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Abstract
We consider a premium control problem in discrete time, formulated in terms of a Markov decision process.
In a simplified setting, the optimal premium rule can be derived with dynamic programming methods. However,
these classical methods are not feasible in a more realistic setting due to the dimension of the state space and lack
of explicit expressions for transition probabilities. We explore reinforcement learning techniques, using function
approximation, to solve the premium control problem for realistic stochastic models. We illustrate the appropriate-
ness of the approximate optimal premium rule compared with the true optimal premium rule in a simplified setting
and further demonstrate that the approximate optimal premium rule outperforms benchmark rules in more realistic
settings where classical approaches fail.

1. Introduction
An insurance company’s claim costs and investment earnings fluctuate randomly over time. The insur-
ance company needs to determine the premiums before the coverage periods start, that is before knowing
what claim costs will appear and without knowing how its invested capital will develop. Hence, the insur-
ance company is facing a dynamic stochastic control problem. The problem is complicated because of
delays and feedback effects: premiums are paid before claim costs materialise and premium levels affect
whether the company attracts or loses customers.

An insurance company wants a steady high surplus. The optimal dividend problem introduced by
de Finetti (1957) (and solved by Gerber, 1969) has the objective to maximise the expected present value
of future dividends. Its solution takes into account that paying dividends too generously is suboptimal
since a probability of default that is too high affects the expected present value of future dividends
negatively. A practical problem with implementing the optimal premium rule, that is a rule that maps
the state of the stochastic environment to a premium level, obtained from solving the optimal dividend
problem is that the premiums would be fluctuating more than what would be feasible for a real insurance
market with competition. A good premium rule needs to generate premiums that do not fluctuate wildly
over time.

For a mutual insurance company, different from a private company owned by shareholders, maximis-
ing dividends is not the main objective. Instead the premiums should be low and suitably averaged over
time, but also making sure that the surplus is sufficiently high to avoid a too high probability of default.
Solving this multiple-objective optimisation problem is the focus of the present paper. Similar premium
control problems have been studied by Martin-Löf (1983, 1994), and these papers have been a source
of inspiration for our work.

Martin-Löf (1983) carefully sets up the balance equations for the key economic variables of relevance
for the performance of the insurance company and studies the premium control problem as a linear
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control problem under certain simplifying assumptions enabling application of linear control theory.
The paper analyses the effects of delays in the insurance dynamical system on the linear control law
with feedback and discusses designs of the premium control that ensure that the probability of default
is small.

Martin-Löf (1994) considers an application of general optimal control theory in a setting similar
to, but simpler than, the setting considered in Martin-Löf (1983). The paper derives and discusses the
optimal premium rule that achieves low and averaged premiums and also targets sufficient solvency of
the insurance company.

The literature on optimal control theory in insurance is vast, see for example the textbook treatment
by Schmidli (2008) and references therein. Our aim is to provide solutions to realistic premium control
problems in order to allow the optimal premium rule to be used with confidence by insurance companies.
In particular, we avoid considering convenient stochastic models that may fit well with optimal control
theory but fail to take key features of real dynamical insurance systems into account. Instead, we consider
an insurance company that has enough data to suggest realistic models for the insurance environment,
but the complexity of these models do not allow for explicit expressions for transition probabilities of the
dynamical system. In this sense, the model of the environment is not fully known. However, the models
can be used for simulating the behaviour of the environment.

Increased computing power and methodological advances during the recent decades make it possible
to revisit the problems studied in Martin-Löf (1983, 1994) and in doing so allow for more complex
and realistic dynamics of the insurance dynamical system. Allowing realistic complex dynamics means
that optimal premium rules, if possible to be obtained, will allow insurance companies to not only be
given guidance on how to set premiums but actually have premium rules that they can use with certain
confidence. The methodological advances that we use in this work is reinforcement learning and in
particular reinforcement learning combined with function approximation, see for example Bertsekas and
Tsitsiklis (1996) and Sutton and Barto (2018) and references therein. In the present paper, we focus on the
temporal difference control algorithms SARSA and Q-learning. SARSA was first proposed by Rummery
and Niranjan (1994) and named by Sutton (1995). Q-learning was introduced by Watkins (1989). By
using reinforcement learning methods combined with function approximation, we obtain premium rules
in terms of Markovian controls for Markov decision processes whose state spaces are much larger/more
realistic than what was considered in the premium control problem studied in Martin-Löf (1994).

There exist other methods for solving general stochastic control problems with a known model of the
environment, see for example Han and E (2016) and Germain et al. (2021). However, the deep learning
methods in these papers are developed to solve fixed finite-time horizon problems. The stochastic control
problem considered in the present paper has an indefinite-time horizon, since the terminal time is random
and unbounded. A random terminal time also causes problems for the computation of gradients in deep
learning methods. There are reinforcement learning methods, such as policy gradient methods (see e.g.,
Williams, 1992; Sutton et al., 1999, or for an overview Sutton and Barto, 2018, Ch. 13), that enable
direct approximation of the premium rule by neural networks (or other function approximators) when
the terminal time is random. However, for problems where the terminal time can be quite large (as in the
present paper) these methods likely require an additional approximation of the value function (so-called
actor-critic methods).

In the mathematical finance literature, there has recently been significant interest in the use of rein-
forcement learning, in particular related to hedging combined with function approximation, for instance
the influential paper by Buehler et al. (2019) on deep hedging. Carbonneau (2021) uses the methodology
in Buehler et al. (2019) and studies approaches to risk management of long-term financial derivatives
motivated by guarantees and options embedded in life-insurance products. Another approach to deep
hedging based on reinforcement learning for managing risks stemming from long-term life-insurance
products is presented in Chong et al. (2021). Dynamic pricing has been studied extensively in the oper-
ations research literature. For instance, the problem of finding the optimal balance between learning an
unknown demand function and maximising revenue is related to reinforcement learning. We refer to den
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Boer and Zwart (2014) and references therein. Reinforcement learning is used in Krasheninnikova et al.
(2019) for determining a renewal pricing strategy in an insurance setting. However, the problem formu-
lation and solution method are different from what is considered in the present paper. Krasheninnikova
et al. (2019) considers retention of customers while maximising revenue and does not take claims costs
into account. Furthermore, in Krasheninnikova et al. (2019) the state space is discretised in order to
use standard Q-learning, while the present paper solves problems with a large or infinite state space by
combining reinforcement learning with function approximation.

The paper is organised as follows. Section 2 describes the relevant insurance economics by presenting
the involved cash flows, key economic quantities such as surplus, earned premium, reserves and how such
quantities are connected to each other and their dynamics or balance equations. Section 2 also introduces
stochastic models (simple, intermediate and realistic) giving a complete description of the stochastic
environment in which the insurance company operates and aims to determine an optimal premium rule.
The stochastic model will serve us by enabling simulation of data from which the reinforcement learning
methods gradually learn the stochastic environment in the search for optimal premium rules. The models
are necessarily somewhat complex since we want to take realistic insurance features into account, such
as delays between accidents and payments and random fluctuations in the number of policyholders,
partly due to varying premium levels.

Section 3 sets up the premium control problem we aim to solve in terms of a Markov decision process
and standard elements of stochastic control theory such as the Bellman equation. Finding the optimal
premium rule by directly solving the Bellman (optimality) equation numerically is not possible when
considering state spaces for the Markov decision process matching a realistic model for the insurance
dynamical system. Therefore, we introduce reinforcement learning methods in Section 4. In partic-
ular, we present basic theory for the temporal difference learning methods Q-learning and SARSA.
We explain why these methods will not be able to provide us with reliable estimates of optimal pre-
mium rules unless we restrict ourselves to simplified versions of the insurance dynamical system. We
argue that SARSA combined with function approximation of the so-called action-value function will
allow us to determine optimal premium rules. We also highlight several pitfalls that the designer of the
reinforcement learning method must be aware of and make sure to avoid.

Section 5 presents the necessary details in order to solve the premium control problem using SARSA
with function approximation. We analyse the effects of different model/method choices on the per-
formance of different reinforcement learning techniques and compare the performance of the optimal
premium rule with those of simpler benchmark rules.

Finally, Section 6 concludes the paper. We emphasise that the premium control problem studied in the
present paper is easily adjusted to fit the features of a particular insurance company and that the excellent
performance of a carefully set up reinforcement learning method with function approximation provides
the insurance company with an optimal premium rule that can be used in practice and communicated to
stakeholders.

