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THE PRINCIPLE OF LIMITING ABSORPTION FOR
UNIFORMLY PROPAGATIVE SYSTEMS WITH
PERTURBATIONS OF LONG-RANGE CLASS

HIDEO TAMURA

§1. Introduction

The aim of this paper is to establish the principle of limiting absorp-
tion for uniformly propagative systems A(x, D,) = E(x)"'> ., A;D;, D, =
—i0/ox;, with perturbations of long-range class, where the perturbation
of long-range class, roughly speaking, means that E(x) approaches to
E,, E, being the N X N identity matrix, as |x| — co with order O(x|),
0< 6 <1 (The more precise assumptions will be stated below and we
require some additional assumptions on the derivatives of E(x).) The
spectral and scattering problem for uniformly propagative systems was
first formulated by Wilcox [10]. Since then, the principle of limiting
absorption has been proved by many authors ([5], [7], [8], [11] etc.). The
perturbations discussed in their works belong to the short-range class
with ¢ > 1.

On the other hand, for the Schrodinger operators with long-range
potentials, this principle has been already verified by many authors ([2],
[3], [6] etc.). Especially, S. Agmon has extended their results to general
elliptic operators of higher order, using the localization theory in the
momentum space, &-space (lecture given at the Kyoto University, 1977).

In this paper, we also use the localization theory, so we owe much
to Agmon’s idea. However, his method cannot be directly applied to our
problem. In particular, when the characteristic equation for the unper-
turbed system A(D,) = >.7., A;D, has multiple roots, a few difficulties
occur and we need some modifications.

1.1. Notations. We first list up the notations which will be used
throughout this paper. (1) R* and R? denote the n-dimensional euclidean
space with generic points x = (x,, -- -, x,) and & = (¢, - - -, §,), respectively.
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We often write R" instead of R? or R? without subscript x or & We
denote by x-& the scalar product between x and &;x-& = 3", x,6,, and
by |x| the length of x. (2) C* denotes the n-dimensional unitary space
with the usual scalar product (,). (3) For a multi-index & = (o, - - -, @),
«, being a non-negative integer, we denote by |«| the length of «;|a| =
Draileyl. We write 8, = (0fox,, - - -, 8/0x,), D, = (D,, - -+, D,), D, = —id/ox,,
and 92 = (8/ox)™ - - - (8/ox,) for & = (@, - - -, @,). We occasionally use the
symbol « to denote real numbers but there will be no fear of confusions.

1.2. Assumptions. We shall formulate the problem to be discussed
here with several assumptions. The operators to be considered are given
in the following form:

(1.1) 4= E@™"> AD,,
=1
(1.2) 4, = E;? Zl A,D, = ZIA,.D, ,
J= J=
where E, is the identity matrix of size N X N. We make the following
assumptions:
(Al A,j=1,.--,n,is a symmetric constant matrix of size N X N;

(A.2) The unperturbed system 4, is uniformly propagative in the sense
of Wilcox ([10]).

We do not give the definition of uniformly propagative system here
but some important properties which are necessary to the later argument
will be summarized in § 2.

(A.3) E(x) = {e;u(%)}; 11,y 1s symmetric and positive definite uniformly in
x. Furthermore, it belongs to the long-range class in the following sense:

1.3) len(x) — 0] < CA + [x7°, 6>0;
(1.4 [0fes(x)] = Cp(1 + |x)~0*2, Bl=1,
where §,, is Kronecker’s delta.

1.3. Functional spaces. We shall introduce the various functional
spaces in which we work. We denote by H,(H, = L,) the usual Sobolev
space of order m over the whole space R" and the norm is denoted by
I ll.. We introduce the Sobolev space H, , with weight ¢« by H,, =
{¢; 1 + |x[)*¢ € H,} and define the norm || |ln,e bY $lln,. = (1 + [x[)"*]l,.
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We further define the space H, as H?, = >, ® H,,, ., { summands, and
denote by | |, the norm in HY,. When m = 0, we write H{ = L{,.
In the future argument, the spaces of N summands are most frequently
used, so we simply write | |,,. instead of | | for the norms in these
spaces.

1.4. Results. We shall state the main results obtained in this paper.
As is easily shown, the operator A defined by (1.1) has a natural self-
adjoint realization (denoted by the same symbol A4) in L{¥y with the energy
scalar product

@ P =6 B

and the domain 2(4) is given by 2(4) = {u; v e L{Y, duec L{P}. Similarly
we denote by the same symbol 4, a self-adjoint realization of 4, defined
by (1.2) with domain 2(4,).

With the above notations, we are now able to state the first result.
We always assume that (A.1) ~ (A.3) are satisfied.

THEOREM 1.1. The eigenvalues of A are discrete with possible accumu-
lating points 0 and =+ oo.

Next, we consider the equation
(1.5) Au— QA+ iv)u=rf, 0<eLl,

with fe L™, « > 4. Clearly, for £ > 0 there exists a unique solution u =
R + ir)f = (4 — (2 £ ir))"'f such that uwe L{P. Then, the second result
is stated as follows:

THEOREM 1.2. Assume that 2,2 x 0, is not an eigenvalue of A. Let
u = R(A £ ix)f be a solution of equation (1.5) with fe L), a« > L. Then,
the following statements hold: (i) There exists a constant C, independent
of &, 0 <k £ 1, such that |R(A =+ ik)fly,-« < C.|fl,.; (1) There exist bounded

operators R(A + i0) from L) to L™, defined by R(A + i0)f = lim,,, R(A % ix)f
strongly in L{™,.

Remark. We can show that the convergence in (ii) is uniform in 2
when 2 ranges over a compact interval, not containing the origin and
eigenvalues of 4. Hence, we can prove that R(2 & i0)f is locally con-

tinuous in A under the norm in L{™,.
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We prove Theorem 1.2 only for the “+” case; the proof for the “—"
case is done without any essential changes.

1.5. Remarks. (i) The assumption that E, is the identity matrix loses
no generality. The general case in which E, is symmetric and positive
definite can be reduced to this case by a simple transformation. (ii) The
assumption in (A.3) seems to be rather restrictive. However, our results
cover the case in which E(x) is of the following form: E(x)= E,(x) -+
E,(x), where E(x) satisfies (A.3) and E(x) = O(|x]~**®) as |x| — co. Hence,
by use of mollifier technique, E(x) for which (1.4) with || =1 only is
valid can be decomposed into the above form.

Finally we note the following fact: We use the symbols C, C,, - - - to
denote positive constants which are not necessarily the same. In par-
ticular, when we specify the dependence of such a constant on a para-
meter, say ¢, we denote it by C..

§2. Preliminaries

2.1. Systems in homogeneous media. We summarize the results
derived from assumption (A.2) which are necessary to the later argument.
The proof of these results can be found in [10]. Let 4,¢) be defined by

2.1) A(8) = g Ak .

Then, by the definition of uniformly propagative system, 4,(¢) has r distinct
real eigenvalues with constant multiplicity.

ProposritioN 2.1. (i) One of the following alternative holds for a system
of the above eigenvalues: (a) when r = 2p + 1 is odd,

(2.2 HE> - >2E)>HE) =0>2,0 > > 248
with the relation 2_(—§&) = —248),j=1,---,p; (b) when r = 2p is even,
(2.3) MWE > >, >0>2.,8)> > 2,48

with the same relation as above. (ii) Each 24%) is smooth in R" — {0}
and positively homogeneous of degree one; 2, (uf) = pa, (&), 1> 0. Hence,
when j = 1, there exists a constant C; such that 2,&) = C, |&|.

We now define the bounded surface &,,j=1,---,p, as

2.9 g,=1{&246)=1}.
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ProprosiTiON 2.2. 5, has the following properties: (a) 5, is smooth;
(b) &, does not intersect with each other and is a closed hypersurface,
enclosing the origin.

For brevity, we restrict our attention to the case (a) in Proposition
2.1 throughout the entire discussion.

Let d,, j=0,+1, -+, +p, be the multiplicity of 2,(&), d_; = d,, and
hence N=>"._,d,. Let

I' (&) = projection on the eigenspace corresponding to

(2.5) :
2]‘(5)7 J = 03 ils ] ip .

Then, it is easy to see that I',(§) is smooth in R* — {0} and homogeneous
of degree zero. Moreover, I',(¢§) has the following properties: (a) I",(—¢&)
=TI'_)§) for j = 0; (b) I'y&I'w(§) = 5, (8); (¢) 205--, ['y(§) = E,, E, being
the N X N identity matrix.

We denote by I, the d, X d, identity matrix and define 2{*'(¢) as
follows:

A1 0
2§°(8) = K3 , Iy =1.
0 2.,

We further define 2,(¢&) as

D§0(8) 0
(2-6) 2 0(5 ) = ( '20(5 )Io )
0 D§7(8)

For brevity, we assume that there exists a N X N unitary matrix Uy(&)
such that Uy¢) is smooth globally in R* — {0} and that

(2.7 U4 UE) " =248, £=0.

If Uy¢) exists, then Uy(£) is homogeneous of degree zero. In the later
argument, we have only to assume that such an Uy(£) exists in a small
neighborhood of each &, (¢, == 0) fixed arbitrarily, not containing the origin
and this assumption is always satisfied for uniformly propagative systems.

