IDENTITIES AND LEFT CANCELLATION IN DISTRIBUTIVELY GENERATED NEAR-RINGS

DAVID JOHN
(Received 20 December 1979; revised 14 March 1980)
Communicated by H. Lausch

Abstract

Given a semigroup S, we define $\{N(S),+, \cdot\}$ to be the 'free' distributively generated near-ring. Since ail words in $N(S)$ can be expressed as the sum and difference of elements of S, we are able to define a length function on the words of $N(S)$. The following theorems then follow

Theorem 1. $N(S)$ contains a multiplicatice identity e if and only if $e \in S$.
Theorem 2. If S is the free semigroup in the rariety of all semi-groups then $\mathrm{N}(\mathrm{S})$ is left cancellatice.
1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 76.

1. Introduction

We want to prove several results about distributively generated near-rings 'freely' generated by semigroups. We will show for an arbitrary semigroup S that the 'freely' generated near-ring contains a multiplicative identity if and only if the original semigroup contains a multiplicative identity. Secondly, we will show that if S is the free semigroup, then the resulting near-ring is left cancellative.

Let us say more carefully what we mean by the distributively generated near-ring 'freely' generated by a semigroup S. Our near-rings will be left near-rings; that is, a set with two binary operations + and \cdot, so that the system is a group with respect to + , a semigroup with respect to \cdot, and is left distributive over + . One is distributively generated if it is additively generated by a set of elements that distribute from the right as well as from the left.

2. Preliminaries

We are interested here in a special class of distributively generated near-rings.

Given any semigroup S, we define the distributively generated near-ring $\{N(S),+, \cdot\}$ as follows : if $s, t \in S$ and $u, v, w \in N(S)$, then $s \cdot t=s t$ (the product of s and t in S), and $(-u) \cdot t=-(u \cdot t)$, and $(u+u) \cdot s=w \cdot s+u \cdot s$, and $w \cdot(u+v)=w \cdot u+w \cdot v$, and $w \cdot(-u)=-(w \cdot u)$, and $w \cdot 0=0$. It has been shown in Evans and Neff (1964) and Fröhlich (1960) that $N(S)$ is a distributively generated near-ring.

All words in $N(S)$ can be expressed as the sum and difference of elements of S; that is, $w=\sum_{i} \pm s_{i}$. If $w=\sum_{i} \pm s_{i}$ and $v=\sum_{j} \pm t_{j}$, then the product $w v=\sum_{j} \pm\left(\sum_{i} \pm s_{i} t_{j}\right)$ which we call the linear form of the product. A word is reduced if the word is reduced as a word in the free group on S.

We define length of a word in $N(S)$ as follows:

1. length of 0 is 0 ;
2. length of $\pm s$, where $s \in S$, is 1 ;
3. length of $\pm u \pm v$ is the sum of the length of u and the length of v;
4. length of $u \cdot v$ is the product of the length of u and the length of v.

On a free semigroup S (possibly with identity added), we define the standard length, written as $|s|$,

1. if g is a generator of $S,|g|=1$;
2. if e is the identity, $|e|=0$;
3. $|s t|=|s||t|$.

Let u and v be reduced words of $N(S), u=\sum_{i} \pm s_{i}$ and $v=\sum_{j} \pm t_{j}$. In the word $u t=\sum_{j} \pm\left(\sum_{i} \pm s_{i} t_{j}\right)$ we call the subword $\sum_{i} \pm s_{i} t_{j}$ the t_{j} segment. The segment is called positive or negative depending on the sign of t_{j}. Each t_{j} segment is reduced, and if the signs of t_{j} and t_{j-1} are different then $\pm\left(\sum_{i} \pm s_{i} t_{j}\right) \mp\left(\sum_{i} \pm s_{i} t_{j+1}\right)$ is reduced. We will refer to the 'place' where two adjacent segments adjoin as a 'joint'.

3. Identities

If a generating set contains an identity, then so must the distributively generated near-ring; however, the converse does not always hold. For example $\left\{Z_{6},+, \cdot\right\}$ is a distributively generated near-ring where a generating set is $\{0,2,3,4\}$. We will show that the converse does hold in $N(S)$.