2. A stochastic model of the insurance company
The number of contracts written during year t+ 1 is denoted Nt+1, known at the end of year t+ 1. The
premium per contract Pt during year t+ 1 is decided at the end of year t. Hence, Pt is Ft-measurable,
where Ft denotes the σ -algebra representing the available information at the end of year t. Contracts
are assumed to be written uniformly in time over the year and provide insurance coverage for one year.
Therefore, assuming that the premium income is earned linearly with time, the earned premium during
year t+ 1 is

EPt+1 = 1

2
(PtNt+1 + Pt−1Nt) ,

that is for contracts written during year t+ 1, on average half of the premium income PtNt+1 will be
earned during year t+ 1, and half during year t+ 2. Since only half of the premium income PtNt+1 is
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Table 1. Paid claim amounts from accidents during
years t− 2, . . . , t+ 1.

1 2 3 4
t–2 It−3,1 It−3,2 It−3,3 It−3,4

t–1 It−2,1 It−2,2 It−2,3 It−2,4

t It−1,1 It−1,2 It−1,3 It−1,4

t+1 It,1 It,2 It,3 It,4

earned during year t+ 1, the other half, which should cover claims during year t+ 2, will be stored in
the premium reserve. The balance equation for the premium reserve is Vt+1 = Vt + PtNt+1 − EPt+1. Note
that when we add cash flows or reserves occurring at time t+ 1 to cash flows or reserves occurring at
time t, the time t amounts should be interpreted as adjusted for the time value of money. We choose not
to write this out explicitly in order to simplify notation.

That contracts are written uniformly in time over the year means that It,k, the incremental payment
to policyholders during year t+ k for accidents during year t+ 1, will consist partly of payments to
contracts written during year t+ 1 and partly of payments to contracts written during year t. Hence, we
assume that It,k depends on both Nt+1 and Nt. Table 1 shows a claims triangle with entries Ij,k representing
incremental payments to policyholders during year j+ k for accidents during year j+ 1. For ease of
presentation, other choices could of course be made, we will assume that the maximum delay between an
accident and a resulting payment is four years. Entries Ij,k with j+ k≤ t are Ft-measurable and coloured
blue in Table 1. Let

ICt+1 = It,1 + E
[
It,2 + It,3 + It,4 |Ft+1

]
, PCt+1 = It,1 + It−1,2 + It−2,3 + It−3,4,

RPt+1 = E
[
It−3,4 + It−2,3 + It−2,4 + It−1,2 + It−1,3 + It−1,4 |Ft

]
− E

[
It−3,4 + It−2,3 + It−2,4 + It−1,2 + It−1,3 + It−1,4 |Ft+1

]
,

where IC, PC and RP denote, respectively, incurred claims, paid claims and runoff profit. The balance
equation for the claims reserve is Et+1 = Et + ICt+1 −RPt+1 − PCt+1, where

ICt+1 −RPt+1 − PCt+1 = E
[
It,2 + It,3 + It,4 |Ft+1

]− E
[
It−1,2 + It−2,3 + It−3,4 |Ft

]
(2.1)

+ E
[
It−1,3 + It−2,4 + It−1,4 |Ft+1

]− E
[
It−1,3 + It−2,4 + It−1,4 |Ft

]
.

The profit or loss during year t+ 1 depends on changes in the reserves:

P&Lt+1 = PtNt+1 − PCt+1 + IEt+1 −OEt+1 − (Et+1 − Et + Vt+1 − Vt),

where IE denotes investment earnings and OE denotes operating expenses. The dynamics of the surplus
fund is therefore

Gt+1 =Gt + P&Lt+1 =Gt + EPt+1 + IEt+1 −OEt+1 − ICt+1 +RPt+1. (2.2)

We consider three models of increasing complexity. The simple model allows us to solve the premium
control problem with classical methods. In this situation, we can compare the results obtained with
classical methods with the results obtained with more flexible methods, allowing the assessment of the
performance of a chosen flexible method. Classical solution methods are not feasible for the intermediate
model. However, the similarity between the simple and intermediate model allows us to understand
how increasing model complexity affects the optimal premium rule. Finally, we consider a realistic
model, where the models for the claims payments and investment earnings align closer with common
distributional assumptions for these quantities. Since the simple model is a simplified version of the
intermediate model, we begin by defining the intermediate model in Section 2.1, followed by the simple
model in Section 2.2. In Section 2.3, the more realistic models for claims payments and investment
earnings are defined.
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2.1. Intermediate model
We choose to model the key random quantities as integer-valued random variables with conditional
distributions that are either Poisson or Negative Binomial distributions. Other choices of distributions
on the integers are possible without any major effects on the analysis that follows. Let

L(Nt+1 |Ft)=L(Nt+1 | Pt)=Pois
(
aPb

t

)
, (2.3)

where a > 0 is a constant, and b < 0 is the price elasticity of demand. The notation says that the condi-
tional distribution of the number of contracts written during year t+ 1 given the information at the end
of year t depends on that information only through the premium decided at the end of year t for those
contracts.

Let Ñt+1 = (Nt+1 +Nt)/2 denote the number of contracts during year t+ 1 that provide coverage for
accidents during year t+ 1. Let

OEt+1 = β0 + β1Ñt+1, (2.4)

saying that the operating expenses have both a fixed part and a variable part proportional to the number of
active contracts. The appearance of Ñt+1 instead of Nt+1 in the expressions above is due to the assumption
that contracts are written uniformly in time over the year and that accidents occur uniformly in time over
the year.

Let α1, . . . , α4 ∈ [0, 1] with
∑4

i=1 αi = 1. The constant αk is, for a given accident year, the expected
fraction of claim costs paid during development year k. Let

L(
It,k |Ft, Ñt+1

)=L(
It,k | Ñt+1

)=Pois
(
αkμÑt+1

)
, (2.5)

where μ denotes the expected claim cost per contract. We assume that different incremental claims pay-
ments Ij,k are conditionally independent given information about the corresponding numbers of contracts
written. Formally, the elements in the set{

Ij,k : j ∈ {t− l, . . . , t}, k ∈ {1, . . . , 4}}
are conditionally independent given Nt−l, . . . , Nt+1. Therefore, using (2.1) and (2.5),

L(
PCt+1 |Ft, Ñt+1

)=L(
PCt+1 | Ñt−2, . . . , Ñt+1

)=Pois
(
α1μÑt+1 + · · · + α4μÑt−2

)
,

ICt+1 −RPt+1 = PCt+1 + (α2 + α3 + α4) μÑt+1 − α2μÑt − α3μÑt−1 − α4μÑt−2. (2.6)

The model for the investment earnings IEt+1 is chosen so that Gt ≤ 0 implies IEt+1 = 0 since Gt ≤ 0
means that nothing is invested. Moreover, we assume that

L(IEt+1 +Gt |Ft, Gt > 0)=L(IEt+1 +Gt |Gt, Gt > 0)=NegBin
(

νGt,
1+ ξ

1+ ξ + ν

)
, (2.7)

where NegBin(r, p) denotes the negative binomial distribution with probability mass function

k �→
(

k+ r− 1

k

)
(1− p)rpk

which corresponds to mean and variance

E[IEt+1 +Gt |Gt, Gt > 0]= p

1− p
r= (1+ ξ )Gt,

Var (IEt+1 +Gt |Gt, Gt > 0)= p

(1− p)2
r= 1+ ξ + ν

ν
(1+ ξ )Gt.

Given a premium rule π that given the state St = (Gt, Pt−1, Nt−3, Nt−2, Nt−1, Nt) generates the premium
Pt, the system (St) evolves in a Markovian manner according to the transition probabilities that follows
from (2.3)–(2.7) and (2.2). Notice that if we consider a less long-tailed insurance product so that α3 =
α4 = 0 (at most one year delay from occurrence of the accident to final payment), then the dimension of
the state space reduces to four, that is St = (Gt, Pt−1, Nt−1, Nt).
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2.2 Simple model
Consider the situation where the insurer has a fixed number N of policyholders, who at some initial time
point bought insurance policies with automatic contract renewal for the price Pt year t+ 1. The state at
time t is St = (Gt, Pt−1). In this simplified setting, OEt+1 = β0 + β1N, all payments It,k are independent,
L(It,k)=Pois(αkμN), ICt+1 −RPt+1 = PCt+1 and L(PCt+1)=Pois(μN).

2.3 Realistic model
In this model, we change the distributional assumptions for both investment earnings and the incremental
claims payments from the previously used integer-valued distributions. Let (Zt) be a sequence of iid
standard normals and let

L(IEt+1 +Gt |Gt, Gt > 0)=L(Gt exp{μ̃+ σ̃Zt+1} |Gt, Gt > 0) .

Let Ct,j denote the cumulative claims payments for accidents occurring during year t+ 1 up to and
including development year j. Hence, It,1 =Ct,1, and It,j =Ct,j −Ct,j−1 for j > 1. We use the following
model for the cumulative claims payments:

Ct,1 = c0Ñt+1 exp
{
ν0Zt,1 − ν2

0/2
}

,

Ct,j+1 =Ct,j exp
{
μj + νjZt,j+1

}
, j= 1 . . . , J − 1, (2.8)

where c0 is interpreted as the average claims payment per policyholder during the first development year,
and Zt,j are iid standard normals. Then,

E
[
Ct,j+1 |Ct,j

]=Ct,j exp
{
μj + ν2

j /2
}

,

Var
(
Ct,j+1 |Ct,j

)=C2
t,j

(
exp

{
ν2

j

}− 1
)

exp
{
2μj + ν2

j

}
.

