words, there exist points *a* and *s* (in J_1) and a real-valued function $v \in C^{2m}(J_1)$ such that (49) and (28) hold.

Introducing spherical polar coordinates in the usual way [8, p. 58], we note that, for every multi-index β , if |x| = r, then the expression $x^{\beta}/r^{|\beta|}$ is independent of r. It follows from the Chain Rule and the final statement in the last paragraph above that there exist points a and s (in J_1) and a radially-symmetric, real-valued, C^{2m} function $u: x \to v(|x|)$ such that

$$(55) M_3 u = M_5 v = 0$$

throughout the spherical shell $\Omega_{a,s}$, and

(56)
$$D^{\alpha}u|_{\partial\Omega_{a,s}} = \frac{x^{\alpha}}{r^{|\alpha|}} \left(\frac{\partial}{\partial r}\right)^{|\alpha|} v|_{\partial\Omega_{a,s}} = 0 \text{ whenever } 0 \le |\alpha| \le m-1.$$

But (56) implies, because of [1, Lemma 9.10], that $u \in H^0_m(\Omega_{a,s})$. Since r_1 was chosen arbitrarily, we have therefore shown that (55) is nodally oscillatory in Ω .

Furthermore, (37), (34), (33) and (30) imply that if G is any nonempty open subset of Ω , and if ϕ is any real-valued function in $C_0^{\infty}(G)$, then

(57)
$$\int_{G} \phi M_{3} \phi \, dx = \int_{G} [(-1)^{m} c_{5} \phi \Delta^{m} \phi + h_{5}(x) |\phi|^{2}] \, dx$$
$$\geq \int_{G} [(-1)^{m} c_{5} \phi \Delta^{m} \phi + [a_{0,0}(x) + c_{6}] |\phi|^{2}] \, dx$$
$$= \int_{G} \phi M_{1} \phi \, dx.$$

Since (55) is nodally oscillatory in Ω , therefore (57) and a familiar argument imply that the partial differential equation

$$(58) M_1 u = 0$$

is nodally oscillatory in Ω .

Finally, (30), (7), (9) and (21) imply that if G is any nonempty open subset of Ω , and if ϕ is any real-valued function in $C_0^{\infty}(G)$, then

(59)
$$\int_{G} \phi M_{1} \phi \, dx = \int_{G} \left[(-1)^{m} c_{5} \phi \Delta^{m} \phi + [a_{0,0}(x) + c_{6}] |\phi|^{2} \right] dx$$
$$= c_{5} |\phi|_{m,G,w}^{2} + \int_{G} [a_{0,0}(x) + c_{6}] |\phi|^{2} \, dx$$
$$\geq \int_{G} \phi \, \ell \phi \, dx.$$

Since (58) is nodally oscillatory in Ω , (59) implies that (2) is nodally oscillatory in Ω .

REFERENCES

- 1. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965.
- G. J. Butler and L. H. Erbe, Integral comparison theorems and extremal points for linear differential equations, J. Differential Equations 47(1983), 214–226.
- **3.** V. B. Headley, *Sharp nonoscillation theorems for even-order elliptic equations*, J. Math. Anal. Appl. **120**(1986), 709–722.
- **4.**_____, Nonoscillation theorems for nonselfadjoint even-order elliptic equations, Math. Nachr. **141**(1989), 289–297.
- _____, Oscillation and nonoscillation theorems for linear elliptic systems, Proceedings of an International Conference on Differential Equations: Stability and Control, Marcel Dekker, New York, 1990, 209–215.
- 6. V. B. Headley and C. A. Swanson, *Oscillation criteria for elliptic equations*, Pacific J. Math. 27(1968), 501–506.
- **7.** A. Ju. Levin, *Non-oscillation of solutions of the equation* $x^{(n)} + p_1(t)x^{(n-1)} + \cdots + p_n(t)x = 0$, Uspekhi Mat. Nauk (2) **24**(1969), 43–96; Russian Math. Surveys (2) **24**(1969), 43–99.
- 8. S. G. Mikhlin, The Problem of the Minimum of a Quadratic Functional, Holden-Day, San Francisco, 1965.
- **9.** G. Pólya, On the mean value theorem corresponding to a given linear homogenous differential equation, Trans. Amer. Math. Soc. **24**(1924), 312–324.

Department of Mathematics Brock University St. Catharines, Ontario L2S 3A1

172