2.2. Symbol class of weighted pseudo-differential operators. In this
subsection, we introduce a special class of pseudo-differential operators
and state some fundamental properties without proofs.
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DeriNiTION 2.1. We say that P(x, &) = {p(x, &)},,1-1.» (x, &) € R* X R*,
belongs to A{™(¢), ¢ = 6 = 0, when the following conditions are satisfied:

(a) pu(x, &) is smooth in R* X R",

(®) [0tpulx, ) = CQ + =D + [D™'7,

() 1050tpsu(x, O < Cp (1 + |2~ + [ED™', |8l = 1.

We say that a family of P(x, £;¢) with parameter ¢ belongs to A{™(4)
uniformly in ¢, if the above constants C, and C,, are independent of e.

We now define the pseudo-differential operator P = P(x, D,) with
symbol P(x, &) e A™(4) as follows:

Pu = (2n)" j et P(x, £)i(E)dE

for u(x) = (uy(x), - - -, u(x)) € &, & being the Schwartz space of rapidly de-
creasing smooth functions, where #(¢) is the Fourier transform of u;

we) = Ie‘ix‘eu(x)dx

and the integration with no domain attached is taken over R".

DeriniTION 2.2. We say that P(x, D,) € OPA{™(¢), when it is a pseudo-
differential operator with symbol P(x, §) € As™(¢).

For the calculus of pseudo-differential operators of class OPA{™(4),
we can obtain formulas similar to those in the standard Hérmander class
S (Hormander [1]). We state these formulas below without proofs.

ProrosiTioN 2.3. (i) Let Pyx, D,), j = 1,2, be pseudo-differential op-
erators of class OPA{">(¢). Then, the product P = PP, is also a pseudo-
differential operator of class OPA{™)({), where m = m, + my, 0 = 6, + 6, and
¢ = min (¢, + 6, 6, + 7,), and the symbol P(x,&) is expressed as P(x,§) =
Pi(x, §)Py(x, &) + Q(x, &) with Q(x,&) e A{™(6), m=m, + m, — 1. (ii) Let
P(x, D,) be a pseudo-differential operator of class OPA{™)(¢). Then, P*, P*
being the adjoint of P in L{), is also a pseudo-differential operator of class
OPA{™(8), and the symbol a(P*)(x, &) is expressed as o(P*)(x, &) = P*(x, §)
+ Q(x, &) with Q(x,&)e A™(¢), m = m — 1, where P*(x, &) is the adjoint
matrix of P(x, §).

ProrosiTioN 2.4. Let P(x, D,) be of class OPA{™(¢). Then, P(x, D,)
is a bounded operator from H{?, B to H®,, for any k and y. Furthermore,
if P(x,D,;¢) belongs to OPA{™)(¢) uniformly in ¢, then P(x,D,;¢) is uni-
formly bounded.
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In the later discussion, the class A{",(¢) is most frequently used”, so
we simply write A,,(¢) and OPA, (¢) instead of AQ,(¢4) and OPAQ.(¥),
respectively.

2.3. Preliminary lemmas. We conclude this section by stating some
simple a priori estimates for solutions to the equation

(2.8) Ao — A+ iE@u=f, 0<r<1.

LEmmA 2.1. Assume that £ > 0. Let ue L{y be a solution to equation
(2.8) with fe LM, « > 0. Then, uc L and « |uly,. < C(fl,. + |l,.-1) with
C independent of k.

LemmAa 2.2. Under the same assumptions as in Lemma 2.1,
£lufto < Clfloa |, - -
The proof of Lemma 2.1 and 2.2 is easy, so we omit it.
Let I'(D,),j =0, 1, - - -, p, be the pseudo-differential operator with

symbol I',(&) defined by (2.5). We define I'(D,) as I'(D,) = E, — I'(D,).
Then, we have the following results.

LemMA 2.3. Let I'(D,) be as above. Assume that 0 < ¢ < 1. Moreover,

assume that uw is a solution to equation (2.8) with fe L{Y such that
ueL{P. Then, I'(D,)uc HY and

II(Deulo < C(floo + [%hoyo) -
Proof. We obtain from equation (2.8) that
AT (DYu = A + ie)[(DY)E(x)u + ['(D,)f .
Since Ay&E)(E) = 235-1 A& (&) + 2571, 2,5 (&), it follows from (ii) of
Proposition 2.1 that
II'(D2ul,o < CUAL(Do)ub,o + [1'(D2)ul,o) «

This completes the proof.

LemMA 2.4. Let I'(D,) and I'(D,) be as above. Let ¢(&) be a smooth
function with compact support such that ¢(&) = 1 in a neighborhood of the
origin and let y(&) = 1 — ¢(§). Assume that 0 < ¥ < 1. Moreover, assume
that u is a solution to equation (2.8) with fe L, —oco <y < oo, such that
ueL{. Then, the following estimates hold:

1) More precisely, symbols with compact support in § are used and such symbols
belong to Ag,.(¢) or AJ™(¢) for any m.
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(1) |(Daul,, < Clul,;
i) [ xDI(D:)ul,, = C(flo, + [ub,,)-

Proof. (i) is obvious. For the proof of (i), we set v = y(D,)(o(x)u)
with o(x) = (1 + |x[?¥”* and hence ve L{’) by assumption. Then, v obeys
the equation 4, = x(D,)g, where g = (2 + ix)p(x)E(x)u + p(x)f + [4,, p(x)]u
and [, ] denotes the usual commutator notation. Since ge L) and since
1€lo.0 < C(flo,, + |ub,,), we obtain by Lemma 2.3 that

(2.9) (Do)l < C(floy + |ub,y) -

We can write I'(D,)v as I'(D,)v = p(x)x(D)(D,)u + R(x, D,)p(x)u with
R(x, D,) = [x(D)I'(D.,), plo™'. As is easily seen, R(x, D,) belongs to
OPA{"(N) and hence |R(x, D,)ou|,, < C|ul,,. This, together with (2.9),
proves (ii).

§3. Fundamental proposition
In this section we consider an equation of the following form:
(31  owv+ «b(D,, D) + iAl,y, Dy =kg+f, O0=r=Z1,

where 9, = d/dt, D, = —id, and D, = —i(3/dy,, - - +,0/0yn), m =n — 1. - We
write z = (t, y)7 Yy = (yb c ',ym) and denote by €= (t: 77), N = (771; ot '977m)’
the coordinate system dual to z. The following hypotheses are made.

(H.1) A(,y,D,) is a pseudo-differential operator with symmetric matrix
symbol A(t, y,7) = {a:(¢, ¥, }sx-1,, and each component a,(t, y, ) satisfies
the estimates;

[orast, v, )| < C(L+ gD~ ;
|353201k(t, Y, 77)| = Cﬁﬂ’(l + |t|)'(1+0>(1 + MI)_M ’ |ﬁ| >1,

for some 6,0 < 6 < 1.

(H.2) b(D,, D,) is a pseudo-differential operator with non-negative symbol
b(&) = b(r,n) and b() is expressed as b(() = c({)* for some smooth function
c(©), ¢ = 0, with compact support.

We further assume that
(3.2) feLf,, a>4%,
(3.3) geLy, for ¢ introduced in (H.1).
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We use the following notations throughout this section: (a) We work
exclusively in the spaces of ¢ summands, so we drop the superscript ¢ to
denote the norm in L{; | |,..=| [%; (b) We denote by <, ) and || |
the scalar product and norm, respectively, in the space & = L{Y(R}) =
2@ L(RM), £ summands. The next lemma is easily verified.

LemmMma 3.1. (i) Assume that A(Z, y, n) satisfies (H.1). Then, there exists
a constant C independent of t such that

Hm CA(E, 5, D), vy < C( A+ [t~ ||

for any € %. (i1) Assume that b({) satisfies (H.2) and that v = v(t, y) e
¢, 0= 0. Let §(t) be a non-negative smooth function such that ¢(f) = 0
for t =1 and ¢() = (1 + 7)) for t < 0. Then,

Re f " (B(D,, D), $v>dt = —C f T A+ eruPEd, v=o—%.
Now, we prove a series of propositions which will be applied to derive

a priori estimates in § 6.

PropositioN 3.1. Assume (H.1), (H.2), (3.2) and (3.3). Let v = v(t,y)
be a solution to equation (3.1) such that ve L{). Then, there exists a con-
stant C independent of t such that

[v@IF < C{Fh. + [V6,- + £( 81,0 + [V5,0)} -

Proof. Since veL{), d,ve L by equation (3.1). According to the
trace theory ([4]), we see that v(¢, -) is continuous in ¢ as an Z-valued
function and therefore |uv(z)| is well-defined for all £. We take the scalar
product {, ) between equation (3.1) and v and integrate the resulting
equality with respect to ¢ over the interval (e, T), —o0 < a < T < co.
Furthermore, taking the real part, we have

B9 HIuDF=Tm [ CAG 3, Dv, vddt + Ja, T) + 3@l
where
J(a, T) = Re f (f, v> + £(g, v> — £(b(D,, Dy, vy}dt .