We do not impose restrictions on the parameters μj and ν2
j and as a consequence values fj =

exp
{
μj + ν2

j /2
} ∈ (0, 1) are allowed (allowing for negative incremental paid amounts Ct,j+1 −Ct,j < 0).

This is in line with the model assumption E
[
Ct,j+1 |Ct,1, . . . , Ct,j

]= fjCt,j for some fj > 0 of the classical
distribution-free Chain Ladder model by Mack (1993). Moreover, with μ0,t = log

(
c0Ñt+1

)− ν2
0/2,

L(
log Ct,1

)=N
(
μ0,t, ν

2
0

)
, L

(
log

Ct,j+1

Ct,j

)
=N

(
μj, ν

2
j

)
. (2.9)

Given an (incremental) development pattern (α1, . . . , αJ),
∑J

j=1 αj = 1, αj ≥ 0,

α1 = 1∏J−1
k=1 fk

, αj = (fj−1 − 1)
∏j−2

k=1 fk∏J−1
k=1 fk

, j= 2, . . . , J,

with the convention
∏b

s=a cs = 1 if a > b, where fj = exp{μj + ν2
j /2}. We have

ICt+1 =Ct,1

J−1∏
k=1

fk, PCt+1 =Ct,1 +
J−1∑
k=1

(
Ct−k,k+1 −Ct−k,k

)
,

RPt+1 =
J−1∑
k=1

(
Ct−k,kfk −Ct−k,k+1

) J−1∏
j=k+1

fj.

The state is St =
(
Gt, Pt−1, Nt−1, Nt, Ct−1,1, . . . , Ct−J+1,J−1

)
.

3. The control problem
We consider a set of states S+, a set of non-terminal states S ⊆ S+, and for each s ∈ S a set of actions
A(s) available from state s, with A=∪s∈SA(s). We assume that A is discrete (finite or countable).
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In order to simplify notation and limit the need for technical details, we will here and in Section 4
restrict our presentation to the case where S+ is also discrete. However, we emphasise that when using
function approximation in Section 4.2 the update Equation (4.3) for the weight vector is still valid when
the state space is uncountable, as is the case for the realistic model. For each s ∈ S , s′ ∈ S+, a ∈A(s)
we define the reward received after taking action a in state s and transitioning to s′, −f (a, s, s′), and
the probability of transitioning from state s to state s′ after taking action a, p(s′|s, a). We assume that
rewards and transition probabilities are stationary (time-homogeneous). This defines a Markov decision
process (MDP). A policy π specifies how to determine what action to take in each state. A stochastic
policy describes, for each state, a probability distribution on the set of available actions. A deterministic
policy is a special case of a stochastic policy, specifying a degenerate probability distribution, that is a
one-point distribution.

Our objective is to find the premium policy that minimises the expected value of the premium pay-
ments over time, but that also results in (Pt) being more averaged over time, and further ensures that
the surplus (Gt) is large enough so that the risk that the insurer cannot pay the claim costs and other
expenses is small. By combining rewards with either constraints on the available actions from each
state or the definition of terminal states, this will be accomplished with a single objective function, see
further Sections 3.1–3.2. We formulate this in terms of a MDP, that is we want to solve the following
optimisation problem:

minimise
π

Eπ

[ T∑
t=0

γ tf (Pt, St, St+1) | S0 = s

]
, (3.1)

where π is a policy generating the premium Pt given the state St, A(s) is the set of premium levels
available from state s, γ is the discount factor, f is the cost function, and Eπ [·] denotes the expectation
given that policy π is used. Note that the discount factor γ t should not be interpreted as the price of a
zero-coupon bond maturing at time t, since the cost that is discounted does not represent an economic
cost. Instead γ reflects how much weight is put on costs that are immediate compared to costs further
in the future. The transition probabilities are

p
(
s′|s, a

)= P(St+1 = s′ | St = s, Pt = a),

and we consider stationary policies, letting π (a|s) denote the probability of taking action a in state s
under policy π ,

π (a|s)= Pπ (Pt = a | St = s).

If there are no terminal states, we have T =∞, and S+ = S . We want to choose A(s), s ∈ S , f , and any
terminal states such that the objective discussed above is achieved. We will do this in two ways, see
Sections 3.1 and 3.2.

The value function of state s under a policy π generating the premium Pt is defined as

vπ (s)= Eπ

[ T∑
t=0

γ t(−f (Pt, St, St+1)) | S0 = s

]
.

The Bellman equation for the value function is

vπ (s)=
∑

a∈A(s)

π (a|s)
∑
s′∈S

p
(
s′|s, a

) (−f (a, s, s′)+ γ vπ (s′)
)
.

When the policy is deterministic, we let π be a mapping from S to A, and

vπ (s)=
∑
s′∈S

p(s′|s, π (s))
(−f (π (s), s, s′)+ γ vπ (s′)

)
.

The optimal value function is v∗(s)= supπ vπ (s). When the action space is finite, the supremum is
attained, which implies the existence of an optimal deterministic stationary policy (see Puterman, 2005,
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Cor. 6.2.8, for other sufficient conditions for attainment of the supremum, see Puterman, 2005, Thm.
6.2.10). Hence, if the transition probabilities are known, we can use the Bellman optimality equation to
find v∗(s):

v∗(s)= max
a∈A(s)

∑
s′∈S

p
(
s′|s, a

) (−f (a, s, s′)+ γ v∗(s
′)
)
.

We use policy iteration in order to find the solution numerically. Let k= 0, and choose some initial
deterministic policy πk(s) for all s ∈ S . Then

(i) Determine Vk(s) as the unique solution to the system of equations

Vk(s)=
∑
s′∈S

p
(
s′|s, πk(s)

) (
−f

(
πk(s), s, s′

)+ γ Vk(s
′)
)

.

(ii) Determine an improved policy πk+1(s) by computing

πk+1(s)= argmax
a∈A(s)

∑
s′∈S

p
(
s′|s, a

) (
−f (a, s, s′)+ γ Vk(s

′)
)

.

(iii) If πk+1(s) = πk(s) for some s ∈ S , then increase k by 1 and return to step (i).

Note that if the state space is large enough, solving the system of equations in step (i) directly might
be too time-consuming. In that case, this step can be solved by an additional iterative procedure, called
iterative policy evaluation, see for example Sutton and Barto (2018, Ch. 4.1).

3.1. MDP with constraint on the action space
The premiums (Pt) will be averaged if we minimise

∑
t c(Pt), where c is an increasing, strictly convex

function. Thus for the first MDP, we let f (a, s, s′)= c(a). To ensure that the surplus (Gt) does not become
negative too often, we combine this with the constraint saying that the premium needs to be chosen so
that the expected value, given the current state, of the surplus stays nonnegative, that is

A(St)= {Pt: Eπ [Gt+1 | St]≥ 0}, (3.2)

and the optimisation problem becomes

minimise
π

Eπ

[ ∞∑
t=0

γ tc(Pt) | S0 = s

]
subject to Eπ [Gt+1 | St]≥ 0 for all t. (3.3)

The choice of the convex function c, together with the constraint, will affect how quickly the premium
can be lowered as the surplus or previous premium increases, and how quickly the premium must be
increased as the surplus or previous premium decreases. Different choices of c affect how well different
parts of the objective are achieved. Hence, one choice of c might put a higher emphasis on the premium
being more averaged over time but slightly higher, while another choice might promote a lower premium
level that is allowed to vary a bit more from one time point to another. Furthermore, it is not clear from
the start what choice of c will lead to a specific result, thus designing the reward signal might require
searching through trial and error for the cost function that achieves the desired result.

