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We investigate the equilibrium of an axisymmetric system consisting of sessile and
pendent drops on pre-stretched nonlinear elastic membranes. The membrane experiences
large deformations due to the drop’s weight and interfacial interactions. We first show that
force balance alone leads to non-unique equilibrium solutions. Identifying the system’s
equilibrium with the minimum of its free energy, we then demonstrate that the equilibrium
solution is made unique by requiring the continuity of meridional stretches across the
three-phase contact circle. For a special class of nonlinear elastic materials – I2 materials
– we then compute the equilibrium configurations of the drop–membrane system for a
range of drop volumes and membrane pre-tensions. Finally, the present work facilitates
two important applications: (a) the membrane’s pre-tension and current tension are related
exactly to help in utilizing the system as an elastocapillary probe for membrane pre-tension
and (b) we suggest an experimental protocol for measuring the membrane’s surface
properties.

Key words: drops, contact lines, variational methods

1. Introduction

The effect of a sessile liquid drop’s surface tension on a deformable solid underneath
has long been of interest (Lester 1961; Rusanov 1975). Although most investigations have
focused on drops placed upon thick elastic substrates (Style et al. 2017; Andreotti &
Snoeijer 2020), systems comprising drops on compliant geometries, such as free-standing
elastic structures, are being increasingly studied. This is because such systems, through
their slenderness, admit easily measurable large deformations, thereby allowing us to
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determine solid surface energies (Nadermann, Hui & Jagota 2013). The interaction of
thin structures with drops has also been studied in the context of other applications
and phenomena, such as the design of engineered microstructures, micropatterning and
collapse of tubular structures like bronchial airways (Roman & Bico 2010; Bico et al.
2018; Paulsen 2019).

Fortes (1984) and Shanahan (1985) were among the first to study the problem of wetting
of thin plates and membranes. The former employed the balance of forces, while the
latter followed an energy approach to study the deformation of a thin solid by a drop’s
presence. Shanahan (1985) reported that the contact angle, unlike for a rigid substrate, is
not an intrinsic property of the system and depends on the drop’s volume and the elastic
properties of the solid, in addition to the surface properties of the different phases involved.
Shanahan (1987) then investigated the effect of the plate’s thickness on the contact angle in
the limit of small drops. Additionally, he carried out a semi-quantitative analysis to reveal
that an axisymmetric configuration may not be the most stable one.

Olives (1993, 1996) extended the work of Shanahan (1987) by incorporating the
contributions of the plate’s stretch, but ignored its pre-tension. He obtained the governing
equations by minimizing the total free energy of the system comprising of all the
surface energies, the drop’s gravitational potential and the plate’s elastic energy due to
contributions from both in-plane stretch and bending. He reported that some components
of the displacement gradient at the contact line were discontinuous, in contrast to what had
been previously assumed (Kern & Müller 1992), and that the Young–Dupré law, which
determines the equilibrium contact angle for liquid drops on rigid substrates, does not
hold for liquid drops on thin elastic plates, in contrast to what was reported in Shanahan
(1985). Schroll et al. (2013) and Davidovitch & Vella (2018) employed the ideas of Olives
(1993, 1996) to, respectively, investigate the onset of wrinkling in floating thin elastic
sheets when a liquid drop is placed upon them and to include pre-tension of the thin sheet
into the theory through a perturbative approach.

The analyses of Olives (1993, 1996), Schroll et al. (2013) and Davidovitch & Vella
(2018) all employed a Föppl–von Kármán model for a thin film with some variations. In
general, the Föppl–von Kármán model is restricted to linear elastic materials and admits
only small strains and moderate rotations up to 10◦–15◦ (Reddy, 2006, p. 98). Additionally,
Schroll et al. (2013) and Davidovitch & Vella (2018) ignored bending resistance, while
the latter further specialized their work to nearly inextensible films. At the same time,
experiments in Schulman & Dalnoki-Veress (2015) report that rotations may be as large as
40◦, while we will later show that strains may also be as much as 15 % for practically
relevant system parameters. This motivates us to pursue a model for elastocapillary
systems that incorporates the large deformation and nonlinear material response of the
thin solid.

Nadermann et al. (2013) performed experiments employing different liquid drops hung
from stretched free-standing, thin, elastomeric films, and measured solid surface tensions.
Schulman & Dalnoki-Veress (2015) experimentally estimated the global contact angles of
micro-drops placed upon thin elastomeric and glassy free-standing films. The angles were
measured as a function of the tension in the film and were reported to be in agreement
with the Neumann construction, which involves a balance of forces at the contact line
(de Gennes, Brochard-Wyart & Quéré 2004). Schulman et al. (2017) proposed a role of
liquid drops as non-destructive probes in determining the stress field in a membrane.
However, Davidovitch & Vella (2018) showed that, irrespective of the size of the drop,
the tension in the membrane, especially in the vicinity of the contact line, experiences a
significant deviation from the uniform, isotropic pre-tension in the membrane prior to the
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Equilibrium shapes of liquid drops on membranes

drop’s placement. Thus, in order for drops to be employed as elastocapillary probes
for membrane tension, it is necessary to incorporate the nonlinear response and large
deformation of a solid in the modelling framework.

Recently, Liu et al. (2020) included strain-dependent surface stresses, namely the
Shuttleworth effect (Shuttleworth 1950), to analyse the deformations induced by a sessile
drop on a nonlinear elastic membrane through a variational formulation. Although they
implemented a large-deformation theory, they ignored the role played by the pre-tension
in the membrane and the effect of gravity. They specialized their analysis to small spherical
drops, so that the drop pressure was constant everywhere, while the dry part of the
membrane remained flat. In the absence of the Shuttleworth effect, Liu et al. (2020)
showed that the meridional stretches are continuous at the triple point where the drop meets
the membrane. This condition was previously reported for the planar case by Neukirch,
Antkowiak & Marigo (2014) and Hui & Jagota (2015).

In passing we also mention investigations into two-dimensional systems. The planar
equilibrium of drops on thin structures was studied by Nair, Sharma & Shankar (2018),
who characterized the effect of volume on the global features of the drop–membrane
system, by Hui & Jagota (2015), who employed it to elaborate the difference between
solid surface energy and solid surface tension, and by Neukirch, Antkowiak & Marigo
(2013) and Neukirch et al. (2014), who computed the direction of the external force on
a beam exerted by the liquid–vapour phase in the absence and presence of extensional
deformations. Neukirch et al. (2013, 2014) and Nair et al. (2018) took the solid structures
to be made of linear elastic material but accommodated large rotations, but Hui & Jagota
(2015) employed a neo-Hookean material model.

Here, we investigate the axisymmetric system of liquid drops placed upon (sessile drops)
or hanging under (pendent drops) pre-stretched, nonlinear elastic circular membranes.
We formulate and solve the problem under the assumption of equibiaxial tension and
provide a closed-form expression for membrane pre-tension. The constitutive law that
allows for such an assumption is also discussed. We show that the solution to the governing
equations obtained from a balance of forces alone leads to non-unique equilibrium shapes
for fixed system parameters. The necessary condition for uniqueness is obtained by
minimizing the free energy of the system, and relates to the continuity of meridional
stretches across the three-phase contact circle. Subsequently, we investigate the system’s
global characteristics, such as the tension distribution in the membrane and the geometry
of the drop–membrane system in the vicinity of the three-phase contact line, and their
dependence upon on the drop’s volume and the membrane’s pre-tension. In particular, we
provide a closed-form expression for the membrane pre-tension in terms of its tensions
when the drop–membrane system equilibrates. This provides the necessary modelling
framework for the development of elastocapillary tension probes. Finally, we investigate
the effect of the membrane’s surface properties and show that they lead to measurable
changes in the equilibrium configuration. This suggests a way towards extracting solid
surface properties from elastocapillary experiments. In the process we make contact with
the recent experiments of Kumar et al. (2020) and interpret their results in the context of
our modelling approach.

The outline of this paper is as follows. In §§ 2 and 3, we formulate the mathematical
model of the system by describing the governing equations and the boundary conditions.
We demonstrate the non-uniqueness of the solutions obtained in § 4. In § 5, we reformulate
the problem as a minimization of the total free energy of the system and find the necessary
condition which ensures uniqueness of the equilibrium solution. This is followed by results
and discussion in § 6 and conclusions in § 7.
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Figure 1. Schematic of a pre-stretched, circular membrane (grey) with (a) a sessile drop (blue) and
(b) a pendent drop (blue) at equilibrium. The reference (unstretched), intermediate (pre-stretched) and current
(equilibrium) configurations of the membrane are also shown. (c) Free-body diagram of a membrane element
at equilibrium with normal n̂, mechanical tension Tm

i (i = s, φ) and membrane–air (γsv) and membrane–liquid
(γsl) surface tensions indicated. See main text for details.