Since b(D,, D,) is a bounded operator in L%, J(a, T) is estimated as
[J(a, T)| < C{fh,« + V-« + £( 8, + [V} with C independent of a and
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T. We apply (i) of Lemma 3.1 to the first term on the right side of (3.4),
so that

(35) DI < (K@ + [ @+ i uolrdd,

where K(a) = [v(@)|* + {|fi,« + [V,-« + £(&[, + [V,0)}. We now apply
the well-known Gronwall inequality to (8.5), so that ||v(T)|? < CK(a) with
C independent of ¢ and 7. Since liminf,__. [v(@)|? =0 by veL{), the
desired result follows at once.

ProrositioN 3.2. Under the same assumptions as in Proposition 3.1,
it holds that for any 6,0 > 1,

ok < [~ @+ OO + oIt
< Cllf e+ [0 - + 580 + [Vh) -

Proof. The first inequality is evident by definition. The second one
follows immediately from equation (3.1) and Proposition 3.1.

ProrositioN 3.3. Assume (H.1), (H.2), (3.2) and (3.3). Moreover, as-
sume that ¥ < a < 31+ ) for § in (H.1). Let p be a constant such that
0<p<20—1(<0<1). Let v=1u(ty) be a solution to equation (3.1)
satisfying ve L{),. Then, there exists a constant C = C, independent of «
such that

[ a+ o or oI e < CQfha + 10h-0 + 8B + 0B} -

Proof. We first introduce a smooth function ¢(¢) with the following
properties: (a) ¢() = 0; (b) ') £ 0; (o) ¢(¥)) =0 for t=1; (d) ¢@t) =
1+ 9 for t < 0. We take the scalar product {, ) between equation
(8.1) and (v, ¥ (D) = ¢(2)}, and integrate the resulting equality with re-
spect to ¢ over (—oco, ), noting the fact that liminf,.,.. [t} |[v@®)|F = O,
# < 1, which follows from veL{,,. Furthermore, taking the real part
and making use of (i) in Lemma 3.1, we obtain

[T a+perrpora— e @+ pen e de
(36 =G| 4@ Em ALY Dy, vy + Re(f, v) + ie, vt

3
=ZIJ'
J=1
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We estimate each term on the right side. Since fe L{, and since 0 < g
< 2 — 1, I, is estimated as

-1
LIse | @+ oo dt+ CAfRa + I0B-.)

for any ¢ > 0 small enough and hence the first term is absorbed in the
left side of (3.6). Similarly we have |I| < Ce(gli, + |vfie) since ge L,
and g < 6. To estimate I, we use (i) in Lemma 3.1 and obtain

L=c| a+o pord, o=ia+0-p>1,

which, together with Proposition 3.2, implies that
L] = C{ffe + 1V-a + £( &[0 + [V} -

Thus, we have only to combine all the above estimates to conclude the
proof.
Next, we consider the equation (3.1) with ¢ = 0;

3.7 ov+ iA¢,y, D)v="f.

The next proposition plays an important role in the proof of the main
theorems.

ProrosITION 3.4. Assume that (H.1) and (3.2) are satisfied. Moreover,
assume that v = v(t,y) is a solution to equation (3.7) such that
A+ ) |v@)IF is integrable for any o, > %, and that

(3.8) liminf |v(@)|F =0 .
Then,
| a+eriord<e  forp —t<p<a—1.

Proof. We fix ¢ arbitrarily so that 0 <e¢ < min (4, 2« — 1). Let ¢()
= —1+ 1+ ) for t = 1, so that ¢() < 0 and —¢/'() = C,(1 + )~ @+,
As before, we take the scalar product (, ) between equation (3.7) and
#(t)v, and integrate the obtained equality with respect to ¢ over (s, co),
s > 1. Then, making use of Lemma 3.1 and (3.8), we have

—4@ V@I + C, [+ 0w [u(o) [ dt

< G [ @+ oo or uolrdt + Re [ g<f, vt
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Since ¢ < 6, we can choose s so large that the first term on the right
side is absorbed in the left side and we therefore obtain

B9 @FSC[ @+ HUrIfOFd, 14 < 2,

with C independent of s, s being large enough. Next, we multiply both
sides of (8.9) by s, y =a — 1 — ¢/2> —1/2, and integrate with respect
to s over (T, S);

[Leriverds<c| a+erifora.

Letting S — oo yields that (1 + ) ||u(®)|* is integrable over (0, ). If we
use () =1— 1 — ), t £ —1, instead of ¢(f), a similar argument gives
the integrability over (— o0, 0). Thus, the proof is completed.

§4. Diagonalization

4.1. Decomposition. By Assumption (A.3), we can choose a constant
6,0< 0< 4,0 being as in (A.3), so that the following decomposition is
made for each component e, (x) of E(x), j,k=1,.---,N: For any ¢ >0
small enough, there exists a constant R = R(f,¢) such that (a) e, (x) =
e(x;€) + €;(x; ), (b) e;x; e) = eu(x) for |x| = R (and hence &;(x;¢) is of
compact support); (c) for all x, |e;(x; &) — d;.| < eC(1 + |x])~? and |32e,,(x; ¢)|
<eCl+ 2D, 0=1+0, |8 =1

We may assume that § < 1. We denote by E(x;e¢) the matrix with
components e, (x;¢) defined above. From now on, we fix the constants
6 and ¢,0 = 1 + 6, with the meaning ascribed here throughout the later
argument.

4.2. Diagonalization. We now consider the equation
“.1) du— A+ in)E(x;o)u=f, 0k,

with fe LM, « > 1/2. It is evident that for » > 0, there exists a unique
solution u = QA + ix; e)f = (4, — (A + ik)E(x;¢))"'f such that ue L{) and
therefore we L{™) by Lemma 2.1. Let y(£) be a smooth function with
compact support such that (&) =0 in a neighborhood of the origin.
Then, we have

4.2) AW (D)u — A + iK)E(x; )y(D,)u = W(D)f + r(x; ),
where r(x;¢) = (2 + ix)[¥(D,), E(x;e)lu and satisfies the estimate |r|,, <
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eCluly,_,, v = a/2 = (1/2)(1 + 6), for C independent of « and e (small enough).

The aim of this subsection is to transform (4.2) into an equation of
the diagonalized form. To do this, it is convenient to the later argument
to introduce the following notations: (a) For a vector-valued function
v(x) with component v;(x), j =0, 1, --+, +p, k=1, ---,d;, d, being the
multiplicity, we write

U(x) = l(vl(x)’ Tt vp(x)7 vo(x), U—l(x)’ Tt v-p<x)) ’

where v;(x) = “(v;(x), - - -, V;q,(x)); (b) For the solution u of equation (4.1)
such that weL{},6 with some 7, v = 0¢/2, we denote by r() = r(x;¢) =
‘rye), - - -, r_,(e)) all terms satisfying an estimate of the following type:

(4.3) [P©orer = £Clu,,-,

with C independent of £, 0 < £ < 1 and ¢ (small enough).

Remark. In the later argument, such an r(s) always appears in a
form of r(e) = R(x, D,;e)u with some R(x, D,;e)e OPA, (N) for which
e 'R(x, &; ¢) belongs to A, ,(IV) uniformly in e.

The transformation is made with the aid of the following lemmas.

LEMMA 4.1. Let 2&) be defined by (2.6) and let U(&) be the unitary
matrix given in (2.7). Let (&) be the function introduced at the beginning
of this subsection. Set A(e) = A(x, &; 2, ¢) = A(&) — AE(x;¢). Then, for ¢
small enough, there exists a N X N matrix U(e) = Ul(x, &; 4, ¢) such that

UEAERUE)™ = 24¢) — 2B, + Z() + Z(e), £=0.

Here U(), () = X(x,&;2,¢) and Z(e) = Z(x, &; 4, ¢) have the following
properties: (a) (&)Z () belongs to A, N); (b) £(c) is of the following
form:

X)) 0 X..(0) 0
Z() = ( Xy(e) ) ) X)) = K ,
0 X)) 0 X. ()

where X, (e) = X, (%,&;2,¢), j=0,1,---,p, is @ d; X d, symmetric matrix
and (&)X, [(e) belongs to A, (d,); (c) U(e) is represented as

(44) U(e) = Use) + Uilx, &5 4, ¢)

with Uy(&) given in (2.7), where y(§)U(x, &; 2,¢) belongs to A, . (N). Fur-
thermore, U(e) satisfies
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(4.5) U*)U(e) = E, — Z1(e)

with some Z(e) = Z(x, &; 2, ¢) such that (£§)%,(c) belongs to A, (N), where
U*(e) is the adjoint of U(e); (d) e ' W(§)Z(e), e ()X, (o), e 'Y(§)U(e) and
e (&) Z (e) belong to the corresponding symbol classes uniformly in e.

A result similar to this lemma has been already verified in Appendix
of [9], so we omit the proof. The next result follows from Lemma 4.1 at
once.

Lemma 4.2. Let ¥(8), U(e), Z(e) and Z#(c) be as in Lemma 4.1. Set
Ak, &) = A(x, &5 4, k,6) = Af(E) — (A + ik)E(x; ). Then, for ¢ small enough,
it holds that

U@k, )U()™" = Do) — (A + i)E, + Z(e) + Z() + £T (o) ,
where T() = T(x,&; 4, ¢) is expressed as
(4.6) T () = —iUENE(x;¢) — E}U(e) " .
Moreover, e-4(£)7 () belongs to A, (N) uniformly in «.