3.2. MDP with a terminal state
The constraint (3.2) requires a prediction of Nt+1 according to (2.3). However, estimating the price elas-
ticity in (2.3) is difficult task; hence, it would be desirable to solve the optimisation problem without
having to rely on this prediction. To this end, we remove the constraint on the action space, that is we
let A(s)=A for all s ∈ S , and instead introduce a terminal state which has a larger negative reward than
all other states. This terminal state is reached when the surplus Gt is below some predefined level, and
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it can be interpreted as the state where the insurer defaults and has to shut down. If we let G denote the
set of non-terminal states for the first state variable (the surplus), then

f (Pt, St, St+1)= h(Pt, St+1)=
{

c(Pt), if Gt+1 ≥min G,

c(max A)(1+ η), if Gt+1 < min G,

where η > 0. The optimisation problem becomes

minimise
π

Eπ

[ T∑
t=0

γ th(Pt, St+1) | S0 = s

]
, T =min{t : Gt+1 < min G} . (3.4)

The reason for choosing η > 0 is to ensure that the reward when transitioning to the terminal state is
lower than the reward when using action max A (the maximal premium level), that is, it should be more
costly to terminate and restart compared with attempting to increase the surplus when the surplus is low.
The particular value of the parameter η > 0 together with the choice of the convex function c determines
the reward signal, that is the compromise between minimising the premium, averaging the premium and
ensuring that the risk of default is low. One way of choosing η is to set it high enough so that the reward
when terminating is lower than the total reward using any other policy. Then, we require that

(1+ η)c(max A) >

∞∑
t=0

γ tc(max A)= 1

1− γ
c(max A),

that is η > γ/(1− γ ). This choice of η will put a higher emphasis on ensuring that the risk of default is
low, compared with using a lower value of η.

3.3. Choice of cost function
The function c is chosen to be an increasing, strictly convex function. That it is increasing captures
the objective of a low premium. As discussed in Martin-Löf (1994), that it is convex means that the
premiums will be more averaged, since

1

T

T∑
t=1

c(pt)≥ c

(
1

T

T∑
t=1

pt

)
,

The more convex shape the function has, the more stable the premium will be over time. One could
also force stability by adding a term related to the absolute value of the difference between successive
premium levels to the cost function. We have chosen a slightly simpler cost function, defined by c, and
for the case with terminal states, by the parameter η.

As for the specific choice of the function c used in Section 5, we have simply used the function
suggested in Martin-Löf (1994), but with slightly adjusted parameter values. That the function c, together
with the constraint or the choice of terminal states and the value of η, leads to the desired goal of a low,
stable premium and a low probability of default needs to be determined on a case by case basis, since
we have three competing objectives, and different insurers might put different weight on each of them.
This is part of designing the reward function. Hence, adjusting c and η will change how much weight is
put on each of the three objectives, and the results in Section 5 can be used as basis for adjustments.

4. Reinforcement learning
If the model of the environment is not fully known, or if the state space or action space are not finite,
the control problem can no longer be solved by classical dynamic programming approaches. Instead, we
can utilise different reinforcement learning algorithms.
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4.1. Temporal-difference learning
Temporal-difference (TD) methods can learn directly from real or simulated experience of the environ-
ment. Given a specific policy π which determines the action taken in each state, and the sampled or
observed state at time t, St, state at time t+ 1, St+1, and reward Rt+1, the iterative update for the value
function, using the one-step TD method, is

V(St)← V(St)+ αt

(
Rt+1 + γ V(St+1)− V(St)

)
,

where αt is a step size parameter. Hence, the target for the TD update is Rt+1 + γ V(St+1). Thus, we update
V(St), which is an estimate of vπ (St)= Eπ [Rt+1 + γ vπ (St+1) | St], based on another estimate, namely
V(St+1). The intuition behind using Rt+1 + γ V(St+1) as the target in the update is that this is a slightly
better estimate of vπ (St), since it consists of an actual (observed or sampled) reward at t+ 1 and an
estimate of the value function at the next observed state.

It has been shown in for example Dayan (1992) that the value function (for a given policy π ) computed
using the one-step TD method converges to the true value function if the step size parameter 0≤ αt ≤ 1
satisfies the following stochastic approximation conditions

∞∑
k=1

αtk(s) =∞,
∞∑

k=1

α2
tk(s) <∞, for all s ∈ S ,

where tk(s) is the time step when state s is visited for the kth time.

4.1.1. TD control algorithms
The one-step TD method described above gives us an estimate of the value function for a given policy
π . To find the optimal policy using TD learning, a TD control algorithm, such as SARSA or Q-learning,
can be used. The goal of these algorithms is to estimate the optimal action-value function q∗(s, a)=
maxπ qπ (s, a), where qπ is the action-value function for policy π ,

qπ (s, a)= Eπ

[ ∞∑
t=0

γ tRt+1 | S0 = s, A0 = a

]
.

To keep a more streamlined presentation, we will here focus on the algorithm SARSA. The main reason
for this has to do with the topic of the next section, namely function approximation. While there are some
convergence results for SARSA with function approximation, there are none for standard Q-learning
with function approximation. In fact, there are examples of divergence when combining off-policy train-
ing (as is done in Q-learning) with function approximation, see for example Sutton and Barto (2018,
Ch. 11). However, some numerical results for the simple model with standard Q-learning can be found
in Section 5, and we do provide complete details on Q-learning in the Supplemental Material, Section 2.

The iterative update for the action-value function, using SARSA, is

Q(St, At)←Q(St, At)+ αt(Rt+1 + γ Q(St+1, At+1)−Q(St, At)) .

Hence, we need to generate transitions from state-action pairs (St, At) to state-action pairs (St+1, At+1)
and observe the rewards Rt+1 obtained during each transition. To do this, we need a behaviour policy,
that is a policy that determines which action is taken in the state we are currently in when the transitions
are generated. Thus, SARSA gives an estimate of the action-value function qπ given the behaviour
policy π . Under the condition that all state-action pairs continue to be updated, and that the behaviour
policy is greedy in the limit, it has been shown in Singh et al. (2000) that SARSA converges to the
true optimal action-value function if the step size parameter 0≤ αt ≤ 1 satisfies the following stochastic
approximation conditions

∞∑
k=1

αtk(s,a) =∞,
∞∑

k=1

α2
tk(s,a) <∞, for all s ∈ S , a ∈A(s), (4.1)

where tk(s, a) is the time step when a visit in state s is followed by taking action a for the kth time.
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To ensure that all state-action pairs continue to be updated, the behaviour policy needs to be
exploratory. At the same time, we want to exploit what we have learned so far by choosing actions
that we believe will give us large future rewards. A common choice of policy that compromises in this
way between exploration and exploitation is the ε-greedy policy, which with probability 1− ε chooses
the action that maximises the action-value function in the current state, and with probability ε chooses
any other action uniformly at random:

π (a|s)=
⎧⎨⎩1− ε, if a= argmaxa Q(s, a),

ε

|A| − 1
, otherwise.

Another example is the softmax policy

π (a|s)= eQ(s,a)/τ∑
a∈A(s) eQ(s,a)/τ

.

To ensure that the behaviour policy π is greedy in the limit, it needs to be changed over time towards
the greedy policy that maximises the action-value function in each state. This can be accomplished by
letting ε or τ slowly decay towards zero.

4.2. Function approximation
The methods discussed thus far are examples of tabular solution methods, where the value functions can
be represented as tables. These methods are suitable when the state and action space are not too large, for
example for the simple model in Section 2.2. However, when the state space and/or action space is very
large, or even continuous, these methods are not feasible, due to not being able to fit tables of this size
in memory, and/or due to the time required to visit all state-action pairs multiple times. This is the case
for the intermediate and realistic models presented in Sections 2.1 and 2.3. In both models, we allow the
number of contracts written per year to vary, which increases the dimension of the state space. For the
intermediate model, it also has the effect that the surplus process, depending on the parameter values
chosen, can take non-integer values. For the simple model S = G ×A, and with the parameters chosen
in Section 5, we have |G| = 171 and |A| = 100. For the intermediate model, if we let N denote the set of
integer values that Nt is allowed to take values in, then S = G ×A×N l, where l denotes the maximum
number of development years. With the parameters chosen in Section 5, the total number of states is
approximately 108 for the intermediate model. For the realistic model, several of the state variables are
continuous, that is the state space is no longer finite.

Thus, to solve the optimisation problem for the intermediate and the realistic model, we need approx-
imate solution methods, in order to generalise from the states that have been experienced to other states.
In approximate solution methods, the value function vπ (s) (or action-value function qπ (s, a)) is approxi-
mated by a parameterised function, v̂(s; w) (or q̂(s, a; w)). When the state space is discrete, it is common
to minimise the following objective function,

J(w)=
∑
s∈S

μπ (s)
(
vπ (s)− v̂(s; w)

)2
, (4.2)

where μπ (s) is the fraction of time spent in state s. For the model without terminal states, μπ is the
stationary distribution under policy π . For the model with terminal states, to determine the fraction of
time spent in each transient state, we need to compute the expected number of visits ηλ,π (s) to each
transient state s ∈ S before reaching a terminal (absorbing) state, where λ(s)= P (S0 = s) is the initial
distribution. For ease of notation, we omit λ from the subscript below, and write ηπ and Pπ instead of
ηλ,π and Pλ,π . Let p(s|s′) be the probability of transitioning from state s′ to state s under policy π , that is
p(s|s′)= Pπ (St = s | St−1 = s′). Then,
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ηπ (s)= Eπ

[ ∞∑
t=0

1{St=s}

]
= λ(s)+

∞∑
t=1

Pπ (St = s)

= λ(s)+
∞∑

t=1

∑
s′∈S

p(s|s′) Pπ (St−1 = s′)= λ(s)+
∑
s′∈S

p(s|s′)
∞∑

t=0

Pπ (St = s′)

= λ(s)+
∑
s′∈S

p(s|s′)ηπ (s′),

or, in matrix form, ηπ = λ+ P�ηπ , where P is the part of the transition matrix corresponding to
transitions between transient states. If we label the states 0, 1, . . . , |S| (where state 0 represents
all terminal states), then P= (pij : i, j ∈ {1, 2, . . . , |S|}), where pij = p(j | i). After solving this system
of equations, the fraction of time spent in each transient state under policy π can be computed
according to

μπ (s)= ηπ (s)∑
s′∈S ηπ (s′)

, for all s ∈ S .