2. Mathematical model

Here we obtain the governing equations from a consideration of the system’s mechanical
equilibrium. The reader interested in the variational approach and results may go directly
to § 5. Figure 1 depicts schematically the equilibrium configurations of sessile and pendent
systems. In these a sessile (pendent) liquid drop is placed upon (hanging under) a
pre-stretched, circular membrane that has been clamped along its circumference at a
circular boundary of radius r0.

We assume that the membrane is chemically homogeneous and has a smooth
surface. We model the membrane material as a homogeneous, isotropic, incompressible,
hyperelastic material (Green & Adkins 1960, p. 148). A hyperelastic material is an elastic
material for which there exists a strain energy function (Ogden 1997, p. 206) that relates the
stress and strain fields. We admit large deformations of the membrane, and so distinguish
between the membrane’s reference, intermediate and current configurations, which we
now define.

In its reference configuration, for both sessile and pendent systems in figure 1, the
membrane is flat and force free. This is indicated in figure 1 by a thick horizontal grey
line, on which we have indicated a few representative material points: P0, G0, C0 and
Q0. The membrane is then stretched uniformly and isotropically in its own plane by a
stretch ratio λ0 > 1 and clamped along the circular boundary, as shown in figure 1 by
a dashed horizontal line connecting the two supports. The material points previously at
P0, Q0, G0 and C0 now occupy positions at PI , QI , GI and CI , with GI coinciding with
G0 as the membrane’s centre does not move when stretched uniformly. At this stage, the
membrane is supposed to be in its intermediate configuration. A drop is then placed at
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Equilibrium shapes of liquid drops on membranes

or hung from the centre of the stretched flat membrane, so that the membrane deforms
under the combined action of drop’s weight and solid and fluid surface tensions, and
finally achieves equilibrium. The equilibrated shape of the membrane is denoted by a solid
line, and we label this as the membrane’s current configuration. The material points we
were following now lie at P, Q, G and C in figure 1. Note that P and Q coincide with
their locations in the intermediate configuration as the membrane was pinned. Finally,
the material point at C lies on the three-phase contact line where the drop first meets the
membrane. This material point, during the course of the membrane’s deformation, went
from its reference (unstretched membrane) location at C0 to its intermediate (pre-stretched
membrane) location CI before arriving its current (equilibrium) location at C.

The coordinate systems employed are shown in figure 1. The origin O always lies at the
drop’s apex. As is standard in large-deformation elasticity, we locate material points in the
reference and current configurations through different sets of coordinates, in our case the
radial coordinates R and r, respectively. Thus, the material point at C in figure 1 is located
at r = a, while in the reference configuration the same material point was at R = A. In
general, if a material point is at the radial location r, then in the reference configuration it
lay at a distance R. Note that for the drop only the current configuration is relevant.

2.1. Governing equations
We derive the equations governing the equilibrium of the drop and the membrane in turn,
considering sessile and pendent systems depicted in figure 1 simultaneously. We restrict
ourselves to axisymmetric systems.

In figure 1 the membrane at equilibrium spans 0 ≤ r ≤ r0, with r being the radial
coordinate. At equilibrium, the three-phase contact line forms a contact circle of radius
a. This allows us to divide the membrane into two parts: the wet and dry membranes that
lie between, respectively, 0 ≤ rwm ≤ a and a ≤ rdm ≤ r0. In the unstretched (reference)
state, the wet and dry parts of the membrane occupied, respectively, 0 ≤ Rwm ≤ A and
A ≤ Rdm ≤ R0, where the radial coordinates Rwm, Rdm and R0 locate in the reference
configuration material points currently at rwm, rdm and r0, respectively (see figure 1).

The equation governing the equilibrated shapes of drops is obtained from the
Young–Laplace equation and is given by (Bashforth & Adams 1883)

z′′
d

(1 + z′2
d )3/2

+ 1
rd

z′
d

(1 + z′2
d )1/2

= j
(

−2
b

+ ρgzd

γ

)
, (2.1)

where j = ±1 for sessile/pendent drops, zd(rd) is the profile of the drop in figure 1, prime
(′) always denotes differentiation with respect to relevant radial coordinate, in this case rd,
ρ is the density of the liquid, γ is the liquid–air surface tension, b is the radius of curvature
at the apex of the drop and g is the acceleration due to gravity. Both ρ and γ are taken to
be uniform. Every solution to (2.1) must satisfy the initial conditions

zd = 0 and z′
d = 0 at rd = 0, (2.2a,b)

which follow from our definition of the coordinate system, and axisymmetry of the drop
along with its smooth profile. While Bashforth & Adams (1883) obtained (2.1) and (2.2)
to describe axisymmetric drops on a rigid surface, the formulation is agnostic to the type
of substrate as long as it permits axisymmetric solutions. Finally, the triple point where
the three-phase contact line penetrates the rz plane lies at {a, zd(a)}.

We now consider the equilibrium of the membrane. Because the membrane deforms
axisymmetrically, the principal stresses and stretches in the current configuration are in
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the meridional (along the arc length s), circumferential (along the azimuthal angle φ) and
normal (along the unit normal n̂) directions of a deformed membrane element (see figure 1
c). Referring to figure 1(c), the balances of forces along the meridional and circumferential
directions of a membrane element in the current configuration are (Green & Adkins 1960,
p. 151)

T ′
s + Ts − Tφ

r
= 0 and κsTs + κφTφ = p̃, (2.3a,b)

respectively, where Ts(s) and Tφ(s) are the total principal tensions per unit edge length
along the s and φ directions, respectively, prime (′) now denotes differentiation with
respect to the radial coordinate r, p̃ is the normal pressure acting on a membrane element
and

κs = z′′

(1 + z′2)3/2 and κφ = 1
r

z′

(1 + z′2)1/2 (2.4a,b)

are principal curvatures along the s and φ directions (Kühnel 2015, p. 95), where z(r)
describes the membrane’s equilibrium (current) profile in the rz plane. The normal
pressure

p̃ = −j
(−2γ

b
+ ρgz

)
(2.5)

is the pressure exerted on the membrane by a fluid column in the drop and has
contributions from both the Laplace pressure and the liquid’s weight. We emphasize
that the total principal tensions Ts(s) and Tφ(s) are the sum of the mechanical tension
in the membrane and the surface tensions associated with the membrane–liquid and
membrane–air interfaces (see the derivation in Appendix A). The mechanical tension is
really the internal or Cauchy tension in the membrane that arises from the action of one
part of the membrane on the other across a dividing surface (see Love 1927, Note B).

To complete the description of the membrane’s deformation we need to relate the
tensions in the membrane to the stretch it experiences. In a hyperelastic membrane the
principal mechanical tensions may be obtained in terms of a strain energy density function
W (Green & Adkins 1960; Haughton 2001) so that, following Long, Shull & Hui (2010),
we may write

Ts = t0
λ̂φ

∂W

∂ λ̂s
+ γm and Tφ = t0

λ̂s

∂W

∂ λ̂φ
+ γm, (2.6a,b)

where t0 is the thickness of the membrane in the reference configuration, λ̂s and λ̂φ are
the total principal stretches with respect to the reference configuration in the s and φ

directions, respectively, and γm is the membrane surface tension that is assumed to be
uniform and isotropic. Equation (2.6) expresses in mathematical terms the split of the total
tension in terms of the mechanical tension and the surface tensions mentioned above. For
an isotropic, incompressible and hyperelastic material, the strain energy density function
has the following form (Ogden 1997, p. 220):

W = W(I1, I2), (2.7)

where I1 and I2 are, respectively, the first and second principal invariants of the
Cauchy–Green deformation tensor FF T , with F being the deformation gradient (Ogden
1997, p. 218) of the material. The principal invariants for the membrane may be expressed
in terms of its principal stretches by

961 A28-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

22
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.223


Equilibrium shapes of liquid drops on membranes

I1 = λ̂2
s + λ̂2

φ + (λ̂sλ̂φ)−2 and I2 = λ̂−2
s + λ̂−2

φ + (λ̂sλ̂φ)2, (2.8a,b)

where the principal stretch along unit normal n̂ is set to (λ̂sλ̂φ)−1 in order to satisfy the
incompressibility condition. The principal stretches λ̂s and λ̂φ are, in turn, given by

λ̂s = λ0λs = λ0

{(
dr

dRI

)2

+
(

dz
dRI

)2
}1/2

(2.9a)

and

λ̂φ = λ0λφ = λ0r/RI, (2.9b)

where λ0, we recall, is the uniform, in-plane, isotropic stretch relating the reference to
the intermediate configuration in figure 1, RI is the radial coordinate in the intermediate
configuration of a material point of the membrane currently at r and

λs =
√

(dr/dRI)2 + (dz/dRI)2 and λφ = r/RI (2.10a,b)

are principal stretches in the meridional and circumferential directions, respectively, that
relate the membrane’s intermediate and current configurations.