Lemma 1. If $N(S)$ has an identity e and $e=\sum_{i=1}^{n} \pm a_{i}$ (reduced form), then
(a) n is odd;
(b) e is symmetric; that is, $\pm a_{1}= \pm a_{n}, \pm a_{2}= \pm a_{n-1, \ldots}$;
(c) When $n=2 m+1$ and $g \in S$, there exists $j \geqslant m+1$ so that $\pm a_{j} g=g$, $\sum_{i=1}^{j-1} \pm a_{i} g=0$, and $\sum_{i=j+1}^{2 m+1} \pm a_{i} g=0$.

Proof. Since e is an identity, $e g=g$ for generator g, and so $\sum_{i=1}^{n} \pm a_{i} g=g$. Since summands reduce in pairs, n must be odd.

Consider $e^{\mathbf{T}}$, that is, e written in reverse order : $e^{\boldsymbol{T}}= \pm a_{n} \ldots \pm a_{1}$. For any generator g, any reduction in eg corresponds in a one-to-one fashion to a reduction in $e^{\mathbf{T}} g$, so we have $e^{\mathrm{T}} g=g$. So e^{T} is a left identity, and therefore $e=\iota^{\mathrm{T}}$, and we have proved (b).

Let $n=2 m+1$. For a generator $g, g=e g=\sum_{i=1}^{2 m+1} \pm a_{i} g$. There must be some integer j such that $a_{j} g=g, \sum_{i=1}^{j-1} \pm a_{i} g=0$, and $\sum_{i=j+1}^{2 m+1} \pm a_{i} g=0$. If $j \geqslant m+1$ we are done; if $j<m+1$, then using symmetry we have $a_{2 m+2-j} g=g$, $\sum_{k=1}^{2 m+1-j} \pm a_{k} g=0$ and $\sum_{k=2 m+3-j}^{2 m+1} \pm a_{k} g=0$.

The next lemma will establish a general reduction pattern in $N(S)$.

Lemma 2. Iet w be a symmetric word of odd length (no summand is 0, but not necessarily reduced), say $w=x \pm c+x^{\mathrm{T}}$, that reduces to an element of S. If $w=x+c+x^{\mathrm{T}}$ then $x=0$, and if $w=x-c+x^{\mathrm{T}}$ then $x-c=0$.

Proof. We will use induction on the length of u.
If the length of w is 3 , then $w=x-c+x$, and so $c=x$, and so $x-c=0$.
Suppose $w= \pm s_{1} \pm \ldots \pm s_{n}-c \pm s_{n} \pm \ldots \pm s_{1}$, each $s_{i}, c \in S$, and w reduces to some element of S. There is an integer $j \leqslant n$ so that $s_{j}-c=0$ and $\sum_{k=j}^{m} \pm s_{k}-c=0$. (If $j=0$ we are done.) Then by the symmetry of w, we get that

$$
w= \pm s_{1} \pm \ldots \pm s_{j-1}+0+s_{j} \pm \ldots \pm s_{1}=v
$$

The induction hypothesis applies to v, so $\pm s_{1} \pm \ldots \pm s_{\jmath-1}=0$. Then in w we have that $x-c=0$.

In the case where $w= \pm s_{1} \pm \ldots \pm s_{n}+c \pm s_{n} \pm \ldots \pm s_{1}$ the proof is similar and omitted.

Now we will show e fits the hypothesis of the previous lemmas and prove
Theorem 3. If $N(S)$ has two-sided identity e, then $e \in S$.
Proof. According to Lemma 1 we write $e=x \pm c+x^{T}$ (reduced form).
Let $s \in S$. Then $s=e s=x s \pm c s+x^{\mathrm{T}} s=\left(x s \pm c s+x^{\mathrm{T}} s\right)^{\mathrm{T}}$, where the summands belong to S and are hence not zero.

Applying Lemma 2, if the term $\pm c$ is positive, then $x s=0$ for all $s \in S$, or if the term $\pm c$ is negative $(x-c) s=0$ for all $s \in S$. Suppose $x s=0$ for all $s \in S$, then it follows that $x e=0$ and so $x=0$, contrary to x being reduced. Similarly $(x-c) s=0$ for all $s \in S$ gives a contradiction.

The length of e must be 1 . Hence $e \in S$.
The following example shows that we cannot weaken the result to left identities. Suppose we begin with the semigroup S given by $S=\{a, b, c\}$, and $x^{2}=x$, for all
$x \in S$, and $x y=b$, for $x, y \in S$ and $x \neq y . S$ has no left identity, but in $N(S)$ the expression $a-b+c$ is a left identity. Incidentally, $a-b+c$ is a right identity for generators but not for $N(S)$.