This computation of μπ relies on the model of the environment being fully known and the transition
probabilities explicitly computable, as is the case for the simple model in Section 2.2. However, for the
situation at hand, where we need to resort to function approximation and determine v̂(s; w) (or q̂(s, a; w))
by minimising (4.2), we cannot explicitly compute μπ . Instead, μπ in (4.2) is captured by learning
incrementally from real or simulated experience, as in semi-gradient TD learning. Using semi-gradient
TD learning, the iterative update for the weight vector w becomes

wt+1 =wt + αt

(
Rt+1 + γ v̂(St+1; wt)− v̂(St; wt)

)∇ v̂(St; wt) .

This update can be used to estimate vπ for a given policy π , generating transitions from state to state
by taking actions according to this policy. Similarly to standard TD learning (Section 4.1), the target
Rt+1 + γ v̂(St+1; wt) is an estimate of the true (unknown) vπ (St+1). The name “semi-gradient” comes from
the fact that the update is not based on the true gradient of

(
Rt+1 + γ v̂(St+1; wt)− v̂(St; wt)

)2; instead,
the target is seen as fixed when the gradient is computed, despite the fact that it depends on the weight
vector wt.

As in the previous section, estimating the value function given a specific policy is not our final goal
– instead we want to find the optimal policy. Hence, we need a TD control algorithm with function
approximation. One example of such an algorithm is semi-gradient SARSA, which estimates qπ . The
iterative update for the weight vector is

wt+1 =wt + αt

(
Rt+1 + γ q̂(St+1, At+1; wt)− q̂(St, At; wt)

)∇q̂(St, At; wt) . (4.3)

As with standard SARSA, we need a behaviour policy that generates transitions from state-action
pairs to state-action pairs, that both explores and exploits, for example an ε-greedy or softmax pol-
icy. Furthermore, for the algorithm to estimate q∗ we need the behaviour policy to be changed over
time towards the greedy policy. However, convergence guarantees only exist when using linear function
approximation, see Section 4.2.1 below.

4.2.1. Linear function approximation
The simplest form of function approximation is linear function approximation. The value function is
approximated by v̂(s; w)=w�x(s), where x(s) are basis functions. Using the Fourier basis as defined
in Konidaris et al. (2011), the ith basis function for the Fourier basis of order n is (here π ≈ 3.14 is a
number)

xi(s)= cos
(
πs�c(i)

)
,
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where s= (s1, s2, . . . , sk)
�, c(i) = (

c(i)
1 , . . . , c(i)

k

)�, and k is the dimension of the state space. The c(i)’s
are given by the k-tuples over the set {0, . . . , n}, and hence, i= 1, . . . , (n+ 1)k. This means that
x(s) ∈R(n+1)k . One-step semi-gradient TD learning with linear function approximation has been shown
to converge to a weight vector w∗. However, w∗ is not necessarily a minimiser of J. Tsitsiklis and
Van Roy (1997) derive the upper bound

J(w∗)≤ 1

1− γ
min

w
J(w).

Since γ is often close to one, this bound can be quite large.
Using linear function approximation for estimating the action-value function, we have q̂(s, a; w)=

w�x(s, a), and the ith basis function for the Fourier basis of order n is

xi(s, a)= cos
(
π

(
s�c(i)

1:k + ac(i)
k+1

))
,

where s= (s1, . . . , sk)
�, c(i)

1:k =
(
c(i)

1 , . . . , c(i)
k

)�, c(i)
j ∈ {0, . . . , n}, j= 1, . . . , k+ 1, and i= 1, . . . , (n+

1)k+1.
The convergence results for semi-gradient SARSA with linear function approximation depend on

what type of policy is used in the algorithm. When using an ε-greedy policy, the weights have been
shown to converge to a bounded region and might oscillate within that region, see Gordon (2001).
Furthermore, Perkins and Precup (2003) have shown that if the policy improvement operator  is
Lipschitz continuous with constant L > 0 and ε-soft, then SARSA will converge to a unique policy.
The policy improvement operator maps every q ∈R|S||A| to a stochastic policy and gives the updated
policy after iteration t as πt+1 = (q(t)), where q(t) corresponds to a vectorised version of the state-
action values after iteration t, that is q(t) = xwt for the case where we use linear function approximation,
where x ∈R|S||A|×d is a matrix with rows x(s, a)�, for each s ∈ S , a ∈A, and d is the number of basis
functions. That  is Lipschitz continuous with constant L means that ‖(q)− (q′)‖2 ≤ L‖q− q′‖2,
for all q, q′ ∈R|S||A|. That  is ε-soft means that it produces a policy π = (q) that is ε-soft, that is
π (a|s)≥ ε/|A| for all s ∈ S and a ∈A. In both Gordon (2001) and Perkins and Precup (2003), the policy
improvement operator was not applied at every time step; hence, it is not the online SARSA-algorithm
considered in the present paper that was investigated. The convergence of online SARSA under the
assumption that the policy improvement operator is Lipschitz continuous with a small enough constant
L was later shown in Melo et al. (2008). The softmax policy is Lipschitz continuous, see further the
Supplemental Material, Section 3.

However, the value of the Lipschitz constant L that ensures convergence depends on the problem
at hand, and there is no guarantee that the policy the algorithm converges to is optimal. Furthermore,
for SARSA to approximate the optimal action-value function, we need the policy to get closer to the
greedy policy over time, for example by decreasing the temperature parameter when using a softmax
policy. Thus, the Lipschitz constant L, which is inversely proportional to the temperature parameter, will
increase as the algorithm progresses, making the convergence results in Perkins and Precup (2003) and
Melo et al. (2008) less likely to hold. As discussed in Melo et al. (2008), this is not an issue specific to
the softmax policy. Any Lipschitz continuous policy that over time gets closer to the greedy policy will
in fact approach a discontinuous policy, and hence, the Lipschitz constant of the policy might eventu-
ally become too large for the convergence result to hold. Furthermore, the results in Perkins and Precup
(2003) and Melo et al. (2008) are not derived for a Markov decision process with an absorbing state.
Despite this, it is clear from the numerical results in Section 5 that a softmax policy performs substan-
tially better compared to an ε-greedy policy, and for the simple model approximates the true optimal
policy well.

The convergence results in Gordon (2001), Perkins and Precup (2003) and Melo et al. (2008) are
based on the stochastic approximation conditions

∞∑
t=1

αt =∞,
∞∑

t=1

α2
t <∞, (4.4)
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where αt is the step size parameter used at time step t. Note that when using tabular methods (see
Section 4.1), we had a vector of step sizes for each state-action pair. Here, this is not the case. This is a
consequence of both that a vector of this size might not be possible to store in memory when the state
space is large, and that we want to generalise from state-action pairs visited to other state-action pairs
that are rarely/never visited, making the number of visits to each state-action pair less relevant.

5. Numerical illustrations
5.1. Simple model
We use the following parameter values: γ = 0.9, N = 10, μ= 5, β0 = 10, β1 = 1, ξ = 0.05, and ν = 1.
This means that the expected yearly total cost for the insurer is 70 and the expected yearly cost per
customer is 7. We emphasise that parameter values are meant to be interpreted in suitable units to fit the
application in mind. The cost function is

c(p)= p+ c1

(
cp

2 − 1
)

, (5.1)

with c1 = 1 and c2 = 1.2. For the model with a terminal state, we use η= 10 > γ/(1− γ ), as suggested in
Section 3.2. The premium level is truncated and discretised according to A= {0.2, 0.4, . . . , 19.8, 20.0}.
As the model for the MDP is formulated, P (Gt = g) > 0 for all integers g. However, for actions/premiums
that are considered with the aim of solving the optimisation problem, it will be sufficient to only consider
a finite range of integer values for Gt since transitions to values outside this range will have negligible
probability. Specifically, we will only consider {−20,−19, . . . , 149, 150} as possible surplus values. In
order to ensure that transition probabilities sum to one, we must adjust the probabilities of transitions
to the limiting surplus values according to the original probabilities of exiting the range of possible
surplus values. For details on the transition probabilities and truncation for the simple model, see the
Supplemental Material, Section 1.