Now, when the stretches in the membrane are large, i.e. λ̂s, λ̂φ � 1, we have I1 ≈
λ̂2

s + λ̂2
φ and I2 ≈ (λ̂sλ̂φ)2 and, thus, I2 � I1. Under such circumstances, we proceed by

retaining the dependence of W on I2 alone. Then, following Long & Hui (2012), we
restrict ourselves to a class of hyperelastic membranes with W = Ŵ(I2), henceforth called
membranes made of I2 materials, or I2 membranes for brevity.

The principal tensions (2.6) become equal in membranes with I2 materials, i.e.

Ts = Tφ = 2t0λ̂sλ̂φ
dŴ
dI2

+ γm =: T; (2.11)

thus, under large stretches the membrane experiences an equibiaxial tension given by
T(s). Such a scenario may arise when the pre-stretch λ0 � 1 or drop volumes are
moderate/large. In the latter case, the effect of gravity must be considered. With the
membrane under equibiaxial tension (2.11), the force balance along the meridional
direction (2.3a) provides

T = 2t0λ̂sλ̂φ
∂Ŵ
∂I2

+ γm = constant, (2.12)

i.e. the tension T in the membrane is uniform. This also suggests that the product of the
principal stretches is the same everywhere, although the individual stretches need not be
uniform (Long & Hui 2012). We note that the choice of I2 membranes is a simplifying but
not a limiting assumption. The present framework has been utilized to investigate a wider
class of non-Hookean membranes (Nair 2022) in which Ts /= Tφ .

We now adapt the above derivation to the equilibrium of wet and dry membranes in
the presence of a drop, as in figure 1. Combining (2.5), (2.4) and (2.11), the force balance
along the normal direction (2.3b) yields the equation governing the profiles of the wet
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Figure 2. Local geometry and the forces acting at the triple point of a membrane at equilibrium with (a) a
sessile drop and (b) a pendent drop.

(zwm) and dry membranes (zdm) as, respectively,

Twm

{
z′′

wm

(1 + z′2
wm)3/2 + 1

rwm

z′
wm

(1 + z′2
wm)1/2

}
= −j

(
−2γ

b
+ ρgzwm

)
(2.13)

and

Tdm

{
z′′

dm

(1 + z′2
dm)3/2

+ 1
rdm

z′
dm

(1 + z′2
dm)1/2

}
= 0, (2.14)

where Twm and Tdm are the uniform, equibiaxial tensions in the wet and dry membranes.
To obtain (2.14), we have utilized the fact that the dry membrane is free from external
loads.

Before we specify the boundary conditions, we will establish the local geometry at the
triple point and the forces acting there, as displayed in figure 2. Balance of forces along
the r and z directions provides, in turn,

Tdm cos θdm − γ cos θd − Twm cos θwm = 0 (2.15a)

and

Tdm sin θdm + jγ sin θd − Twm sin θwm = 0, (2.15b)

where the drop angle θd, the wet membrane angle θwm and the dry membrane angle θdm
are the angles made at the triple point with the horizontal by the drop, the wet membrane
and the dry membrane, respectively. The drop angle θd is also sometimes referred to as the
apparent contact angle in the literature (Liu et al. 2020). We note that (2.15) is analogous
to Neumann’s triangle involving the balance of surface tensions in a system consisting of
three fluid phases (de Gennes et al. 2004).
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Equilibrium shapes of liquid drops on membranes

We may now write the boundary conditions for the wet membrane as

z′
wm = 0 at rwm = 0 and zwm = zd at rwm = a, (2.16a,b)

where the latter follows from the membrane’s profile zwm(rwm) in the rz plane passing
through the triple point {a, zd(a)}. The boundary conditions for the dry membrane are

zdm = zd and z′
dm = tan θdm at rdm = a. (2.17a,b)

This completes the formulation of the drop–membrane system based purely upon balance
of forces. At present, the interfacial interaction was modelled through surface tension
forces, and we will revisit this in § 5. Note also that the drop’s volume is computed after
solving for the equilibrium shapes of the drop and the membrane, and is not an a priori
constraint imposed upon the system.

2.2. Non-dimensionalization
We now non-dimensionalize the governing equations. We set

rd/r0 = r̄d, zd/r0 = z̄d, a/r0 = ā and b/r0 = b̄, (2.18a–d)

where r0 is the radius of the clamped boundary (see figure 1). With this (2.1) and (2.2)
become

z̄′′
d

(1 + z̄′2
d )3/2

+ 1
r̄d

z̄′
d

(1 + z̄′2
d )1/2

= j(−2β + ω2z̄d) (2.19)

and
z̄d = 0 and z̄′

d = 0 at r̄d = 0, (2.20a,b)

respectively, where β := 1/b is the non-dimensionalized curvature of the drop at its apex
and

ω = r0/lc, with lc =
√

γ /ρg (2.21)

being the capillary length associated with the liquid forming the drop.
We next non-dimensionalize the equations governing the wet and dry membranes. We

set
rk/r0 = r̄k, zk/r0 = z̄k and Tk/γ = T̄k, (2.22a–c)

where the subscript k = wm or dm, as appropriate, and we recall that γ is the drop’s
surface tension. Thus, for the wet membrane, (2.13) and (2.16) are non-dimensionalized to
obtain

T̄wm

{
z̄′′

wm

(1 + z̄′2
wm)3/2 + 1

r̄wm

z̄′
wm

(1 + z̄′2
wm)1/2

}
= −j(−2β + ω2z̄wm) (2.23)

and
z̄′

wm = 0 at r̄wm = 0 and z̄wm = z̄d at r̄wm = ā, (2.24a,b)

respectively. Similarly, for the dry membrane, (2.14) and (2.17) we find, in turn,

T̄dm

{
z̄′′

dm

(1 + z̄′2
dm)3/2

+ 1
r̄dm

z̄′
dm

(1 + z̄′2
dm)1/2

}
= 0 (2.25)

and
z̄dm = z̄d and z̄′

dm = tan θdm at r̄dm = ā. (2.26a,b)
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V. Nair, I. Sharma and V. Shankar

Finally, the balance of forces (2.15) at the triple point is non-dimensionalized to yield

T̄dm cos θdm − cos θd − T̄wm cos θwm = 0 (2.27a)

and
T̄dm sin θdm + j sin θd − T̄wm sin θwm = 0. (2.27b)

3. Membrane pre-tension

We provide an outline of our solution procedure in Appendix B. It is important to note
that the tensions T̄wm and T̄dm in the membrane are related to the system’s equilibrium
geometry and, so, are independent of the elastic properties of the membrane. The
membrane’s material affects the amount of pre-stretch that needs to be provided, as we
discuss next.

The solution algorithm given in Appendix B finds the system’s equilibrium for a choice
of apex drop curvature β, contact circle radius ā and current wet membrane tension T̄wm.
At the same time, in typical experiments the membrane is stretched and affixed to a
boundary prior to the drop’s placement. This membrane pre-tension is measurable in
experiments and it is expected that the pre-tension should be kept the same in order to
compare results across different experiments. We will thus relate the pre-tension to the
system’s equilibrium configuration, which is again quantifiable in experiments.

To compute the pre-tension we need to select a particular form for the strain energy
density function. We employ the Mooney–Rivlin strain energy function (Holzapfel 2000,
p. 238):

W = μ

2
C1(I1 − 3) + μ

2
(1 − C1)(I2 − 3), (3.1)

where μ is the shear modulus and 0 ≤ C1 ≤ 1 is a material constant. For reasons listed
previously, we focus here upon membranes made of I2 materials for which W = Ŵ(I2),
where I2 ≈ (λ̂sλ̂φ)2. To this end, we set C1 = 0, so that

W = Ŵ(I2) = μ

2
(I2 − 3), (3.2)

which is the strain energy function that we will utilize.
We now combine the membrane stretches (2.9) with the membrane tension (2.12) and

non-dimensionalize to find the non-dimensional tensions in the wet and dry membranes as

T̄wm = α0λ
2
0

r̄wm

R̄I
wm

√
1 + z̄′2

wm
dr̄wm

dR̄I
wm

+ γ̄sl + γ̄sv (3.3)

and

T̄dm = α0λ
2
0

r̄dm

R̄I
dm

√
1 + z̄′2

dm
dr̄dm

dR̄I
dm

+ 2γ̄sv, (3.4)

respectively, where

R̄I
k = RI

k/r0 (k = dm, wm), α0 = μt0/γ, γ̄sl = γsl/γ and γ̄sv = γsv/γ,

(3.5a–d)

with γsl and γsv being the surface tensions associated with the membrane–drop and
membrane–air interfaces. We recall that the superscript ‘I’ indicates the intermediate
configuration in figure 1. When deriving T̄wm and T̄dm above, we set the membrane
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Equilibrium shapes of liquid drops on membranes

surface tension γm in (2.12) equal to γsl + γsv for the wet membrane and 2γsv for the
dry membrane.