Let y(&) be a smooth function with compact support such that x(¢)
=1 in a small neighborhood of the support of () (not containing the
origin), y(¢) being the function introduced at the beginning of this sub-
section, so that y(&)y(&) = w(&). We define U(x, &;2,¢) as Ulx, &; 4, ¢) =
1@&U(x, &;2,¢) for U(x,&;2,¢) introduced in Lemma 4.1. Similarly we
define Xj(x, &;2,¢) and J(x, &; 4, ¢). Furthermore, we set

ux) = U(x, D,; 2, (D, )u

for the solution u of equation (4.1). With the above preparations, we now
transform equation (4.2).

LemMma 4.3. Let v(x) = “(vy(x), - - -, v_,(x)) be as above. Then, each v/x)
obeys the equation

@n 4D, — @+ D), + X (x, D3 2,0, = by + £g, + 16)

with some r,e), where 1,(&) is the eigenvalue of A,(§) (given by (2.2)), while
h(x) and g(x) are defined by

h(x) = ‘(hy(x), - - -, h_ (%)) = Ulx, D,; 2, (D,)f ,
g(x) = t(gl(x), . "g—p(x» = __ﬁ(xs Dx; 2’ E)U .
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For the proof, we give only a sketch. Equation (4.7) is derived by
using Lemma 4.2 and by making a simple calculation based on Proposi-
tion 2.3. Indeed, using the relation y(&)y(¢) = (&) and taking account of
(d) in Lemma 4.1 and of the property of J(x, D,;2,¢), we see that all
remainder terms appearing in commutator calculations can be written as
r(e). (4.7) is the desired equation.

§5. A priori estimates

In this section, we continue to consider the equation (4.1) and derive
various @ priori estimates for solutions of this equation, which are valid
uniformly for £, 0 < £ < 1. The main result obtained here is stated as
follows:

THEOREM 5.1. Let u = Q2 + ik;e)f, £ > 0, be a solution of equation
“4.1) with feL{. Assume that + << a < 31 + 6). Then, the following
estimate holds: For any v, + <y < q,

lulo,—» = Cu(lflo,a + IuIO,—a) .

This theorem will be proved in § 6. From now on, we always fix «
so that } < a < 31 + 6) and assume that 4 > 0. These assumptions loses
no generality; the case of 1 < 0 is dealt with similarly.

5.1. Partition of unity. Let 5, ={& 2, =2, 1>0, j =
1,2, --+,p. Then, by the homogeneity of 2,&), &, = 258, = {2¢; £ &}
with &, defined by (2.4). In view of Proposition 2.2, we see that; (a) &,(1)
are smooth and bounded; (b) Z,(2) are non-intersecting closed hypersur-
faces, enclosing the origin.

We now introduce the partition of unity

@={¢k}9 k=0’1>"’yK;

(6.1) .
V=l G=Lep, k=LK,

with the following properties: (a) ¢.(§) and v,.(§) are non-negative and
smooth; (b) ¢,(6) and +,(§) are of compact support except for ¢x(£); (c)
for all &,

RZI::O S:(8)* + ;/;‘1 :Z::l ‘!’jk(5)2 =1;

(d) ¢,(6) = 1 in a small neighborhood of the origin and hence ¢.(¢), & = 0,
and +,(§) vanish there; (e) the supports of ¢.(&), k=0,1,---, K, do not
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intersect with 5,(2), j =1, - -+, p; (f) the supports of v,,(¢) belonging to ¥,
only intersect with &,(2); (g) for j = i, the supports of v ,(&) and (&)
do not intersect with each other.

The existence of such a partition of unity with properties mentioned
above is guaranteed by the geometrical property of 5,(2).

We use the localization theory in the &-space to derive a priori esti-
mates, which are divided into the following two types: (I) estimate in
an outside of 5,(1); (II) estimate in a neighborhood of &,(2).

5.2. Estimate of type (I). The estimates of type (I) are rather easy
to derive. The supports of ¢.(&), £ =0,1,---, K, do not intersect with
5,2), so that if ¢ is taken small enough, then the matrix A4,(&) —
(A + ik)E(x; ¢) is invertible uniformly in £, 0 < £ < 1, and ¢ for & € supp ¢,.
We define Py(x,&; 4, k,¢) as

(52) Pk(x; ‘S; '2’ K, 5) = ¢k($)(/10($) - ('2 + l’C)E(x; 5))_1 ’ k= O, 1: ] K ’

which belongs to A,,(N). Letting P.(x, D,; 2, «,¢) operate on equation
(4.1), we obtain

(5.3) $u(D)u = Py(x, D;; 2, £, e)f + 1()
with some r(¢). Thus, we have the following result.

LEMMA 5.1. Let u = QA + ix;e)f, £ > 0, be a solution of equation (4.1)
with fe L{). Let Py(x, D,; 4, k, ¢) be as above. Then, ¢.(D,)u is represented
as (5.3) and satisfies

|9e(Da)ttlo,e < C(flo,a + [U,-2)

with C independent of £ and ¢ (small enough). Furthermore, the above
result is still valid for £ = 0 if it is assumed that there exists a solution
u of equation (4.1) with x = 0 such that ue L{™,.

We proceed to the estimate of v, (D,)u. We fix one pair (p,q), 1 <
P<p, 1<qg=< K, Lety,(& be a smooth function with compact support
such that y,,(6) = 1 in a small neighborhood of the support of ,,(§) and
hence x,,(E)V,,(&) = ¥,(&§). For notational convenience, we drop the sub-
scripts p and g to denote v,,(§) and x,,(§); V(&) = V,.(8), etc. We define
the symbol U(x, &;2,¢) € A, ,(N) as

(5.4) Ux,&;2,¢) = x(&)U(x, &3 2, ¢)

with U(x, &; 4, ¢) introduced in Lemma 4.1. Similarly we define
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Xj(x’ S: '2’ 5) € Ad,a(dj)9 J = 0’ + 17 ) j—_P’ and f(x’ 5; '2’ 5) € Ao,u(N)- We
further set

(5.5) u(x) = ‘@i(x), - - -+, v_(0)) = U, D, 2, e)(Do)u -

Then, in virtue of Lemma 4.3, it follows that each v,(x) obeys the equation
(3.6 (A,(D.) ~ @+ iDv, + X(x, Dos 4, v, = hy + £, + 1,0)

where A; and g, are given by

6.7 h(x) = ‘(h(x), -+, b (%) = U(x, D3 2, (DS,

(5.8) g(x) = "(g®), -, g ,(x) = =T (x, Ds; 2, v .

When j = p, we can choose the support of y(£) so small that it does not
intersect with 5,(1). Therefore, if ¢ is taken small enough, the d; X d,
matrix 2,(¢) — (A + i) + X,(x, &; 1, ¢) is invertible uniformly in x and & for
&esupp . We define the symbol Q,,(x,&; 4, %, ¢) € A, ,(d;) as

(5.9) Qp(x, &5 2, &, ) = 2(E)A,(8) — (A + i) + X,(x, &5 2,¢))7"

for j = p. As in the derivation of (5.3), we let Q,,(x, D,; 2, x,¢) operate
on equation (5.6) to obtain

(5'10) X(Dz)zvj = ij(x’ D:::; '27 K, 5){}7’1 + /‘:gj} + rj(e)
with some r,(c). Thus, we have the following result.

LemmA 5.2. Let u = Q@ + ix;e)f, £ > 0, be a solution of equation (4.1)
with fe L. Let v;, h; and g, be defined by (5.5), (5.7) and (5.8), respec-
tively. Let Q,,(x, D,; 4, x,¢) be as above. If ¢ is taken small enough and
if j & p, then

(511) vj = ij(x3 Dz, 2, K, e){h] + Eg]‘} —l_ rj(e)

and the norm of v, in L% is dominated by C(/fl. + |u),-.) with C inde-
pendent of ¥ and e. Furthermore, the above result is still valid for £ = 0
under the same hypothesis as in Lemma 5.1.

Proof. (5.11) follows from (5.10) at once by use of the relation y(&)y-(£)
= y(&). Since Q,,(x, D,; 4, x,¢) € OPA, ,(d,), it is a bounded operator from
L{% to itself uniformly in x# and . Hence, we have

o, i < C(h; 52 + 18,52 + |ub,-o) »
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where | [?2 denotes the norm in L{®?. By the definition of A;, the norm
of h, is dominated by C|f}|,.. Moreover, since F(x,D,;2¢)e OPA, (N),
we see, recalling the definition of g;, that the norm of g, is dominated by
Clul,,, p = a — 6. This together with Lemma 2.1, implies that

v 1gili# = C(floa + 1ub,) < C(floe + [1h,-0)

since y=a — 60 — 1< —a by assumption. Thus, the desired result is
obtained.

§ 6. Continuation of a priori estimates

In this section we consider the equation (5.6) with j = p;
6.0 {1,(D.) — (G + ih(Dv, + Xy, Dyi 4, v, = by + 18, + T4le)

and derive a priori estimates of type (II) by applying the results obtained
in §3. To do this, we have to transform (6.1) into an equation of the
form like (38.1). The transformation is made through two steps. As in
the preceding section, we drop the subscripts p and g to denote (&)

and y,4(8).