Remark 5.1 (Cost function). The cost function (5.1) was suggested in Martin-Löf (1994), since it is an
increasing, convex function, and thus will lead to the premium being more averaged over time. However,
in Martin-Löf (1994), c2 = 1.5 was used in the calculations. We have chosen a slightly lower value of c2

due to that too extreme rewards can lead to numerical problems when using SARSA with linear function
approximation.

Remark 5.2 (Truncation). Truncating the surplus process at 150 does not have a material effect on the
optimal policy. However, the minimum value (here -20) will have an effect on the optimal policy for the
MDP with a terminal state and should be seen as another parameter value that needs to be chosen to
determine the reward signal, see Section 3.2.

5.1.1. Policy iteration
The top row in Figure 1 shows the optimal policy and the stationary distribution under the optimal
policy, for the simple model with a constraint on the action space (Section 3.1) using policy iteration.
The bottom row in Figure 1 shows the optimal policy and the fraction of time spent in each state under
the optimal policy, for the simple model with terminal state (Section 3.2) using policy iteration. In both
cases, the premium charged increases as the surplus or the previously charged premium decreases. Based
on the fraction of time spent in each state under each of these two policies, we note that in both cases
the average premium level is close to the expected cost per contract (7), but the average surplus level is
slightly lower when using the policy for the model with a constraint on the action space compared to
when using the policy for the model with the terminal state. However, the policies obtained for these
two models are quite similar, and since (as discussed in Section 3.2) the model with the terminal state
is more appropriate in more realistic settings, we focus the remainder of the analysis only on the model
with the terminal state.
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Figure 1. Simple model using policy iteration. Top: with constraint. Bottom: with terminal state. First
and second column: optimal policy. Third column: fraction of time spent in each state under the optimal
policy.

5.1.2 Linear function approximation
We have a 2-dimensional state space, and hence, k+ 1= 3. When using the Fourier basis we should
have s ∈ [0, 1]k, a ∈ [0, 1]; hence, we rescale the inputs according to

s̃1 = s1 −min G
max G −min G , s̃2 = s2 −min A

max A−min A , ã= a−min A
max A−min A ,

and use (s̃1, s̃2, ã)� as input. We use a softmax policy, that is

π (a|s)= eq̂(s,a; w)/τ∑
a∈A(s) eq̂(s,a; w)/τ

,

where τ is slowly decreased according to

τt =max
{
τmin, τ0d

t−1
}

, τ0 = 2, τmin = 0.02, d= 0.99999,

where τt is the parameter used during episode t. This schedule for decreasing the temperature parameter
is somewhat arbitrary, and the parameters have not been tuned. The choice of a softmax policy is based
on the results in Perkins and Precup (2003), Melo et al. (2008), discussed in Section 4.2.1. Since a
softmax policy is Lipschitz continuous, convergence of SARSA to a unique policy is guaranteed, under
the condition that the policy is also ε-soft and that the Lipschitz constant L is small enough. However,
since the temperature parameter τ is slowly decreased, the policy chosen is not necessarily ε-soft for
all states and time steps, and the Lipschitz constant increases as τ decreases. Despite this, our results
show that the algorithm converges to a policy that approximates the optimal policy derived with policy
iteration well when using a 3rd order Fourier basis, see the first column in Figure 2. The same cannot
be said for an ε-greedy policy. In this case, the algorithm converges to a policy that in general charges a
higher premium than the optimal policy derived with policy iteration, see the fourth column in Figure 2.
For the ε-greedy policy, we decrease the parameter according to

εt =max
{
εmin, ε0dt−1

}
, ε0 = 0.2, εmin = 0.01,

where εt is the parameter used during episode t.
The starting state is selected uniformly at random from S . Furthermore, since discounting will lead to

rewards after a large number of steps having a very limited effect on the total reward, we run each episode
for at most 100 steps, before resetting to a starting state, again selected uniformly at random from S .
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Figure 2. Optimal policy for simple model with terminal state using linear function approximation.
First column: 3rd order Fourier basis. Second column: 2nd order Fourier basis. Third column: 1st
order Fourier basis. Fourth column: 3rd order Fourier basis with ε-greedy policy.

This has the benefit of diversifying the states experienced, enabling us to achieve an approximate policy
that is closer to the policy derived with dynamic programming as seen over the whole state space. The
step size parameter used is

αt =min

{
α0,

1

t0.5+θ

}
, (5.2)

where αt is the step size parameter used during episode t, and 0 < θ ≤ 0.5. The largest α0 that ensures
that the weights do not explode can be found via trial and error. However, the value of α0 obtained in
this way coincides with the “rule of thumb” for setting the step size parameter suggested in Sutton and
Barto (2018, Ch. 9.6), namely

α0 = 1

Eπ [x�x]
, Eπ

[
x�x

]=∑
s,a

μπ (s)π (a|s)x(s, a)�x(s, a).

If x(St, At)
� x(St, At)≈ Eπ

[
x�x

]
, then this step size ensures that the error (i.e., the difference between

the updated estimate w�t+1x(St, At) and the target Rt+1 + γ w�t x(St+1, At+1)) is reduced to zero after one
update. Hence, using a step size larger than α0 =

(
Eπ

[
x�x

])−1 risks overshooting the optimum, or even
divergence of the algorithm. When using the Fourier basis of order n, this becomes for the examples
studied here

Eπ

[
x�x

]=∑
s,a

μπ (s)π (a|s)
(n+1)k+1∑

i=1

cos2
(
π (sc(i)

1:k + ac(i)
k+1)

)
≈ (n+ 1)k+1

2
.

For the simple model, we have used α0 = 0.2 for n= 1, α0 = 0.07 for n= 2, and α0 = 0.03 for n= 3. For
the intermediate model, we used α0 = 0.06 for n= 1, α0 = 0.008 for n= 2, and α0 = 0.002 for n= 3. For
the realistic model, we have used α0 = 0.002 for n= 3. In all cases α0 ≈

(
Eπ

[
x�x

])−1. For θ , we tried
values in the set {0.001, 0.1, 0.2, 0.3, 0.4, 0.5}. For the simple model, the best results were obtained with
θ = 0.001 irrespective of n. For the intermediate model, we used θ = 0.5 for n= 1, θ = 0.2 for n= 2,
and θ = 0.3 for n= 3. For the realistic model, we used θ = 0.2 for n= 3.

Remark 5.3 (Step size). There are automatic methods for adapting the step size. One such method is the
Autostep method from Mahmood et al. (2012), a tuning-free version of the Incremental Delta-Bar-Delta
(IDBD) algorithm from Sutton (1992). When using this method, with parameters set as suggested by
Mahmood et al. (2012), the algorithm performs marginally worse compared to the results below.

Figure 2 shows the optimal policy for the simple model with terminal state using linear function
approximation with 3rd-, 2nd-, and 1st-order Fourier basis using a softmax policy, and with 3rd-order
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Table 2. Expected discounted total reward (uniformly distributed starting states) for simple
model with terminal state. The right column shows the fraction of episodes that end in the
terminal state, within 100 time steps.

Expected reward Terminations
Policy iteration −85.91 0.006
Q-learning −86.50 0.002
Fourier 3 with softmax policy −86.11 0.006
Fourier 2 with softmax policy −86.30 0.007
Fourier 1 with softmax policy −86.59 0.011
Fourier 3 with ε-greedy policy −92.74 0.000
Best constant policy −122.70 0.040
Myopic policy with terminal state, pmin = 0.2 −97.06 0.133
Myopic policy with terminal state, pmin = 5.8 −90.40 0.096
Myopic policy with constraint, pmin = 0.2 −121.52 0.337
Myopic policy with constraint, pmin = 6.4 −93.58 0.132

Fourier basis using an ε-greedy policy. Figure 1 shows that the approximate optimal policy using 3rd-
order Fourier basis is close to the optimal policy derived with policy iteration. Using 1st- or 2nd-order
Fourier basis also gives a reasonable approximation of the optimal policy, but worse performance.
Combining 3rd-order Fourier basis and an ε-greedy policy gives considerably worse performance.