We rewrite (3.3) and integrate both sides:

∫ ĀI

0
R̄I

wm dR̄I
wm = α0λ

2
0

T̄m
wm

∫ ā

0
r̄wm

√
1 + z̄′2

wm dr̄wm (3.6)

to obtain

(ĀI)2 =
(

2αrλ
2
0

T̄m
wm

)∫ ā

0
r̄wm

√
1 + z̄′2

wm dr̄wm, (3.7)

where ĀI = AI/r0 is the location of the triple point ā in the intermediate configuration,
and

T̄m
wm = T̄wm − γ̄sl − γ̄sv (3.8)

is the mechanical wet membrane tension. Similarly, we rewrite (3.4) and integrate both
sides: ∫ 1

ĀI
R̄I

dm dR̄I
dm = α0λ

2
0

T̄m
dm

∫ 1

ā
r̄dm

√
1 + z̄′2

dm dr̄dm (3.9)

to find

(ĀI)2 = 1 −
(

2α0λ
2
0

T̄m
dm

)∫ 1

ā
r̄dm

√
1 + z̄′2

dm dr̄dm, (3.10)

where, now,

T̄m
dm = T̄dm − 2γ̄sv (3.11)

is the mechanical dry membrane tension. Because the tensions T̄wm and T̄dm are
independent of the membrane’s elastic properties, so too are the mechanical tensions.
Finally, equating (3.7) and (3.10) we compute the pre-stretch in the membrane to be

λ2
0 = α−1

0

(
2Ω̄wm

T̄m
wm

+ 2Ω̄dm

T̄m
dm

)−1

, (3.12)

where the non-dimensional surface areas of the wet and dry membranes are, respectively,

Ω̄wm =
∫ ā

0
r̄wm

√
1 + z̄′2

wm dr̄wm and Ω̄dm =
∫ 1

ā
r̄dm

√
1 + z̄′2

dm dr̄dm; (3.13a,b)

note that the pre-stretch depends upon the parameter α0 = μt0/γ , which is the scaled shear
modulus of the membrane.

Now, from the definition (2.6) of a hyperelastic material and the constitutive relation
(3.2), the non-dimensional, uniform, isotropic membrane pre-tension T0 corresponding to
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0.5

0z/
r 0

r/r0

–0.5
–1.0 –0.5

θd = 60° 90° 120°

0 0.5 1.0

Figure 3. Equilibrium configurations corresponding to three choices of the drop angle θd when a sessile
drop having non-dimensional volume V̄ = 2 is placed upon a pre-stretched nonlinear elastic membrane with
non-dimensional pre-tension T̄0 = 2. The membrane surface tensions γ̄sv = γ̄sl = 0.5.

a uniform, isotropic pre-stretch λ0 � 1 is given by

T̄0 = α0λ
2
0 + 2γ̄sv. (3.14)

Combining (3.12) with (3.14), we obtain the non-dimensional membrane pre-tension as

T̄0 =
(

2Ω̄wm

T̄m
wm

+ 2Ω̄dm

T̄m
dm

)−1

+ 2γ̄sv. (3.15)

We note that the non-dimensional pre-tension T̄0 is also independent of the membrane’s
shear modulus μ and thickness t0. As (3.14) shows, the effect of the membrane’s properties
is expressed through the pre-stretch λ0.

We end this section with the following remark, which is revisited at the end of § 5.
The solution algorithm given in Appendix B indicates that we need to specify three
parameters, namely the drop curvature β at its apex, the radius ā of the contact circle
and the wet membrane tension T̄wm at equilibrium, in order to obtain a unique equilibrium
configuration. From this the volume of the drop and the pre-tension in the membrane may
be computed through (B4) and (3.15), respectively. However, it is more natural and useful
to fix the drop’s volume V̄ and the wet membrane’s pre-tension T̄0 when reporting results,
and we do this below. Further, as a third parameter we employ the drop angle θd, computed
in Step I of the solution algorithm in Appendix B, as it is more accessible than the radius ā.

4. Equilibrium configurations: non-uniqueness

We now follow the methodology of the previous section to solve for the equilibrium of
a sessile drop on a pre-stretched membrane. Figure 3 shows three possible equilibrium
configurations for a given drop volume V̄ and membrane pre-tension T̄0, obtained by fixing
three values of the drop angle θd. Although we display only three equilibria, in fact, there
exist infinitely many equilibria, corresponding to every possible choice of θd.

Now, in a typical experiment the membrane’s pre-tension is first set and a drop of known
volume is placed on the membrane. The system then achieves a unique configuration at
equilibrium, which entails fixing a particular value of the drop angle θd. Thus, it appears
that we need one more condition to reduce the choice of the free parameters in our theory
to two and force balance alone provides an incomplete description.
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Equilibrium shapes of liquid drops on membranes

2 r0

(a) (b)

2 a
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2 a
Membrane

(reference)
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z

o
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o
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Figure 4. Schematic of axisymmetric drop–membrane systems: (a) sessile drop; (b) pendent drop. The
coordinate system is placed at the datum which is at a fixed distance below the level of the clamp at which
the membrane is pinned.

The extra condition that will ensure uniqueness of the equilibrium solution will now be
found by minimizing the total free energy of the system. The governing equations obtained
above will also be recovered as part of the process.

5. Energy minimization

We expect that the system’s equilibrium configuration will minimize the system’s total
potential energy while keeping the drop volume and the unstretched membrane surface
area constant for a given membrane thickness t0. This is equivalent to the minimizing the
Helmholtz free energy – free energy for short – of the mechanical system. Figure 4 shows
a schematic of the system we are considering, but now with a coordinate system whose
origin is at a fixed distance below the clamp. We revert to a dimensional framework in this
section to make the derivation transparent. Quantities without subscript refer to the drop,
while those with subscripts ‘1’ and ‘2’ pertain to the wet and dry membranes, respectively.
The drop’s profile is given by z = z(r), while the profiles of the wet and dry membranes are
defined by, respectively, z1 = z1(r1) and z2 = z2(r2). At the same time, with k = 1 or 2, we
may express the current radial (rk) and vertical (zk) locations of a material point in terms
of its radial location Rk in the reference configuration as rk = r̂k(Rk) and zk = ẑk(Rk).

The total potential energy of the system is given by

ET = 2πγ

∫ a

0
r
√

1 + z′2 dr + jπρg
∫ a

0
z2r dr − jπρg

∫ a

0
z2

1r1 dr1

+ 2π

∫ A

0

(
R1W1(λ̂s1, λ̂φ1) + (γsv + γsl)r̂1

√
r̂′2

1 + ẑ′2
1

)
dR1

+ 2π

∫ R0

A

(
R2W2(λ̂s2, λ̂φ2) + 2γsv r̂2

√
r̂′2

2 + ẑ′2
2

)
dR2, (5.1)

where we recall that j = ±1 for sessile/pendent drops, Wk (k = 1, 2) are the strain energy

density functions of the wet and dry membranes, λ̂sk =
√

r̂′2
k + ẑ′2

k and λ̂φk = r̂k/rk are,
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respectively, the total meridional and circumferential stretches, the prime (′) denotes
differentiation with respect to the independent variable, so that z′ = dz/dr, r̂′

k = dr̂k/dRk
and ẑ′

k = dẑk/dRk, and γ , γsv and γsl are the surface energies at the liquid–air,
membrane–air and membrane–liquid interfaces, respectively. In (5.1), the first integral
is the total surface energy of the drop, the second and third integrals constitute the
gravitational potential energy of the drop, while the fourth and fifth integrals include the
total strain and surface energies of the wet and dry parts of the membrane, respectively.
Note that the membrane’s strain energy is defined per unit area of the reference
configuration, but the surface energy of the membrane is per unit area of the current
configuration. Finally, in (5.1) we have taken the surface energies numerically equal to
the surface tensions, and hence employed the same notation. This is a simplifying and
commonly employed assumption (Andreotti & Snoeijer 2020). Strain-dependent surface
energies may easily be incorporated into our overall process in the manner of, for example,
Liu et al. (2020).

We wish to minimize ET while keeping the drop’s volume constant at, say, V0. This is
done most expeditiously by considering the augmented functional

HT = ET + 2πp
(

j
∫ a

0
zr dr − j

∫ A

0
z1r1 dr1 − V0

)
, (5.2)

where p is a Lagrange multiplier, which will turn out to be the thermodynamic pressure.
The unstretched membrane’s surface area is kept constant by fixing R0 in (5.1). Note that
HT is the total free energy of the system.