6.1. Preparation. Let ¢ be a small neighborhood of the support of
1(€) (not containing the origin) and let & = 5,(4) N ¢. Let r be a vector
transversal to 5. We denote by 2 the m-dimensional linear space (hyper-
plane), m = n — 1, orthogonal to r and by = (p, ---,7,) a system of
orthogonal bases generating 3. We take { = (r,7) as an orthogonal co-
ordinate system in R? and therefore { = II¢ for some unitary matrix II.
We denote by z = (¢, %), y = (¥, -+ -, y») the orthogonal coordinate system
dual to &; z = [I*x. The unitary matrix /I induces naturally the one to
one transformation denoted by the same symbol I7; (II$)(z, {) = ¢(I1z, IT*C).
For notational convenience, we denote a representation in terms of the
(2, £)-coordinates by the same symbol as an original function which is re-
presented in terms of the (x, £)-coordinates; ¢(z, &) = (IIg)z, §) = (1=, 1I*()
for ¢ = ¢(x,£). Here we note that this transformation is unitary in L)
and that the Fourier transformation is invariant with respect to this
transformation.

6.2. The first step. Let 0, be an open set such that & < @,, 7 being
the closure of @. Since r is a transversal vector, we can take ¢; small
enough, if necessary, so that for 2,(8) = 2,(6)
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(6.2 2,(0) — 2= (r — a\(y; D)ai({; 2)

in 0, with some real functions a,(p;2) and ¢,(;2). Here we choose a
direction of ¢ so that 94,/6r > 0 in ¢,. Hence, ¢/(¢;4) > 0 and we may
write

(6.3) a8 ) = (8 27

in 0, with some s,(£;2) > 0. Let £ and 2, be the projections of ¢ and
0, to X, respectively. Let w(y) be a smooth function of 7 only such that
o(p) =1 in 2 and that the support of w(y) is contained in £,. When w(p)
is regarded as a function of { = (z,7), o)) = x(¢) and hence w(H)({)
= ¥({), where () and x({) are the representations of (&) and yx(&) in
terms of the {-coordinates, respectively.

Now we define the symbol a(y; 1) as

(6.9 aly; 2) = o(pa(y; 2)
with a,(; 2) introduced in (6.2). We further define s({; 1) as
(6.5) s ) = D& 2

with s,(£; 2) given in (6.3). We set
(66) 511 = 5p(t’ y) = S(Dz; Z)UP

for v, of equation (6.1). Then, we see from (6.1) that ¥, satisfies the
equation

6.7 {D, — a(D,; )05, — ixb(D,; DT, + Y,(2, D,; 2, )0, = h, + k&, + r,()

with another r,(e) = r,(z; ¢), where Y,(z, D,; 2, ¢) € OPA, (d,) is the pseudo-
differential operator with symmetric matrix symbol given by Y,(z,;4,¢)
= 7(0)s\(&; 2)‘2Xp(z, £;2,¢) and b(£; 2) is the symbol defined by

(6.8) b(C; 2) = c(C; 2"

with ¢(Z; 2) = 7(©)si(¢; )7, while 4, and g, are given by
(6.9) hy = hy(t, y) = «(Dy; Dh,

(6.10) &y =&t y) = c(D.; 1)g, ,

respectively. Equation (6.7) is easily derived by letting c(D,; 1) operate
on (6.1) and by making a simple calculation using Proposition 2.3. This
is the equation transformed through the first step.
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6.3. The second step. The second step is based on the next lemma.

Lemma 6.1. Let a(y;2) and Y,(2,8;2,¢) be as above. If ¢ is taken
small enough, then there exist d, X d, matrices L, = L,(2,{;2,¢) and N,
= N,(z, »; 4, ¢) such that

I, + LAz — ap; ) + Y}, + L) =(t —a(p; ) + N, + Z,
where I, is the d, X d, identity matrix. Furthermore, L, N, and Z =
Z(z,C; 2, ¢) have the following properties: (a) ¢ 'x(0)Z(z,¢; 2, ¢) belongs to
A, (d,) uniformly in ¢; (b) L, is symmetric and ¢ 'y(§)L (2, ¢; 2, ¢) belongs
to A, ,(d,) uniformly in e. Moreover, (I, + L,) is invertible uniformly in
e; (¢) N, is also symmetric and each component n,,(z,7; 2, &) = nu(t, ¥y, 9; 2, €)
satisfies

la;njk(t’ AR 5)' = ECy(l + lzl)_d ’
|a£a7;)njk(t3 y, 77; 29 6), é ecﬁ,r(l + |z,)—a ’ Iﬁ[ 2 1 .
The proof will be given in Appendix. Before making a transforma-

tion, we need to introduce several new symbols and functions. We first
define the symbols V, and W, of class A,,(d,) as

(6.11) Vi, G52, 6) = 2O, + Lz, 2,9)7,
(6.12) Wiz, C5 2, &) = x(OU, + Ly(2,C54,9)

respectively, with L, introduced in Lemma 6.1. For later use, we note
here that since L, is symmetric, V}} = V,, V;* being the adjoint of V,,
and therefore

(6.13) Vi, D,; 2,)Wy(2, D,; 2,¢) = x(D,) + R(z, D,; 2, ¢)

with some R(z, D,;2,¢) such that the symbol ¢ 'R(z,{;4,¢) belongs to
A, (d,) uniformly in ¢, where V3¥(z, D,;2,¢) is the adjoint operator in
@, ¢ =d, (6.13) follows immediately from property (b) in Lemma 6.1.
We set

(6.14) w, = w,(t,y) = V,(2,D,; 2,¢)0,

for ¥, of equation (6.7) and

(6.15) F, = F,(t,y) = W,(2, D,; 4, &)h,

for h, defined by (6.9). We further set

(6.16) G, = G,(t,y) = W,(2, D,; 2, 0)8, + K,(2, D,; 2, ow,
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for g, defined by (6.10), where K,(z, D,; 2, ¢) € OPA, ,(d,) is the pseudo-
differential operator with symbol given by K,(z,(; 4,¢) = ib(¢; )L,(2I, + L,),
b(y; ) being the symbol defined by (6.8).

LEmma 6.2. Let F, and G, be as above. Then, the following estimates
hold: (i) |Fpli% = Clfloe ¢ = dyp; (1) |G,[i% = C Ul

Proof. (i) is proved by combining (6.15), (6.9) and (5.7). Since |w,|%
< Clul,, (ii) is proved if we note that J(z, D,;2,¢) in (5.8) belongs to
OPA, ,(N) and that K,(z, D,; 2, ¢) belongs to OPA, ,(d,).

Let w(y) be the function introduced at the beginning of this subsec-
tion. We define the symbol A(Z, y,79;4,¢) as

(6°17) A(t: Y, 7; '21 5) = w(v){—a(n; 2) + Np(t, Y, v; 'Zy 5)} ’

where a(y; 2) is given by (6.4) and N, is introduced in Lemma 6.1. This
definition, together with property (¢) of Lemma 6.1, implies that
A, y,7; 2, ¢) satisfies (H.1) in § 3 with ¢ = d, uniformly in e. Under these
preparations, we can now transform (6.7) into an equation of the form
discussed in § 3.

Lemma 6.3. Let w,, F, and G, be defined by (6.14), (6.15) and (6.16),
respectively. Let A(t,y,7;2,¢) be as above and let b(y; ) be defined by
(6.8). Then, w, satisfies the equation

(6.18) dw, + £b(D,; Yw, + tA{E, y, D,; 2, )w, = iF, + itG, + r,(e) .

Equation (6.18) is derived from (6.7) by use of Lemma 6.1 and the
derivation is similar to that of (4.7) in Lemma 4.3, so we omit the proof.
This is the desired equation and the second step is completed.

6.4. Proof of Theorem 5.1. We are now in a position to apply Prop-
ositions 3.1 ~ 3.3 to equation (6.18). To do this, we have to check that
all the assumptions in these propositions are satisfied. First we have
stated above that (H.1) is satisfied. (3.2) and (3.3) follow immediately from
Lemma 6.2 and (H.2) follows from the definition (6.8) of b({; ). Further-
more, for £ > 0, ue L by Lemma 2.1 and hence w,eL{), ¢ =d,. (We
use the symbol £ in this sense throughout the remainder.). Thus, we have
the following result.

LEmmA 6.4. (i) For any v,v > 4,
(2) [w, %, < C(floa + |th,-) 5
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®) |7 @+ O, + 10as, 9t < CQfha + k-0
(i) For p, 0< p< 2 —1(<6< 1),
[ @+ oo jw, 1P de < CQF + -0 -

Here || || denotes the norm in L{(R}), m =n — 1.

Proof. Proposition 3.2 combined with Lemma 6.2 yields
pr (g?-y é C(lflo,a + lulo,—a + ’\/—IE_ |uI010)

which, together with Lemma 2.2, proves (a). The proof for (b) and (ii)
is done in a similar way.