The same conclusions can be drawn from Table 2, where we see the expected total discounted reward
per episode for these policies, together with the results for the optimal policy derived with policy itera-
tion, the policy derived with Q-learning, and several benchmark policies (see Section 5.1.3). Clearly, the
performance of 3rd-order Fourier basis is very close to the performance of the optimal policy derived
with policy iteration, and hence, we conclude that the linear function approximation with 3rd-order
Fourier basis using a softmax policy appears to converge to approximately the optimal policy. The pol-
icy derived with Q-learning shows worse performance than both the 3rd- and 2nd-order Fourier basis,
while the number of episodes run for the Q-learning algorithm is approximately a factor 30 bigger than
the number of episodes run before convergence of SARSA with linear function approximation. Hence,
even for this simple model, the number of states is too large for the Q-learning algorithm to converge
within a reasonable amount of time. Furthermore, we see that all policies derived with linear function
approximation using a softmax policy outperform the benchmark policies. Note that the optimal policy
derived with policy iteration, the best constant policy, and the myopic policy with the terminal state
require full knowledge of the underlying model and the transition probabilities, and the myopic policy
with the constraint requires an estimate of the expected surplus one time step ahead, while the poli-
cies derived with function approximation or Q-learning only require real or simulated experience of the
environment.

To analyse the difference between some of the policies, we simulate 300 episodes for the policy
with the 3rd-order Fourier basis, the best constant policy, and the myopic policy with terminal state,
pmin = 5.8, for a few different starting states, two of which can be seen in Figure 3. A star in the fig-
ure corresponds to one or more terminations. The total number of terminations (of 300 episodes) are
as follows: S0 = (−10, 2): Fourier 3:1, best constant: 291, myopic pmin = 5.8: 20. S0 = (50, 7): Fourier
3: 1, best constant: 0, myopic pmin = 5.8: 20. For other starting states, the comparison is similar to that
in Figure 3. We see that the policy with the 3rd order Fourier basis appears to outperform the myopic
policy in all respects, that is on average the premium is lower, the premium is more stable over time, and
we have very few defaults. The best constant policy naturally is the most stable, but leads to in general
a higher premium compared to the other policies, and will for more strained starting states quickly lead
to a large number of terminations.
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Figure 3. Simple model. Top row: policy with 3rd order Fourier basis. Bottom row: myopic policy with
terminal state, pmin = 5.8. Left: starting state S0 = (−10, 2). Right: starting state S0 = (50, 7). The red
line shows the best constant policy. A star indicates at least one termination.

5.1.3. Benchmark policies
Best constant policy. The best constant policy is the solution to

minimise
p

E

[
T∑

t=0

γ th(p, St+1)

]
.

For both the simple and intermediate models, p= 7.4 solves this optimisation problem. For details, see
the Supplemental Material, Section 4.1.

Myopic policy for MDP with constraint. The myopic policy maximises immediate rewards. For the
model with a constraint on the action space, the myopic policy solves

minimise
p

c(p) subject to E
[
G1 | S0 = s, P0 = p

]≥ 0. (5.3)

The myopic policy is given by the lowest premium level that satisfies the constraint. For details on how
(5.3) is solved, see the Supplemental Material, Section 4.2.

For the simple, intermediate, and realistic model, the myopic policy charges the minimum premium
level for a large number of states. Since this policy so quickly reduces the premium to the minimum
level as the surplus or previously charged premium increases, it is not likely to work that well. Hence,
we suggest an additional benchmark policy where we set the minimum premium level to a higher value,
pmin. Thus, this adjusted myopic policy is given by π̃ (s)=max{π (s), pmin}, where π denotes the policy
that solves (5.3). Based on simulations of the total expected discounted reward per episode for different
values of pmin, we conclude that pmin = 6.4 achieves the best results for both the simple and intermediate
model, and pmin = 10.5 achieves the best result for the realistic model.

Myopic policy for MDP with terminal state. For the model with a terminal state, the myopic policy is
the solution to the optimisation problem

minimise
p

E
[
h(p, S1) | S0 = s, P0 = p

]
. (5.4)

For details on how (5.4) is solved, see the Supplemental Material, Section 4.3. We also suggest an
additional benchmark policy where the minimum premium level has been set to pmin = 5.8, the level
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Figure 4. Optimal policy for intermediate model with terminal state using linear function approxima-
tion, Nt =Nt−1 = 10. Left: 3rd-order Fourier basis. Middle: 2nd-order Fourier basis. Right: 1st-order
Fourier basis.

that achieves the best results based on simulations of the total expected discounted reward per episode.
For the intermediate and realistic model, this myopic policy is too complex and is therefore not a good
benchmark.

5.2. Intermediate model
We use the following parameter values: γ = 0.9, μ= 5, β0 = 10, β1 = 1, ξ = 0.05, ν = 1, α1 = 0.7, α2 =
0.3, η= 10, a= 18, b=−0.3, and cost function (5.1) with c1 = 1 and c2 = 1.2. The premium level and
number of contracts written are truncated and discretised according toA= {0.2, 0.4, . . . , 19.8, 20.0} and
N = {0, 1, . . . , 30}. The surplus process no longer only takes integer values (as in the simple model),
instead the values that the surplus process can take are determined by the parameter values chosen.
However, it is still truncated to lie between –20 and 150. For the parameter values above, we have
G = {−20.00,−19.95, . . . , 149.95, 150.00}.

Figure 4 shows the optimal policy for the intermediate model using linear function approximation,
with 3rd-, 2nd-, and 1st-order Fourier basis, for Nt =Nt−1 = 10. Comparing the policy with the 3rd-order
Fourier basis with the policy with the 2nd order Fourier basis, the former appears to require a slightly
lower premium when the surplus or previously charged premium is very low. The policy with the 1st-
order Fourier basis appears quite extreme compared to the other two policies. Comparing the policy with
the 3rd-order Fourier basis for Nt =Nt−1 = 10 with the optimal policy for the simple model (bottom row
in Figure 1), we note that π i(g, p, 10, 10) = π s(g, p), where π s and π i denotes, respectively, the policy
for the simple and the intermediate model. There is a qualitative difference between these policies, since
even given that we are in a state where Nt =Nt−1 = 10 using the intermediate model, the policy from
the simple model does not take into account the effect the premium charged will have on the number of
contracts issued at time t+ 1. The policy with 3rd-order Fourier basis for Nt, Nt−1 ∈ {5, 10, 15} can be
seen in Figure 5.

To determine the performance of the policies for the intermediate model, we simulate the expected
total discounted reward per episode for these policies. The results can be seen in Table 3. Here we
clearly see that the policy with 3rd-order Fourier basis outperforms the other policies and that the policy
with 1st-order Fourier basis performs quite badly since is not flexible enough to be used in this more
realistic setting. We also compare the policies with the optimal policy derived with policy iteration from
the simple model while simulating from the intermediate model. Though this policy performs worse
compared to the policy with 3rd- and 2nd-order Fourier basis, it outperforms the policy with 1st-order
Fourier basis. Note that the policies derived with function approximation only require real or simulated
experience of the environment. The results for the myopic policy in Table 3 use the true parameters
when computing the expected value of the surplus. Despite this, the policy derived with the 3rd order
Fourier basis outperforms the myopic policy.

To analyse the difference between some of the policies, we simulate 300 episodes for the policy with
the 3rd-order Fourier basis, the best constant policy and the policy from the simple model, for a few
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Table 3. Expected discounted total reward based on simulation, (uniformly distributed
starting states). The right column shows the fraction of episodes that end in the terminal
state, within 100 time steps.

Expected reward Terminations
Fourier 3 −97.17 0.015
Fourier 2 −104.41 0.025
Fourier 1 −128.83 0.036
Policy from simple model −116.70 0.075
Myopic policy with constraint, pmin = 0.2 −360.69 0.988
Myopic policy with constraint, pmin = 6.4 −100.92 0.169
Best constant policy −131.85 0.060

Figure 5. Optimal policy for the intermediate model with terminal state using linear function
approximation with 3rd-order Fourier basis, for Nt, Nt−1 ∈ {5, 10, 15}.

different starting states, two of which can be seen in Figure 6. Each star in the figures correspond to
one or more terminations at that time point. The total number of terminations (of 300 episodes) are
as follows: S0 = (0, 7, 10, 10): Fourier 3: 1, best constant: 13, simple: 5. S0 = (100, 15, 5, 5): Fourier 3:
0, best constant: 0, simple: 10. Comparing the policy with the 3rd-order Fourier basis with the policy
from the simple model, we see that it tends to on average give a lower premium and leads to very few
defaults, but is slightly more variable compared to the premium charged by the simple policy. This is
not surprising, since the simple policy does not take the variation in the number of contracts issued into
account. At the same time, this is to the detriment of the simple policy, since it cannot correctly take
the risk of the varying number of contracts into account, hence leading to more defaults. For example,
for the more strained starting state S0 = (−10, 2, 20, 20) (not shown in figure), the number of defaults
for the policy with the 3rd order Fourier basis is 91 of 300, and for the simple policy it is 213 of 300.
Similarly, for starting state S0 = (100, 15, 5, 5) (second column in Figure 6), the simple policy will tend
set the premium much too low during the first time step, hence leading to more early defaults compared
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Figure 6. Intermediate model. Top row: policy with 3rd Fourier basis. Bottom row: policy from the
simple model. Left: starting state S0 = (0, 7, 20, 20). Right: starting state S0 = (100, 15, 5, 5). The red
line shows the best constant policy. A star indicates at least one termination.

to for example starting state S0 = (0, 7, 20, 20) (first column in Figure 6), despite the fact that the latter
starting state has a much lower starting surplus.