Combining (5.1) and (5.2), rearranging terms and setting dr1 = r̂′
1 dR1, we obtain

HT [z, r̂1, ẑ1, r̂2, ẑ2, p] =
∫ a

0
(F + pG) dr +

∫ A

0
(F1 + pG1) dR1

+
∫ R0

A
F2 dR2 − pV0, (5.3)

where

F(r, z, z′) = 2π
(
γ r
√

1 + z′2 + j
ρg
2

z2r
)

, (5.4a)

G(r, z) = 2πjzr, (5.4b)

F1(r1, r̂1, ẑ1, r̂′
1, ẑ′

1) = 2π

{
R1W1 + (γsv + γsl)r̂1

√
r̂′2

1 + ẑ′2
1 − j

ρg
2

ẑ2
1 r̂1 r̂′

1

}
, (5.4c)

G1(r̂1, ẑ1, r̂′
1) = −2πjẑ1 r̂1 r̂′

1 (5.4d)

and

F2(r2, r̂2, r̂′
2, ẑ′

2) = 2π

(
R2W2 + 2γsv r̂2

√
r̂′2

2 + ẑ′2
2

)
. (5.4e)

A necessary condition for the free energy functional HT to have a minimizer is that the first
variation of HT must vanish due to all admissible perturbations in the fields z(r), r̂k(Rk)
and ẑk(Rk), with k = 1, 2. The end-points r = r1 = R1 = 0, r2 = r0 and R2 = R0 of the
system’s domain remain fixed. This follows from the system’s symmetry, the clamping of
the membrane at its edges and because the length of the unstretched membrane is fixed.
However, we permit perturbations in the location of the triple point, as well as in the values
there of the fields z(r), r̂k(Rk) and ẑk(Rk). This acknowledges the fact that the three-phase
contact line is determined internally by the system and cannot be externally specified.
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Equilibrium shapes of liquid drops on membranes

We first recall (Gelfand & Fomin 2000, Ch. 3) that a field may be perturbed
independently in the interior and at the ends of its domain. Computing the first variation
in the five fields z(r), r̂k(Rk) and ẑk(Rk) due to perturbations in the interior of the domain
leads to a set of five Euler–Lagrange equations. From these equations we exactly recover
the governing equations for the drop (2.1) and for the wet and dry membranes (2.13)
and (2.14), respectively. The surface energies γ , γsl and γsv now appear in the form of
surface tensions, consistent with the free-body diagram in figure 1(c). The constraint
on the volume carries over as is and may be identified with (B4). The details of these
calculations may be found in Nair (2022). Variational analysis thus independently confirms
the validity of the governing equations (2.13) and (2.14). Moreover, we note that the energy
minimization clearly shows the validity of (2.6) with the mechanical equilibrium of the
membrane being determined by the total tension T and not just the mechanical part Tm.
This is consistent with previous work (Shanahan 1985; Neukirch et al. 2014; Liu et al.
2020).

Turning to the first variation in HT obtained from perturbations in the fields at the ends
of their domains leads to(

∂F
∂z′ + p

∂G
∂z′

)
δz
∣∣∣∣
r=a

r=0
+
(

∂F1

∂ r̂′
1

+ p
∂G1

∂ r̂′
1

)
δr̂1

∣∣∣∣
R1=A

R1=0
+
(

∂F1

∂ ẑ′
1

+ p
∂G1

∂ ẑ′
1

)
δẑ1

∣∣∣∣
R1=A

R1=0
. . .

+ ∂F2

∂ r̂′
2
δr̂2

∣∣∣∣
R2=R0

R2=A
+ ∂F2

∂ ẑ′
2
δẑ2

∣∣∣∣
R2=R0

R2=A
+
{
(F + pG) −

(
∂F
∂z′ + p

∂G
∂z′

)
z′
}

δr
∣∣∣∣
r=a

r=0
. . .

+
{
(F1 + pG1) −

(
∂F1

∂ r̂′
1

+ p
∂G1

∂ r̂′
1

)
r̂′

1 −
(

∂F1

∂ ẑ′
1

+ p
∂G1

∂ ẑ′
1

)
ẑ′

1

}
δR1

∣∣∣∣
R1=A

R1=0
. . .

+
(

F2 − ∂F2

∂ r̂′
2

r̂′
2 − ∂F2

∂ ẑ′
2

ẑ′
2

)
δR2

∣∣∣∣
R2=R0

R2=A
= 0, (5.5)

where the vertical bar ‘|’ signifies evaluation at the boundaries as indicated, e.g.

∂F
∂z′ δz

∣∣∣∣
r=a

r=0
= ∂F

∂z′ (a, z(a), z′(a))δz(r(a)) − ∂F
∂z′ (0, z(0), z′(0))δz(r(0)). (5.6)

Now, the perturbations at the boundaries in (5.5) are not arbitrary. Indeed, as
discussed above, because of symmetry, δr|r=0 = δr̂1|R1=0 = δR1|R1=0 = 0. Further, as the
membrane is pinned at R2 = R0, we must have δr̂2|r2=r0 = δẑ2|R2=R0 = δR2|R2=R0 = 0.
Here, we remind ourselves that zk(rk) = ẑk(Rk) with rk = r̂k(Rk) for k = 1 and 2.

The three-phase contact line is the circle defined by r = a, the materials points of
which lie on the circle R1 = A = R2 in the reference configurations of the wet and dry
membranes. At the triple point defined in the rz plane by this contact circle, the profiles
of the drop and the wet and dry membranes intersect. Thus, all admissible perturbations
in the fields z(r), r̂k(Rk) and ẑk(Rk), with k = 1, 2, must satisfy r = a, R1 = R2 = A,
r̂1(R1 = A) = r̂2(R2 = A) = a and z(r = a) = ẑ1(R1 = A) = ẑ2(R2 = A), so that

δr = δa, δR1 = δR2 = δA, δr̂1(A) = δr̂2(A) = δa and δz(a) = δẑ1(A) = δẑ2(A). (5.7)

Note that δa denotes δr at r = a, i.e. the perturbation in the radial location of the triple
point in the current configuration, while δA is the perturbation in the reference location
of the contact circle. The two perturbations δa and δA are independent, because they are
linked by the membrane’s deformation field, which is itself perturbed. Thus, in (5.5) the
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perturbations δz(0), δẑ1(0), δz(a), δa and δA are independent, so that the vanishing of the
left-hand side of (5.5) for all admissible perturbations leads to the following boundary
conditions:

−
(

∂F
∂z′ + p

∂G
∂z′

)∣∣∣∣
0

= 0, (5.8a)

−
(

∂F1

∂ ẑ′
1

+ p
∂G1

∂ ẑ′
1

)∣∣∣∣
0

= 0, (5.8b)

{
(F + pG) −

(
∂F
∂z′ + p

∂G
∂z′

)
z′ +

(
∂F1

∂ r̂′
1

+ p
∂G1

∂ r̂′
1

)
− ∂F2

∂ r̂′
2

}∣∣∣∣
a,A

= 0, (5.8c)

{(
∂F
∂z′ + p

∂G
∂z′

)
+
(

∂F1

∂ ẑ′
1

+ p
∂G1

∂ ẑ′
1

)
− ∂F2

∂ ẑ′
2

}∣∣∣∣
a,A

= 0 (5.8d)

and {
(F1 + pG1) −

(
∂F1

∂ r̂′
1

+ p
∂G1

∂ r̂′
1

)
r̂′

1 . . .

−
(

∂F1

∂ ẑ′
1

+ p
∂G1

∂ ẑ′
1

)
ẑ′

1 −
(

F2 − ∂F2

∂ r̂′
2

r̂′
2 − ∂F2

∂ ẑ′
2

ẑ′
2

)}∣∣∣∣
a

= 0. (5.8e)

From (5.8a) and (5.8b) we may recover the boundary conditions for the drop (2.2b) and the
wet membrane (2.15a). Similarly, from (5.8c) and (5.8d), we obtain the horizontal (2.14a)
and vertical (2.14b) force balances at the triple point, with T̄wm = T̄s1 and T̄dm = T̄s2. We
note from the sketch in figure 4 that z′ = −j tan θd, z′

1 = tan θwm and z′
2 = tan θdm.

Finally, from (5.8e) we obtain(
W1

λ̂φ1
− Tm

s1λ̂s1

)∣∣∣∣∣
a

=
(

W2

λ̂φ2
− T̄m

s2λ̂s2

)∣∣∣∣∣
a

. (5.9)

We recall from (3.2) and (2.11) that the strain energies for an I2 membrane of the wet and
dry parts, and the mechanical tensions in them are, respectively,

Wk = μtr{(λ̂skλ̂φk)
2 − 3} and Tm

sk = λ̂−1
φk (dWk/dλ̂sk), k = 1, 2, (5.10a,b)

where we have employed the definitions for I2 and the mechanical tension. From
the definitions of the circumferential stretches λ̂φk and the continuity of r̂k and rk at
R1 = R2 = A, we have

λ̂φ1 = λ̂φ2 at R1 = R2 = A. (5.11)

Combining the preceding two equations with (5.9) reduces it to

λ̂s1 = λ̂s2 at R1 = R2 = A; (5.12)

thus, the meridional stretches in the wet and dry membranes must be continuous at the
triple point r = r1 = r2 = a. This is the additional condition that was missing in the
formulation of § 2.1, which led to a multiplicity of equilibrium solutions in § 4.