4. Left cancellation

We will now show that $V(S)$ is left cancellative when S is the free semigroup. This will be done by showing that no element of $N(S)$ is a divisor of zero, and then using the result that no divisors of zero implies left cancellation.

We embed S, the free semigroup, in a semigroup with identity $S^{e}=S \cup\{e\}$. Note that $N(S)$ is naturally embedded in $N\left(S^{e}\right)$.

Lemma 4. No word of length 2 in $N\left(S^{e}\right)$ is a left dicisor of zero.

Proof. Suppose $w t=0$. where w is reduced and of length $2, w= \pm s_{1} \pm s_{2}$. We proceed by induction on the length of v.

If c has length 1 , it can be easily seen this leads to contradiction.
Assume that if r is a reduced word in $N\left(S^{e}\right)$ of length less than n then $w r=0$ implies $r=0$.

Let $v= \pm t_{1} \pm \ldots \pm t_{n}$ and suppose $\omega v=0$.

$$
w t= \pm\left(\pm s_{1} \pm s_{2}\right) t_{1} \pm \ldots \pm\left(\pm s_{1} \pm s_{2}\right) t_{n}=0
$$

Since reduction can occur only between segments t_{j} and t_{j+1} of the same sign, we deduce that s_{1} and s_{2} have opposite signs.

Let k be a positive integer such that reduction occurs between the t_{k} and t_{k+1} segments, and furthermore let us assume both are positive. We have $s_{2} t_{k}=s_{1} t_{k+1}$. $\left|t_{k}\right|=\left|t_{k+1}\right|$ leads to a contradiction. Assume $\left|t_{k}\right|>\left|t_{k+1}\right|$. It follows that $\left|s_{2}\right|<\left|s_{1}\right|$: so $s_{1}=s_{2} s$ for some $s \in S$. Now $w v=s_{2}(s-e) v=0$ and it follows that $(s-e) t=0$ and so $\pm\left(s t_{1}-t_{1}\right) \pm \ldots \pm\left(s t_{n}-t_{n}\right)=0$. Assuming all segments are positive leads to a contradiction.

Consider the first joint from the left which occurs between two segments of different signs (assume t_{j} is positive and t_{j+1} is negative),

$$
u t=+\left(s t_{1}-t_{1}\right)+\ldots+\left(s t_{j}-t_{j}\right)+\left(t_{j+1}-s t_{j+1}\right)+\ldots
$$

There must exist $k>j+1$ such that $(s-e)\left(-t_{j+1} \pm \ldots \pm t_{k}\right)=0$, then by the induction hypothesis it follows that $-t_{j+1} \pm \ldots \pm t_{k}=0$, contrary to v being reduced.

Lemma 5. If w belongs to $\mathrm{N}\left(\mathrm{S}^{e}\right)$ and has odd length, then w is not a left divisor of zero.
Proof. We write $i t=x+c+y$ (reduced) where the lengths x and y are the same,
and we write $v= \pm t_{1} \pm \ldots \pm t_{m}$. If $w v=0$ then there exists $j, 1 \leqslant j<m$, such that $\pm(c+y) t_{j}+(x+c) t_{j+1}=0$ contrary to v being reduced.

The next lemma covers all remaining w, of even length. We omit the proof.
Lemma 6. If w (different from 0) belongs to $N\left(S^{e}\right)$ and has even length, then w is not a left divisor of zero.

Theorem 7. $N\left(S^{e}\right)$ contains no divisors of zero and is therefore left cancellative.

Corollary 8. (a). If Tis a subsemigroup of S^{e}, then $N(T)$ has no divisors of zero. (b) If N is a subnear-ring of $N\left(S^{e}\right)$ then N has no divisors of zero.

References

T. Evans and M. F. Neff (1964), 'Substitution algebras and near-rings I', Notices Amer. Math. Soc. 11.
A. Fröhlich (1960), 'On groups over a d.g. near-ring I. Sum constructions and free R-groups', Quart. J. Math. Oxford Ser. 11, 193-210.
S. Ligh (1969), 'On distributively generated near-rings', Proc. Edinburgh Math. Soc. 16, 237-243.
G. Pilz (1977), Near-rings (North-Holland, Amsterdam).

Department of Mathematics and Computer Science
Valdosta State College
Valdosta, GA 31601
U.S.A.