Proof of Theorem 5.1. We first recall the definitions of v,, §, and w,
given by (5.5), (6.6) and (6.14), respectively. And we note that all the
symbols of pseudo-differential operators in these definitions are invertible
in a small neighborhood of the support of (). Thus, taking account
of this fact, we see from (6.14) and (6.6) that x(D,)'v, is expressed as
x(D,)v, = c¢(D,; YWy(2, D,; 4, )w, + r,(e) with some r,(e). Therefore, by
Lemma 6.4, |x(D,)'v,[%,, v > %, is majorized by C(fl,. + |«),-.). This,
together with Lemma 5.2, implies that |x(D,)'v), -, is also majorized by the
same bound as above with another C. Furthermore, by use of the rela-
tion x(E) (&) = ¥(€), it follows from (5.5) that

v(DJu = V(x, Ds; 2, (Da)'v + 1) ,

where V(x, D,;1,¢) e OPA, (N) is the pseudo-differential operator with
symbol y(&)U(x, &; 2,¢)~*. Thus, we have

I‘I’pq(D.t)uIO,—v _—g C(Iflo,a + [ulo,-a) ’ ‘!"pq(&) - ‘1"(‘5) .
This estimate holds for any pair (p, q). Hence, combining this estimate

with Lemma 5.1, we obtain the desired result and the proof is completed.

§7. Discreteness of eigenvalues

In this section, we shall prove Theorem 1.1 stated in § 1.

Proof of Theorem 1.1. Let I C R* = (0, o0) be a compact interval fixed
arbitrarily. To prove this theorem, it is sufficient to show that there is
a finite number of eigenvalues with finite multiplicity in I. We assume
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the contrary; there is an infinite sequence of eigenvalues with repetition
according to multiplicity; {a,}:-:, @, €I (a, > 0). Let u™ be the eigen-
function corresponding to a,; 4u™ = a,E(x)u™, |u™|,, =1. We assert
that {u™};., forms a precompact set in L{y. If this assertion is verified,
the proof is completed. In fact, {u™};., is an orthogonal system with
respect to the energy scalar product (( )), defined in subsection 1.4, which
contradicts the assumption made above. To prove this assertion, we write

(1.1) Au™ — a,E(x; u™ = fm

for ¢ fixed small enough, where ™ = q,{E(x) — E(x;¢)lu™. Throughout
the proof of this theorem, we fix ¢ small enough and positive constants
C, appearing below depend on ¢ but are independent of n.

We first recall the definition of partition of unity introduced by(5.1).
Since f™ is of compact support and since |f|,, < C,, it follows from
Lemma 5.1 that

(7.2) [$(D)u™),. < C, , k=01---,K.

Next, we proceed to the estimate for ,(D,)u™. We again fix one pair
(p, @) and use (&) and y(&) with the same meaning as before. For u™,
we denote by v™ = “(v{, -- -, vy, .- -, v™) and w{® the functions defined
through transformations (5.5) and (6.14) with 1 = a,, respectively. Sim-
ilarly, for /™, we denote by F;” the function defined through a series
of transformations (5.7), (6.9) and (6.15). If j 2 p, it then follows from
Lemma 5.2 that

(7.3) [vP | < C, .

We shall make an estimate of w{”. w{” obeys the equation (6.18) with
£=0 and 2 = a,;

(7.4) WP + TA(L, ¥, Dy; a,, dw® = iF™ + rye) .

Since f™ is of compact support, we see easily that F® ¢ L{, ¢ = d,, for
any B and that its norm in this space is bounded uniformly in n. Fur-
thermore, according to (4.3), r,(e) € L by u™eL{ and |r,(e)|" < C.
Thus, the terms on the right side of (7.4) belong to L{ uniformly in n.
We now want to apply Proposition 3.4 to equation (7.4). Since u™ e L{7p,
all the assumptions in this proposition are satisfied. Thus, for v, 0 <v <

0, we have
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(7.5) [ a+oriwporasc.

As was noted in the proof of Theorem 5.1, the symbols of pseudo-
differential operators in (6.6) and (6.14) are invertible in a small neigh-
borhood of the support of 1+(¢). Therefore, by the same argument as in
the proof of Theorem 5.1, we see that v{"(¢, y), which is the representation
of v{”(x) in terms of the z-coordinates (z = (¢, y)), also satisfies (7.5). An
estimate similar to (7.5) is still valid for another transversal vector # in
subsection 6.1. Thus, taking n linearly independent transversal vectors
(n being the dimension of the basic space R"), we may conclude that
v (x) e LYY for v above, £ = d,, and that |v{"|{2 < C,, We may assume
that v <@ Then, we obtain from (7.3) that |[v"”|,, < C. and hence
|[v(D)u™),,, < C, with another C,. This, together with (7.2), yields that

(7.6) ™, < C, .

The norm in the Sobolev space H’ is estimated by use of Lemma
2.4. We set y(&) = 1 — ¢y(&), where ¢,(£) is a member of the partition of
unity introduced by (5.1) such that ¢,(§) =1 in a neighborhood of the
origin. Let I'y(¢) be the projection on the eigenspace corresponding to
the zero eigenvalue (defined by (2.5)) and let I'(§) = E, — I'\(¢). We write
u™ as

(7.7) u™ = gm + am ,

where @™ = ¢y(D,)u™ + x(D)(D)u™ and 2™ = y (D) (D,)u™. Then,
Lemma 2.4 combined with (7.6) shows that {@‘™};., forms a precompact
set in L{. Thus, to complete the proof, we have only to show that
{a™}z., forms a precompact set. To see this, we introduce the subspace
N of LY as & = ['(D,)LEY = {I'(D,)u; ue L{yY} and consider the operator
B = I'(D,)E(x) acting on /. Clearly B is bounded and invertible. Letting
I'(D,) operate on the equation Au™ = q,E(x)u™, we have Ba™ =
—I'(D)E(x)i™ and hence 4™ = —B™'I'(D,)E(x)i‘™. This shows that
{a™};., forms a precompact set and the proof is completed.

§8. The principle of limiting absorption
In this section we shall prove Theorem 1.2.

Proof of Theorem 1.2. First we make the following simple reduction.
Let QA + i) = (4, — (A + it)E(x))~'. Then, R(2 + ir) = Q@ + ir)E(x). To

https://doi.org/10.1017/5S0027763000019334 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019334

UNIFORMLY PROPAGATIVE SYSTEMS 165

prove statement (i), it is sufficient to show that there exists a constant
C independent of £ such that

(8-1) lQ('2 + i’f)flo,-a = Clﬂo,a .

We prove this by contradiction. Assume that there exist sequences
{f™}z., and {k,}is, 0 <, <1, such that f™ converges to 0 strongly in
L% and that [u™|,_, = |Q@Q + itk )f™),-. = 1. We may assume that x, -0
as n— oo. We write

8.2 Au™ — A + ik )E(x; )u™ = f™ 4 g™

for ¢ small enough, where g™ = (1 + ir,){E(x) — E(x; e)lu™. Clearly g™
is of compact support and |g”}, . < C, |u™}, ... Throughout the proof of
this theorem, we regard ¢ as a parameter and denote by C positive con-
stants independent of ¢, # and n. (C, denotes positive constants depending
only on e.)

As the first step toward the proof, we shall show that {u™}7_, forms
a precompact set in L{ .. To see this, we write u™ in the form of (7.7);

u™ = g™ 4+ ™. 4 satisfies the equation
(8.3) I'(D)E@)a™ = —T'(D)EX)a™ — QA + i) ' T'(D)f™.

Applying Theorem 5.1 to equation (8.2) and using Lemma 2.4, we may
conclude that {#™}7., forms a precompact set in L{™,. Therefore, we can
choose a subsequence denoted by the same symbol {u™};_, such that u™
converges to some u weakly in L{, and @ converges strongly in L{™,.
The strong limit of {a™}z_, is given by @ = ¢o(D,)u + (D) (D,)u. We
write @ = y(D,)[(D,)u, which is well-defined since y(D,)[(D,) is a
bounded operator from L{", to itself. Hence, u = & + & and 4™ con-
verges to # weakly in L{", . Furthermore, u satisfies the equation

(8.4) Agu — AE(x)u =0

and hence # satisfies

(8.5 1D (D)E)G = — 3D (D) E(x)it .
We combine equations (8.3) and (8.5) to obtain

KD o( D) E(x)(@™ — 1)

GO DITDIE@ @™ — ) — (i + in) 2 DITADI .

Here we note that the terms on the right side converge to 0 strongly in
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P

L{M,. We assert that @™ converges to # strongly in L{™,. To prove
this, we put o(x) = (1 + |x[2)~*? and denote by (, ) the usual scalar product
in L{p. We write

|2 = i - = CEE@™ — @), p(f@™ — @) = Cl + L),
where
I, = DT (DIE@E™ — ), ol (@™ — u)
and

L = (p(x)E(x)@™ — @), o(x)*[o(x)?, xo(D) (D)) (™ — w)) .

Making use of equation (8.6), we see that I, = I,(n) converges to 0 as
n— oo, For the second term I, = I,(n), we note that the pseudo-differential
operator p(x)*[p(x)’, xo(D:)'(D,)] belongs to OPA{;"(N), which implies
that it is a compact operator in L{™, and hence I,(n) also converges to 0.
Thus, we can prove that 4™ converges to @ strongly and this shows that
{u™}>_, forms a precompact set.

The second step is to prove that the limit u (x = 0) belongs to L.
If this is verified, it then follows that u must be equal to 0 since by as-
sumption A is not an eigenvalue. This contradicts the assumption made
above and statement (i) is proved.

To use the results obtained in sections 3 ~ 6 for the proof of the
above statement, we rewrite (8.4) as

8.7 A — 2E(x; e)u = f(e)
for ¢ small enough, where

(8.8) f(e) = H{E(x) — E(x; e)}u .