An immediate consequence of (5.12) is that the mechanical wet and dry membrane
tensions at the triple point are equal, i.e.

T̄m
wm = T̄m

dm = T̄m, (5.13)

and, because the wet and dry membrane tensions are uniform in their respective domains,
therefore T̄m is, in fact, the uniform mechanical tension throughout the membrane.
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Schulman & Dalnoki-Veress (2015), when modelling their experiments involving
micro-droplets on thin, free-standing films, had assumed both a uniform mechanical
tension as well as its continuity at the triple point. Here we provide theoretical support
to those claims for membranes made of I2 materials with large stretches.

The revised solution procedure is provided in Appendix C. Returning to the remark at
the end of § 3, we now see that the system’s equilibrium landscape may be generated by
varying only two parameters, which are taken to be the apex drop curvature β and contact
circle radius ā in the above algorithm. However, we prefer to report our results below in
terms of the drop volume V̄ and the membrane pre-tension T̄0, which are a more natural
and practically useful set of control parameters. This may be accomplished by inverting
the solutions found utilizing the procedure in Appendix C appropriately.

6. Results and discussion

Before we proceed to present and discuss the results, we reiterate here that the drop
equations are solved independently of the membrane underneath. Furthermore, the
quantities characterizing the membrane’s equilibrium, such as z̄k, T̄k and θk, k = wm or
dm, are obtained without the specification of the parameter α0 = μt0/γ – the scaled shear
modulus of the membrane. Thus, results that are discussed subsequently depend only upon
the scaled interfacial properties of the system, namely γ̄sv and γ̄sl. This does not include
the membrane’s pre-stretch, which was shown to depend upon α0 in (3.12).

The values for various system parameters necessary to obtain the results are as follows.
We set the parameter ω = r0/lc = √

ḡ where ḡ = g(l20ρ/γ ) and we set ḡ = 10. This is
consistent with typical experimental values for the system span r0 = 0.01 m, drop density
ρ = 1000 kg m−3 and drop surface tension γ = 0.1 N m−1. The scaled membrane–air
surface tension γ̄sv = 0.5. Because we take surface energies to be constant, consideration
of the equilibrium of the contact line of the drop on a rigid substrate, made up of material
that has the same interfacial properties as that of the membrane material, will lead to the
relation

γ̄sl = γ̄sv − cos θdY , (6.1)

where γ̄sl is the scaled membrane–drop surface tension and θdY is the Young–Dupré
equilibrium contact angle (de Gennes et al. 2004). We select θdY = 75◦, which is close
to θdY = 71 ± 1◦ made by glycerol on polycarbonate glass (Schulman et al. 2018).

6.1. Equilibrium shapes
Figure 5 shows the equilibrium configurations of both sessile and pendent drops for several
drop volumes. Expectedly, the membrane deforms more with increase in drop volume for
sessile drops in figure 5(a). For pendent drops in figure 5(b), however, the membrane
deforms by bulging upwards, with the bulge reducing as the drop volume is raised. The
upward bulge in pendent drops has been observed in experiments (Nadermann et al. 2013;
Schulman & Dalnoki-Veress 2015) and has also been predicted in planar systems (Hui &
Jagota 2015; Nair et al. 2018). We also note that the dry membrane does not remain flat,
and we will return to this point later when we discuss the dry membrane angle in § 6.2.

Pendent drops on rigid substrates are known to exhibit richer behaviour (Thomson 1886)
with multiple equilibrium shapes existing for a given volume, all of which are not stable
(Wente 1980; Sumesh & Govindarajan 2010; Pozrikidis 2012). Here, for brevity, we do not
investigate the possibility of multiple equilibrium shapes in systems with pendent drops.
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0.5(a) (b)
V̄1 V̄2 V̄3 V̄4

V̄∗
1 V̄∗

2 V̄∗
3 V̄∗

4

0z/
r 0

r/r0
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0.5
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–0.5
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Figure 5. Equilibrium configurations of a pre-stretched nonlinear elastic membrane with (a) a sessile drop
and (b) a pendent drop for several drop volumes: for sessile drops, V̄1 < V̄2 < V̄3 < V̄4, and for pendent drops,
V̄∗

1 < V̄∗
2 < V̄∗

3 < V̄∗
4 , with V̄1 = 0.0104, V̄2 = 0.0349, V̄3 = 0.0676 and V̄4 = 0.1063, while V̄∗

1 = 0.0018,
V̄∗

2 = 0.0231, V̄∗
3 = 0.0548 and V̄∗

4 = 0.0911. The membrane’s pre-tension T̄0 = 1.5.

6.2. Discussion
We now investigate the effect of drop volume V̄ , for a fixed membrane pre-tension T̄0, on
the following physical quantities: the drop angle θd, the wet (θwm) and dry (θdm) membrane
angles and the wet (T̄wm) and dry (T̄dm) membrane tensions. We also consider the variation
of these quantities with pre-tension T̄0 for a fixed volume V . We recall from the discussion
following (3.15) that the pre-tension T̄0 is independent of α0 = μt0/γ and, thus, the results
here hold for any membrane material and thickness, as long as the scaled solid surface
tensions γ̄sv and γ̄sl and the parameter ω = r0/lc related to the drop are identical. At the
same time, from (3.14) it is clear that membranes with different α0 must have different
unstretched lengths for a fixed system size r0, in order to have identical pre-tensions.

Figure 6 shows the variation of the angles θd, θwm and θdm with drop volume V̄ . First,
we note that a negative (positive) wet membrane angle θwm corresponds to a bulge (sag) in
the membrane. As expected, a rise in the drop volume augments the dry membrane angle
θdm monotonically for both sessile drops in figure 6(a) and pendent drops in figure 6(b).
However, both the drop angle θd and the wet membrane angle θwm display contrasting
behaviours for sessile and pendent drops. For the former, we observe that the increase
in weight of the drop at higher V̄ elevates the pressure transferred to the membrane,
thereby enlarging θwm, and correspondingly diminishing θd. For pendent drops, in contrast,
a rise in the volume increases the weight of the hanging drop and, so, reduces the
membrane’s upward bulge, thereby lowering the wet membrane angle. The larger volume
is accommodated by expanding the drop angle.

We make two additional remarks. First, in the absence of gravity, it is usually assumed
that the dry membrane angle θdm is zero (Davidovitch & Vella 2018; Liu et al. 2020).
In the present system, however, because we consider gravity, we do not make this
assumption and instead calculate θdm. We find that θdm in figure 6 deviates significantly
from 0 ◦, but becomes smaller when the drop’s volume, and hence its weight, shrinks.
Thus, except maybe for tiny droplets deforming thin free-standing structures (Schulman &
Dalnoki-Veress 2015), assuming that the dry part of the membrane remains flat may not
be reasonable. Second, we observe in figure 6 that the wet and dry membrane angles are
large in magnitude, thereby necessitating a large-deformation theory when modelling the
membrane, as done here.

Figure 7 shows the variation with volume V̄ of the wet (T̄wm) and dry (T̄dm) membrane
tensions. For sessile drops in figure 7(a), we observe that both T̄wm and T̄dm rise moderately
with V , while remaining almost constant for pendent drops in figure 7(b). We note,
however, that for both sessile and pendent drops, T̄wm is within 15 %–20 % of the
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Figure 6. Variation of drop angle θd and wet (θwm) and dry (θdm) membrane angles with drop volume V̄ for
(a) a sessile drop and (b) a pendent drop on a pre-stretched nonlinear elastic membrane. The membrane
pre-tension T̄0 = 1.5.
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Figure 7. Variation with drop volume V̄ of wet (T̄wm) and dry (T̄dm) membrane tensions for (a) a sessile drop
and (b) a pendent drop on a pre-stretched nonlinear elastic membrane. The membrane pre-tension T̄0 = 1.5.

membrane pre-tension T̄0, as may be estimated from the numbers next to the horizontal
dashed lines. On the other hand, T̄dm remains always within 1 %–5 % of T̄0. This suggests
that, in a practical setting, we may utilize either T̄0 or T̄dm to estimate the other tension to
a very good approximation, at least over the range of parameters investigated in figure 7.
Even otherwise, the present development relates the membrane pre-tension in a precise
way to the current tension field. In this way we overcome a shortcoming pointed out in
present models by Davidovitch & Vella (2018, § 5.2): these models are unable to capture
the strongly nonlinear response exhibited by the solid in some experiments, preventing
them from being employed as elastocapillary probes for pre-tension.
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Figure 8. The distribution of total meridional (λ̂s) and circumferential (λ̂φ) stretches in the wet and dry
regions of the membrane for a sessile drop volume V̄0 = 0.0025 and membrane pre-tension T̄0 = 1.5.