5.3. Realistic model
To estimate the parameters of the model for the cumulative claims payments in (2.8), we use the motor
third party liability data considered in Miranda et al. (2012). The data consist of incremental runoff
triangles for number of reported accidents and incremental payments, with 10 development years. We
have no information on the number of contracts. For parameter estimation only, we assume a constant
number of contracts over the ten observed years, that is Ñt+1 =N, and that the total number of claims
for each accident year is approximately 5% of the number of contracts. We further assume that the total
number of claims per accident year is well approximated by the number of reported claims over the
first two development years. This leads to an estimate of the number of contracts Ñt+1 in (2.8) of N̂ =
2.17 · 105. For parameter estimation, we assume that μ0,t =μ0 in (2.9). Hence, μ0 and ν2

0 are estimated
as the sample mean and variance of

(
log

(
Ct,1

))10

t=1
. Similarly, μj and ν2

j are estimated as the sample mean
and variance of

(
log

(
Ct,j+1/Ct,j

))10−j

t=1
for j= 1, . . . , 8. Since we only have one observation for j= 9, we

let μ̂9 = log
(
C1,10/C1,9

)
and ν̂9 = 0. c0 is estimated by ĉ0 = exp

{
μ̂0 + ν̂2

0/2
}

/N̂ ≈ 2.64. The parameter
estimates can be seen in Table 1 in the Supplemental Material, Section 5.

For the model for investment earnings, the parameters are set to σ̃ = 0.03 and μ̃= log (1.05)− σ̃ 2/2,
which gives similar variation in investment earnings as in the intermediate model (2.7) when the surplus
is approximately 50. The remaining parameters are γ = 0.9, β0 = 2 · 105, β1 = 1, η= 10, and b=−0.3.
The parameter a is set so that the expected number of contracts is 2 · 105 when the premium level corre-
sponds to the expected total cost per contract, β0/(2 · 105)+ β1 + c0/α1 ≈ 10.4. Hence, a≈ 4.03 · 105.
The premium level is truncated and discretised according to A= {0.5, 1.0, . . . , 29.5, 30.0} The cost
function is as before (5.1), but now adjusted to give rewards of similar size as in the simple and interme-
diate setting. Hence, when computing the reward, the premium is adjusted to lie in [0.2, 20.0] according
to

c(p)= p̃+ c1

(
c̃p

2 − 1
)

, where p̃= 0.2+ p− 0.5

30− 0.5
(20− 0.2).
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Figure 7. Optimal policy for realistic model with terminal state using linear function approximation,
for Nt, Nt−1 ∈ {1.75, 2.00, 2.50} · 105, Ct−1,1 = c0 · 2 · 105, and Ct−j,j = c0 · 2 · 105

∏j−1
k=1 fk.

The number of contracts is truncated according to N = {144170, . . . , 498601}. This is based on the
0.001-quantile of Pois(a(max A)b), and the 0.999-quantile of Pois(a( min A)b). The truncation of
the cumulative claims payments Ct,j is based on the same quantile levels and lognormal distribu-
tions with parameters μ= log (c0 min N )− ν2

0/2+∑j−1
k=1 μk and σ 2 =∑j−1

k=0 νk, and with parameters
μ= log (c0 max N )− ν2

0/2+∑j−1
k=1 μk and σ 2 =∑j−1

k=0 νk, respectively, for j= 1, . . . , 9. The truncation
for the cumulative claims payments can be seen in Table 2 in the Supplemental Material, Section 5. The
surplus is truncated to lie in [−0.6, 4.5] · 106. Note that for the realistic model, with 10 development years
the state space becomes 13-dimensional. Using the full 3rd-order Fourier basis is not possible since it
consists of 414 basis functions. We reduce the number of basis functions allowing for more flexibility
where the model is likely to need it. Specifically,{(

c(i)
1 , c(i)

2 , c(i)
3 , c(i)

4 , c(i)
14

)
: i= 1, . . . , 45

}= {0, . . . , 3}5,

c(i)
1 = c(i)

2 = c(i)
3 = c(i)

4 = c(i)
14 = 0 for i= 45 + 1, . . . , 45 + 9,

and, for j= 1, . . . , 9,

c(i)
4+j =

{
1 for i= 45 + j,

0 for i = 45 + j.

This means less flexibility for variables corresponding to the cumulative payments and no interaction
terms between a variable corresponding to a cumulative payment and any other variable.

Figure 7 shows the optimal policy for the realistic model using linear function approximation for
Nt, Nt−1 ∈ {1.75, 2.00, 2.50} · 105, Ct−1,1 = c0 · 2 · 105, and Ct−j,j = c0 · 2 · 105

∏j−1
k=1 fk for j= 2, . . . , 9. To

determine the performance of the approximate optimal policy for the realistic model, we simulate the
expected total discounted reward per episode for this policy. The results can be seen in Table 4. The
approximate optimal policy outperforms all benchmark policies. The best performing benchmark policy,
the “interval policy,” corresponds to choosing the premium level to be equal to the expected total cost per
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Table 4. Expected discounted total reward based on simulation, (uniformly distributed
starting states). The right column shows the fraction of episodes that end in the terminal
state, within 100 time steps.

Expected reward Terminations
Fourier 3 −93.14 0.019
Interval policy (p= 10.5 when Gt ∈ [1.2, 2.8] · 106) −106.70 0.034
Myopic policy with constraint, pmin = 10.5 −112.70 0.041
Best constant policy, p= 11.5 −136.60 0.061

contract, when the number of contracts is 2 · 105, as long as the surplus lies in the interval [1.2, 2.8] · 106.
This is based on a target surplus of 2 · 106 and choosing φ ∈ {0.1, 0.2, . . . , 1.0} that results in the best
expected total reward, where the interval for the surplus is given by [1− φ, 1+ φ] · 2 · 106. When the
surplus Gt is below (above) this interval, the premium is increased (decreased) in order to decrease
(increase) the surplus. The premium for this benchmark policy is

Pt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min

{
10.5+ (1− φ) · 2 · 106 −Gt

2 · 105
, max A

}
, if Gt < (1− φ) · 2 · 106,

10.5, if (1− φ) · 2 · 106 ≤Gt ≤ (1+ φ) · 2 · 106,

max

{
10.5+ (1+ φ) · 2 · 106 −Gt

2 · 105
, min A

}
, if (1+ φ) · 2 · 106 < Gt,

and rounded to the nearest half integer, to lie in A. As before the approximate optimal policy outper-
forms the benchmark policies despite the fact that both the myopic and the interval policy use the true
parameters when computing the expected surplus or the expected total cost per contract.

A comparison of the approximate optimal policy and the best benchmark policy, including a figure
similar to Figure 6, is found in the Supplemental Material, Section 5.

6. Conclusion
Classical methods for solving premium control problems are suitable for simple dynamical insurance
systems, and the model choice must to a large extent be based on how to make the problem solvable,
rather than reflecting the real dynamics of the stochastic environment. For this reason, the practical use
of the optimal premium rules derived with classical methods is often limited.

Reinforcement learning methods enable us to solve premium control problems in realistic settings that
adequately capture the complex dynamics of the system. Since these techniques can learn directly from
real or simulated experience of the stochastic environment, they do not require explicit expressions for
transition probabilities. Further, these methods can be combined with function approximation in order
to overcome the curse of dimensionality as the state space tends to be large in more realistic settings.
This makes it possible to take key features of real dynamical insurance systems into account, for example
payment delays and how the number of contracts issued in the future will vary depending on the premium
rule. Hence, the optimal policies derived with these techniques can be used as a basis for decisions on
how to set the premium for insurance companies.

We have illustrated strengths and weaknesses of different methods for solving the premium control
problem for a mutual insurer and demonstrated that given a complex dynamical system, the approximate
policy derived with SARSA using function approximation outperforms several benchmark policies. In
particular, it clearly outperforms the policy derived with classical methods based on a more simplistic
model of the stochastic environment, which fails to take important aspects of a real dynamical insur-
ance system into account. Furthermore, the use of these methods is not specific to the model choices
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made in Section 2. The present paper provides guidance on how to carefully design a reinforcement
learning method with function approximation for the purpose of obtaining an optimal premium rule,
which together with models that fit the experience of the specific insurance company allows for optimal
premium rules that can be used in practice.

The models may be extended to include dependence on covariates. However, it should be noted that
if we want to model substantial heterogeneity among policyholders and consider a large covariate set,
then the action space becomes much larger and function approximation also for the policy may become
necessary.
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