We recall the definition of partition of unity introduced by (5.1).
First, applying Lemma 5.1 to equation (8.7), we see that ¢.(D,)ue L,
k=0,1,.--, K. Next, to estimate ,(D,)u, we fix, as usual, one pair
(p, @) and use (¢) and x(¢) with the same meaning as before. We denote
by v the function defined through transformation (5.5) for u above;

(89) U= t(vh ety Upy oty v-—p) = U(x’ Dx’ 2, 5)‘!"(D)zu .

Then, applying Lemma 5.2 to equation (8.7), we know that v,e L% for
j = p. Our next task is to show that v,e L3, ¢ = d,. If this is verified,
it then follows that y(D,)u € L{% and hence u e L{p.
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We denote by w,(e) = w,(t, y;¢), 2= (t,y), the function defined by
transformations (6.6) and (6.14) for v, above;

(8.10) wy(e) = Vi(2, D,; 2, &)s(D,; v, .

Similarly, we denote by F,(c) = F,(f,y;¢) the function defined by trans-
formations (5.7), (6.9) and (6.15) for f(¢) given by (8.8);

(8.11) Fy(e) = Wy(z, D,; 4, &)c(D,; Dhyle)

where h,(c) = h,(x;¢) is defined by

®12)  Ae) = {(Pe), - +5 Byle), -+ -5 B () = U, D5 2, (DS) -
Then, w,(¢) obeys the equation (6.18) with + = 0;

(8.13) 0.wy(e) + 1AW, y, Dy; 2, )wy(e) = iF,(e) + 15(e)

with some r,(¢) € L. Since f(¢) is of compact support, F,(e) € L{), for any
v and hence the term on the right side of (8.13) belongs to L{,. To prove
that v, € L{), it is sufficient to show that w,(c) € L{% since the symbols of
pseudo-differential operators in (8.10) are invertible in a small neighbor-
hood of the support of (¢). We apply Proposition 3.4 to equation (8.13)
to prove this fact.

LEmMA 8.1. If ¢ is taken small enough, then w,(c) = w,(t; ) € L{YRT),
m=n—1, for all t and liminf,_ . |w,(;¢)|| =0, where || || denotes the
norm in LE(RY).

The proof of this lemma will be given after the completion of the
proof of this theorem. If we admit the validity of Lemma 8.1, we see that
all the assumptions in Proposition 3.4 are satisfied. Indeed, the fact that
1+ )7 |w,(t; ¢)| is integrable for any v, v > §, follows from Lemma 6.4
by a limit procedure (n — o). Hence, this proposition enables us to
obtain that (1 + %)% |w,(¢; ¢)|* is integrable for f=a — 1 — g, 0 < u < 6.
If p <0, this implies that v, e L{, with 8 above (and hence u € L{}) since
wye)e Ly, (If p=0, wye)e L and hence v, € L{}.) Hence, according
to (4.3), r(e) € L) with y = a + (0 — ) since ue L{’y. Thus, the term on
the right side of (8.13) belongs to LY with y above, y > a«. We repeat the
above argument (boot-strap argument) until we obtain that r,(¢) € L{") for
some vy, v > 1, and then apply Proposition 3.4 once again to conclude that
w,(e) e LY. Thus, the second step is completed and statement (i) is proved.

For the proof of statement (ii), it is sufficient to show that the limit
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QA + i0) of Q(Z + ir) as £ — 0 exists in the topology of strong conver-
gence in L{¥,. As is easily seen from the proof of statement (i), there
exists a subsequence {«,};., such that @1 + ix,)f converges strongly in
L®™,.. Hence, to show that @(1 -+ i0) is well-defined, we have only to
prove that the above limit is independent of the choice of a subsequence.
To see this, assume that there exist two limits u® and u® and put u =
u® — u®. Then, by an argument similar to the proof of statement (i),
we may conclude that z = 0. Thus, statement (ii) is proved and the proof
of this theorem is completed.

Finally we must prove Lemma 8.1. The proof is rather long and is
divided into several steps.

LemMmaA 8.2. For ¢ small enough, w,(e) = w,(¢; ¢) € LYR™) for all t and
liminf, _. ||w,(;¢)| = 0.

Proof. All the estimates in Lemma 6.4 are still valid for w,(s) by a
limit procedure. The first assertion follows from (b) in Lemma 6.4 by use
of the trace theory and the second one follows from (ii) in Lemma 6.4 at
once.

Thus, to complete the proof of Lemma 8.1, we have only to show
that liminf, ... ||w,(¢; ¢)|| = 0. Here we introduce new notations; (,),, j =
0, +1, ---, +p, denotes the scalar product in LY’ and (,) the scalar
product in L{P.

LeEmMA 8.3. Let F () be as in equation (8.13) (defined by (8.11)). If ¢
is small enough, then
lim (% )f = —2Im (F,(6), w6, + OG) -

Proof. We simply write w, and F, instead of w,(:) and F,(c), respec-
tively. We take the scalar product <, ) in L{}(R™) between equation
(8.13) and w, and then real part;

30<w,, w,y = Im (A(t, y, D,; 2, e)w,, w,»

(8.14) — Im (F,, w,> + Re < r,(), w,> .

Here we recall the definition of the symbol A(t, y,7;4,¢) given by (6.17)
and note, in particular, that A(t, y,7;4,¢) is symmetric. Taking account
of this fact and making use of property (c) in Lemma 6.1, we can estimate

the first term on the right side of (8.14) as IIm (AR, y, Dy; 2, e)w,, w,ydt
=0C(e) |uf;,_,. Using this fact and Lemma 8.2, we integrate (8.14) with
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respect to ¢t over (—oo, T') and then let T'— oo. Then, we have

lim [[w,(®)| = —2Tm (F,, w,), + 2Re (r(e), wy), + OC) -

According to (4.3), |(r,(e), wy),| < (@)% |w,[{?-. = O(e). Thus, the desired
result is obtained.

LEmmA 8.4. Let v, = v,(e) and h, = h,(c) be defined by (8.9) and (8.12),
respectively. Then, (F,(e), wy(e)), = (h,(e), vy(e)), + OC(e).

Proof. First, recall the expression (4.4) for U(x, &;2,¢) and the de-
finition (8.8) of f(¢) and note that e 'x(&)U(x, &; 2, ¢) belongs to A, ()
uniformly in e. Then, it follows from the relation yx(&)v(&) = «(§) that
x(D)hy(e) = hy(e) + ry(e). Making use of this fact and the relation (6.13),
we obtain

(Fy(e), wy(e)), = (s(D,; e(D,; Dhy(e), wye)), + OC) -

Since s(¢; A)c(€; 1) = x(©)* by definition, the desired result follows at once.
We combine Lemmas 8.3 and 8.4 to obtain

(8.15) Im (h,(e), ,(e)), < eC..

We assert that
(8.16) Im (A ,(e), v,(e)), = Ofe) .
To prove this, we shall prepare two lemmas.

Lemma 85. Let @ = {¢,} and ¥, = {y;} be the partition of unity
introduced by (5.1). Let v = v(e) = ‘(vy, -+, Up, -+, U_,) be defined by (8.9)
and let h(e) = ‘(hy, -+, hy, - -+, h_,) be defined by (8.12). Then,

811  Im@DIfE), 4D =06, k=01, K,
(8.18) Im (h,(e), v,(e)); = OC(e) for j=xp.

Proof. ¢,(D,)u is expressed as (5.3) with x = 0 and f = f(¢); ¢.(D.)u
= PJx, D,; 4, ¢)f(c) + r(c), where P,(x, D,;2,¢) is the pseudo-differential
operator with symbol defined by (5.2) with x = 0. Here it should be noted
that the symbol P,(x,&; 4, ¢) is symmetric. Hence, the symbol ¢(P;)(x, &; 2, ¢)
of the adjoint operator Pj(x, D,;4,¢) is represented as o(PF)(x, &;2,¢) =
Pu(x, &; 2, €) + Ru(x, &; 2, ¢) with some Ry (x, &;2,¢) € A, (N) for which
e 'Ry(x, &; 2, ¢) belongs to A, ,(N) uniformly in e. Hence, by use of this
fact, (8.17) is easily verified. For the proof of (8.18), we use the relation
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(6.11) with £ = 0 and A, = h (). Then, by the same argument as above,
we can prove (8.18).

Let U,(x, D,;A,¢) be the pseudo-differential operator with symbol
defined by U, (x, &;2,¢) = 1,:(&)U(x, &; 2,¢) with U(x, &; 2,¢) introduced in
Lemma 4.1, where y,,(£) is a smooth function with compact support such
that y,(§) =1 in a small neighborhood of the support of ,,(¢). In par-
ticular, when (j, k) = (p, q), (p, 9) being the fixed pair, U, (x, D,;2,¢) =
U(x, D,; 2, ¢) as defined by (5.4).

Lemma 8.6. Let U,(e) = Uy(x, D,; 4, ¢) be as above. Then,

(8.19) ZP: % Im(Ujk(s)‘l’jk(Dz)f (o), Ujk(e)‘l’jk(Dz)u) = 0(5) .

j=1k=1

Proof. By the definition (8.8) of f(¢), Im (f(c), u) = 0 and

0 = 3 T (Gu(DIFE), D) + 33 3% T (4, (DIF), ¥, (D)

By (8.17), the first term is of order O(¢) and hence the second term is also
of order O(¢). Furthermore, making use of relation (4.5) in Lemma 4.1,
we obtain the desired result at once.