From the definitions of the mechanical tensions and (5.13) we find that T̄dm − T̄wm =
γsv − γsl = cos θdY , where θdY is the Young–Dupré equilibrium contact angle. Because
we have set θdY = 75◦, T̄wm > T̄dm in figure 7. In contrast, for θdY ≥ 90◦, we would have
had T̄wm ≥ T̄dm with T̄dm being still within 1 %–5 % of T̄0.

Figure 8 reports the distribution of total meridional and circumferential stretches in
the membrane for a sessile drop. For practical values of drop volume and membrane
pre-tension, we observe that the stretches are appreciable, and they may be as large as
15 % near the triple point. This further supports the need to develop a large-deformation
theory to model elastocapillary systems involving thin solids.

In figure 9, we report the effect of the membrane pre-tension T̄0 upon the membrane
tensions and the drop and membrane angles for a fixed drop volume V̄ . We restrict to
a sessile drop. We observe in figure 9(a) that the wet membrane tension T̄wm is closer
to T̄0 at higher pre-tension. In addition, we find from figure 9(b) that as T̄0 is increased,
the drop angle θd tends to the Young–Dupré equilibrium angle θdY for a substrate whose
surface properties are identical to those of the membrane material; recall that in our case
θdY = 75◦. Moreover, both the membrane angles, θwm and θdm, approach 0◦ with increase
in T̄0. In this way, we recover the rigid substrate solution at high pre-tension.

The inset in figure 9(b) shows the variation of the angles θd, θwm and θdm with the wet
membrane tension T̄wm. We note that at lower T̄wm, we have θwm > θd. This is in contrast
with the experiments of Schulman & Dalnoki-Veress (2015), who studied micro-droplets
on deformable free-standing films, where θd > θwm was claimed for all wet membrane
tensions. A possible explanation of this could be that experiments had micro-drops with
dimensional volumes of about 0.015 μl, for which gravity effects could be ignored and the
dry membrane was reported to be flat within 1.5◦. Indeed, in the inset of figure 9(b), we
set the drop’s volume V̄0 = 0.05 (about 50 μl) and gravity effects are sufficient to cause
the dry membrane to deviate up to 10 ◦ at low tensions, where changes in θd and θwm are
rapid. At the same time, we observe a very good match when we compare in figure 9(c) our
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Figure 9. Variation with membrane pre-tension T̄0 of (a) wet (T̄wm) and dry (T̄dm) membrane tensions, and
(b) drop angle θd , and wet (θwm) and dry (θdm) membrane angles for a sessile drop placed upon a pre-stretched
nonlinear elastic membrane. Inset in (b) plots θd, θwm and θdm against T̄wm. The drop volume V̄ = 0.05.
(c) Comparison of our predictions (solid curves) with experiments of Schulman & Dalnoki-Veress (2015).

predictions directly with experiments of Schulman & Dalnoki-Veress (2015) with glycerol
micro-droplets on free-standing elastomeric films made of styrene–isoprene–styrene.

We now make some remarks about the recent experiments of Kumar et al. (2020), who
claim that the tension in an elastic film in contact with a liquid is determined only by the
liquid’s surface tension and is unaffected by solid surface energies. Their experimental
system consisted of a thin elastic film that was first floated on a liquid bath and then
partially lifted up vertically from one end. This then formed a three-phase contact point
where the vertical part of the film met with the free surface of the liquid and the part of
the film still resting upon the liquid. Because the shapes of the liquid’s free surface and
that of the film in contact with the liquid were identical, this showed that that tension in
the film equals the the liquid–vapour interfacial tension, irrespective of the solid’s surface
properties.

The above result of Kumar et al. (2020) may lead to the impression that elastocapillary
systems, like the one we investigate, cannot be utilized to measure solid surface properties.
The present investigation, however, permits us to make two important clarifications that
counter this impression. First, the tension in the film that Kumar et al. (2020) discuss is
really the total tension comprising the mechanical tension and the contributions of the
solid’s surface interactions; recall figure 1(c), relation (2.6) and associated discussion.
Thus, even if the total tension remains constant, the mechanical tension will change if the
solid’s surface properties are varied, and this will be reflected in the film’s stretches. Next,
the total tension remains the same in the experiments of Kumar et al. (2020) because of
the simple geometry involved, and this will not be true for more complex systems as we
show below.

To study the effect of solid surface tension, we set γsv = 0 and report in figure 10 the
changes in the contact angles, the membrane tensions and the contact radius as we vary
γsl/γ . We observe from figure 10(a) that the variation in drop and membrane angles is
significant. In particular, the drop angle θd changes by as much as 40◦ when γsl/γ is raised
from 0 to 0.75. The corresponding deviations in the wet (θwm) and dry (θdm) membrane
angles at low values of pre-tension are, respectively, 10◦–15◦ and 2◦–3◦. Similarly, in
figure 10(b), we find that the departures in the wet (T̄wm) tension may be nearly 40 %;
the curve for γsl/γ = 0 lies on top of the curve for dry membrane tension (T̄dm).
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Figure 10. Variation with membrane pre-tension T̄0 of (a) drop angle θd and wet (θwm) and dry (θdm)

membrane angles, (b) the wet (T̄wm) and dry (T̄dm) membrane tensions and (c) contact radius ā. Several values
of γsl/γ are considered: 0 (solid), 0.25 (dashed), 0.5 (dashed-dot) and 0.75 (dotted). The drop volume V̄ = 0.05
and surface tension γsv = 0.

The dry membrane tension remained identical as γsv = 0 was fixed, and we note here that
the important parameter to track is the difference in the solid surface tensions γsl − γsv .
Finally, figure 10(c) shows that the contact circle is also modified appreciably. These
results demonstrate that the solid’s surface properties introduce measurable adjustments
in elastocapillary systems, such as the one in figure 1.

We end this section with a potential application of the theory to measure solid surface
energies. We perform two experiments, one each at high and low pre-tension T0. This may
be accomplished in the same experimental setup by taking two different sized unstretched
membranes, one small and one large. At high T0, as figure 9(b) shows, we obtain θdY by
measuring the drop angle θd. This then allows us to relate the surface energies through
(6.1), assuming them to be constant. Another relation between the surface energies γsv
and γsl may be obtained from the experiment at low T0 by combining (3.14), (3.15), the
definitions of the mechanical tensions T̄m

wm and T̄m
dm, (3.3) and (3.4). The surface energies

γsv and γsl may now be calculated.

7. Conclusions

In this work, we have reported the axisymmetric equilibrium shapes of a system
consisting of a nonlinear pre-stretched elastic membrane with sessile or pendent drops. For
simplicity we considered I2 membranes, i.e. membranes made of hyperelastic materials
whose response is dominated by the second stress invariant I2. In such membranes, the
mechanical tension was shown to be equibiaxial. This facilitated the direct computation
of the system’s equilibrium state without requiring recourse to the membrane’s reference
configuration. Subsequently, we obtained a closed-form solution for membrane pre-tension
corresponding to the given equilibrium configuration.

We then showed that balance of forces alone yielded non-unique equilibrium solutions
for a given drop liquid and volume, membrane type and pre-tension, contrary to
expectations and available observations. To find the missing conditions, if any, that would
make the equilibrium solution unique, we then postulated that the system’s equilibrium
coincided with the minimum of its potential energy. Because the membrane’s undeformed
extent and the drop’s volume are kept constant while minimizing the potential energy,

961 A28-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

22
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.223


Equilibrium shapes of liquid drops on membranes

this process was equivalent to minimizing the system’s Helmholtz free energy. Through
this we uncovered an additional necessary condition characterizing the equilibrium: the
continuity of meridional stretches across the three-phase contact line. The equilibrium
was then found to be unique.

We subsequently investigated the effects of the drop volume and the membrane
pre-tension on the tensions in the membrane’s wet and dry parts, and the angles made
with the horizontal at the triple point by the drop and the wet and dry membranes at
equilibrium. We demonstrated that the pre-tension in the membrane could be employed
to estimate the dry and wet membrane tensions to a good approximation, which provides
an alternative way for the mechanical characterization of thin sheets. Furthermore, our
results are independent of the membrane’s shear modulus and thickness, and depend only
upon the parameter ω = r0/lc, where lc is capillary length of the drop’s liquid and r0 is
the system’s span, and the energies at the liquid–air, membrane–air and membrane–liquid
interfaces.