We can now prove the assertion (8.16). Combining (8.15) with (8.18),
we see that I, = 57__, Im (i), v,6) = Im (Uw(D,)f(e), Uw(D.)u) < <C,
where U = U,,(x, D,; 4, ¢) and ¥ = v,,. Since this estimate holds for any
pair (p, @), we have by (8.19) that I,, = O(s) and hence (8.16) is proved.
Thus, we obtain

(8.20) lim [|w,(¢; )l = OC) -

Since w,(t;e) depends on e, we cannot yet conclude from (8.20) that
lim,... |w,(; )]l = 0. So we need to introduce some new functions not
depending on e. It is convenient to represent these functions in terms
of the 2z-coordinates and we use the notation L, (R,; .#), .# being a Hilbert
space, to denote the functional space of square integrable .#-valued func-
tions with weight (1 + #)2. We first introduce v® = v®(¢, y) as

(8.21) v = (0O, -+, 0P, -, v%) = DD, )u

for u = u(t,y) represented in terms of the z-coordinates, where U,(2) is
given by Uy©) = x(QUy©) with Uyt) defined in (2.7). We further define
w = wP(t,y) as

https://doi.org/10.1017/50027763000019334 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019334

UNIFORMLY PROPAGATIVE SYSTEMS 171

(8.22) w® = y(D,)s(D,; Hv® .

Lemma 8.7. Let v(t;e) = v(t,y;e) be the representation of v = v(e) de-
fined by (8.9) in terms of the z-coordinates. Let v®(t) = v'”(t, y) be defined
by (8.21). Then, the difference u(t;e) — v(¢) belongs to L, R,; #) with
M = L{P(Ry) for some p,pp> —%, and hence v,(t;e) — v(t) belongs to
L, (R,; &) with & = L{}(R™).

Proof. Since w(e) = w(t;e)e L, (R,; ¥) for any v,v >4, we have
v(D)ue L, _[(R,; #) by the same way as ¥(D,)u e L’} was obtained from
we) e LY. We write v(t;e) — vO(t) = (U(z, D,; 2, ¢) — U(D)W(D,)u. By
the expression (4.4) for U(x, &; 2, ¢), we know that the symbol U(z, C; 4, ¢)
— Uy(2) belongs to A, (N). Thus, there exists u, > —%, for which u(¢; ¢)
— v e L, (R,; #).

LemMA 8.8. Let ¥ be as in Lemma 8.7. Then, the difference w,(t;¢)
— wl(t) belongs to L, (R,; £) for some u, p > —3.

Proof. According to the respective definitions of w,(¢;¢) and w{(?),
we write
wy(t; ) — wP(t) = Vi (2, D.; 4, &)s(D,; (v, — vy’)
+ (Vi(z, D,; 2, ¢) — ((D.)s(D.; vy .

By Lemma 8.7, the first term belongs to L, ,(R,; ¥) and for the second
term, we recall the definition (6.11) of V,(z,{;4,¢). Then, we see that
V.(2,&; 2,¢) — 2(8) € A,,.(£), which implies that the second term also belongs
to L, (R,; &) for some p, x> —%. This completes the proof.

The proof of Lemma 8.1 is completed as an immediate consequence
of Lemma 8.8.

Completion of the proof of Lemma 8.1. We use the notation I(u) to
denote

I(u) = lim sup 1 JT l(®)|? dt .
T—oo T 0

Since lim, ... [|w,(¢; &)|F = O(e), it follows that

I(w,(©) = lim [1w,(t; ) = O .

On the other hand, Lemma 8.8 shows that I(w,(¢) — w”) = 0 and hence
I(wd) = I(w,(e)) = O(e). Since I(w{”) does not depend on &, we may con-
clude that I(w{’) = 0 and the desired result follows at once.
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Appendix; Proof of Lemma 6.1

We shall prove Lemma 6.1. Before proving this, we introduce two
symbol classes and state one proposition from which the statement of
Lemma 6.1 follows immediately.

DeFInNITION A.1l. We say that A(z,{) = {@,(2, O}yiers 2= @, 3), £ =
(z,7), belongs to «, (¢), p =v =0, when the following conditions are
satisfied:

lazajk(z, C)l _S. Cr(l + |z|)_v s
[0f0ta,(2, Ol < Cp, (1 + (2D, [pl=1.

The class 7, (4) is different from A, ,(¢) in Definition 2.1 in one
respect that the decay for |{| — oo is not assumed and it is easily seen
that A,,(¢) C &, (£). We introduce another symbol class, which is a
subclass of &, (4).

DeriniTION A.2. We say that A(z,{)e «, (4) belongs to %, .(¢), if
A(z, ) does not depend on z; A(z,{) = A(, y, 1).

We say that a family of symbols with parameter ¢ belongs to <, (¢)
uniformly in e, if the above constants C, and C,, are independent of e.

ProposiTioN A.l. Let 6,8 > 0, be the constant fixed in subsection 4.1
and ¢ =1+ 6. Let s(y) be a real-valued smooth function with compact
support. Let Y = Y(z,8)c «, (£) and assume that Y is symmetric. Then,
there exist two symmetric matrices L = L(z,£) and N = N(t,y, ) such that

T+Dic—sD+ Y+ LD=C—s)+ N+ Z

with some Z = Z(z,8) € &, ,(£), where I is the { X ¢ identity matrix. Fur-
thermore, L and N have the following properties: (a) L is symmetric and
belongs to <, ,(¢); (b) N is symmetric and belongs to %,,,(f).

The proof uses the following simple results.

Lemma A.l. Let s(y) be as in Proposition A.1 and A(z,0) = A, y,t,7)
e, (). Then,

(1) B@,y,7) = A, , s(9), 1) € B,,(£);

(1) (= — s (AR L — Az, s(n), ) € ,,.(£).

Proof of Proposition A.1. We choose an integer J so large that J@
= ¢ and write L and N formally as L = > 7, L, and N = } 7_, N,, respec-
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tively. Here we determine L, = L,(z,{) and N; = N/, y,7) to satisfy the
following equation:

i1 .
N, = G~ so){2Ly+ L Ll + My, jz2,

(A1)
N, = 2z — s())L, + M, ,
where
j—2
(A 2) Mj = Mj(z, C) = Lj—1Y+ YLj—I + :L:lLkYLj—k-l s j=3,

M=Y, M,=LY+ YL,.

Furthermore, we require L; and N, to have the following properties: (a)
L; is symmetric and belongs to =/, ,(¢); (b) N, is symmetric and belongs
to #,,.(¢). If L, and N, are determined to satisfy (A.1) and if L and N
are defined as above, it then follows that

T+ Dic—st)+ Y+ L) =C—s()+ N+ Z,
where Z = Z(z,{) is given by

Ms

J J J
(A'3) Z = (t - 8(77)) Z Lk.LJ+p-k + pZ=;0kZ=;JLkYLJ+p_k ’ (LO = I) .

1k=p

S
)

First, we shall show that there exist solutions L, and N, to equation
(A.1) with the required properties. We consider the case j = 1. In this
case, we easily see that L, and N, are given by

M = M(t, Y, 77) = Ml(t’ Y, 8(77)’ 7]) == Y(ty Y, 3(77)’ 77) s Ml =Y )
L, = L(z,0) = ¥z — s()"'(Mi(z, s(9), 7)) — Mi(z, 7, 7)) -

According to Lemma A.l, N,e %, ,¢) and L,c <, (4) since Ye <, (4).
Furthermore, since Y is symmetric, so are both L, and N,. Thus, we can
determine L, and N, with (a) and (b). Next, we consider the case j=
2. Weput K, = 2L, + L,L, (and hence L, = }(K, — L,L,)). Then, equation
(A.1) with j =2 becomes N, = (zr — s(y)K, + M,. Since L, <, (¢) is
symmetric, it follows from the expression (A.2) for M, that M, is also
symmetric and belongs to «7,,,(4). We can determine K, and N, in the
same way as L, and N, are constructed. Then, we see that K, is sym-
metric and belongs to .«7,, ,(¢) and hence it follows that L, also has the
same property as K,. Therefore, we can determine L, and N, with (a)
and (b) for j = 2. Thus, L, and N, can be determined to satisfy (A.1)
with the required properties (a) and (b) inductively.
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To complete the proof, we must show that Z = Z(z, {) given by (A.3)
belongs to «7, ,(4). To see this, we use (A.1) and write

a,0

(c — s()L, = %{N — (=8N E LuLos — M} .

If we use this relation, an inductive argument shows that (r — s(y))L, e
& ;,,(6). Hence, applying this fact to (A.3), we have the desired result
and the proof is completed.

Remark. If Y in Proposition A.1 depends on a parameter ¢ and if Y
belongs to 7, ,(£) uniformly in ¢, then L and N also belong to the cor-
responding classes uniformly in ¢, which is easily seen from the construc-
tion of L and N.

Lemma 6.1 is an immediate consequence of Proposition A.1 and
Remark after it, so we omit the proof.
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