Finally, we made contact with the recent works of Davidovitch & Vella (2018) and
Kumar et al. (2020). We demonstrated how utilizing a large-deformation analysis for the
membrane enabled us to relate the pre-tension in the membrane to its current tension. This
then allows us to employ drops as elastocapillary probes to estimate membrane pre-tension.
We then established consistency of our development with the experiments of Kumar et al.
(2020) and, in the process, clarified the implications of their results. Further, utilizing the
system of figure 1 we illustrated how solid surface properties may indeed measurably
modify an elastocapillary system’s equilibrium, including the stress state in the solid.
Based on this we suggested a protocol by which we may characterize thin elastic structures
– specifically their surface energies – through their interactions with drops.
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Appendix A. Alternative derivation of the membrane’s governing equations

We outline how the governing equations in § 2 for a membrane with active surface tensions
may be obtained from the full three-dimensional elasticity equations by averaging. The
free-body diagram of an element of a membrane is shown in figure 11. In a force-based
formulation the effect of surface energies is assumed to be captured by surface tensions
applied at the edges of the membrane.

The vector sum of forces acting on a membrane element is

∫ h/2

−h/2
(σttrêt)|s+�s�φ dz −

∫ h/2

−h/2
(σttrêt)|s�φ dz +

∫ h/2

−h/2
(σφφ êφ)|φ+�φ�s dz . . .
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σφφ (φ + �φ)
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σtt (s)

σtt (s + �s)

p(s)

sG
�s

�φ

n̂

γsl

γsl

γsl
γsl

γsv

γsv

γsv
γsv

Figure 11. Free-body diagram of a membrane element with normal n̂ at equilibrium. The other quantities are
defined in the caption to figure 1 and the associated text.

−
∫ h/2

−h/2
(σφφ êφ)|φ�s dz + f r�s�φ + {(γsl + γsv)rêt}|s+�s�φ . . .

− {(γsl + γsv)rêt}|s�φ + {(γsl + γsv)êφ}|φ+�φ�s − {(γsl + γsv)êφ}|φ�s = 0, (A1)

where f = −pn̂ is the pressure acting on the membrane and the vertical bar ‘|’ signifies
evaluation at the specified point, e.g. (σttrêt)|s+�s = σtt(s + �s)r(s + �s)êt(s + �s). We
rewrite the above force balance to obtain

(σ̄ttrêt)|s+�s�φ − (σ̄ttrêt)|s�φ + (σ̄φφ êφ)|φ+�φ�s − (σ̄φφ êφ)|φ�s . . .

+ f r�s�φ + {(γsl + γsv)rêt}|s+�s�φ − {(γsl + γsv)rêt}|s�φ . . .

+ {(γsl + γsv)êφ}|φ+�φ�s − {(γsl + γsv)êφ}|φ�s = 0, (A2)

where quantities with an overbar are depth-averaged (thickness-averaged) quantities, e.g.

σ̄tt|s+�s =
∫ h/2

−h/2
σtt|s+�s dz. (A3)

Dividing (A2) by �s�φ and taking the limit �s → 0 and �φ → 0, we obtain

∂{(σ̄tt + γsl + γsv)rêt}
∂s

+ ∂{(σ̄φφ + γsl + γsv)êφ)

∂φ
+ rf = 0. (A4)

We now set
Ts = σ̄tt + γsl + γsv and Tφ = σ̄φφ + γsl + γsv, (A5a,b)

where we recognize the depth-averaged Cauchy stresses σ̄tt and σ̄φφ as the mechanical
tensions Tm

s and Tm
φ . The above matches (2.6) showing that averaging automatically

combines depth-averaged Cauchy stress (mechanical tensions) with surface tensions.
Now, we also have the relations

êt = cos θ êr + sin θ êz, n̂ = − sin θ êr + cos θ êz, (A6a)

∂ êt

∂s
= dθ

ds
n̂,

∂ êφ

∂φ
= − cos θ êt + sin θ n̂ and

∂r
∂s

= cos θ. (A6b)

Combining (A5) and (A6) with (A4) we may express the mechanical equilibrium of the
membrane’s element by(

Ts cos θ + r
∂Ts

∂s
− Tφ cos θ

)
êt +

(
rTs

dθ

ds
+ Tφ sin θ − rp

)
n̂ + ∂Tφ

∂φ
êφ = 0. (A7)
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From the above we obtain three scalar equations in the êφ, êt and n̂ directions, respectively,

∂Tφ

∂φ
= 0, (A8a)

∂Ts

∂s
= (Tφ − Ts) cos θ

r
⇐⇒ ∂Ts

∂r
= (Tφ − Ts)

r
, (A8b)

and

κsTs + κφTφ = p, (A8c)

where κs = dθ/ds and κφ = sin θ/r are the principal curvatures of the membrane in
its equilibrium configuration (DoCarmo 2016). While (A8a) expresses the axisymmetric
nature of the system, (A8b) and (A8c) recover (2.3). Combined with (A5) we see that it
is the total tension that governs the membrane’s deformation, where the total tensions are
comprised of mechanical tensions (depth-averaged Cauchy stress) and surface tensions.

Appendix B. Solution procedure

We provide below an outline of our solution procedure.
Step I. For a choice of non-dimensional apex curvature of the drop β and contact radius

ā, the governing equation (2.19) for the drop together with the end conditions (2.20) is
numerically solved to obtain the drop’s profile z̄d(r̄d) and, thereby, the drop angle θd. We
follow the algorithm of Nair et al. (2018) to compute shapes when z̄d is not a single-valued
function of r̄d, such as for sessile drops when θd > 90◦.

Step II. Next, for the drop apex curvature β and contact radius ā utilized in Step I, the
governing equation for the wet membrane (2.23) with boundary conditions (2.24) is solved
numerically for different choices of wet membrane tension T̄wm to obtain the profile of the
wet membrane z̄wm(r̄wm) and the wet membrane angle θwm.

Step III. Turning to the dry membrane, for θd and θwm found above for a choice of β, ā,
and T̄wm, we solve (2.27) to obtain the dry membrane tension T̄dm and the dry membrane
angle θdm:

T̄dm =
√

T̄2
wm + 1 + 2T̄wm cos θ (B1)

and

θdm = θwm − j arccos

(
T̄2

wm + T̄2
dm − 1

2T̄wmT̄dm

)
, (B2)

where θ = θd + jθwm is the internal angle made by the drop with the membrane at the
triple point and we recall that j = ±1 for sessile/pendent drops.

Step IV. The non-dimensional profile z̄dm(r̄dm) of the dry membrane may now be
obtained in closed form by solving (2.25) and (2.26):

z̄dm = ā sin θdm

{
arccosh

(
r̄dm

ā sin θdm

)
− arccosh

(
1

sin θdm

)}
+ z̄d(ā), (B3)

where z̄d(ā) is available from Step I.
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Step V. Finally, the non-dimensional volume of the drop is computed by utilizing the
solutions for the equilibrium shape of the drop and the wet membrane:

V̄ = 2πj
∫ ā

0
r̄dz̄d dr̄d − 2πj

∫ ā

0
r̄wmz̄wm dr̄wm. (B4)

The above procedure is repeated for different combinations of β, ā and T̄wm to generate
the entire range of solutions.

Appendix C. Solution procedure, revised

We now revise our solution procedure outlined in Appendix B to incorporate the extra
condition (5.12) at the triple point. As before, for a choice of apex drop curvature β and
contact circle’s radius ā, we solve (2.19) and (2.20) to obtain the drop’s profile z̄d(r̄d) and,
so, the drop angle θd.

Invoking (5.13), we solve (2.27) to express θwm and θdm in terms of θd:

θwm = −jθd + arccos

{
T̄2

dm − T̄2
wm − 1

2T̄wm

}
(C1a)

and

θdm = −jθd + arccos

{
T̄2

dm + 1 − T̄2
wm

2T̄dm

}
, (C1b)

where T̄wm = T̄m + γ̄sl + γ̄sv and T̄dm = T̄m + 2γ̄sv , as before. Then, for the chosen β and
ā, we solve (2.23) together with (2.24) and (C1a) to obtain the wet membrane profile
z̄wm(r̄wm) and tension T̄m. Subsequently, we find membrane angles θwm and θdm, and
membrane tensions T̄wm and T̄dm. We note that the additional condition (C1a) has helped
us determine T̄wm as part of the solution to the wet membrane’s equilibrium whereas,
previously, T̄wm was an additional parameter to be specified.

The profile of the dry membrane z̄dm, the drop volume V̄ and the membrane pre-tension
T̄0 are computed as in Appendix B and are given by, respectively, (B3), (B4) and (3.15).
This solution procedure is repeated for different combinations of β and ā to produce the
entire range of possible equilibria.
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