
(2.2)

Adv. Appl. Probe 22, 770-772 (1990)
Printed in N. Ireland

© Applied Probability Trwt 1990

EXPECTED NUMBER OF DEPARTURES IN MIM/1 AND GIIG/1
QUEUES

HYDAR ALI,* The University of the West Indies

Abstract

For an initially empty MIMI1 queue, it is shown that the transform of the
expectation of the number of departures in the interval (0, t] is invariant
under an interchange of arrival and service rates. However, in the GIIG/I
queue with an initial single customer, the corresponding transform does
not have this symmetric property.

TRANSFORM: EXPECfATION; DEPARTURE PROCESS

1. Introduction

A result of Takacs (1962). is used to derive an expression for the Laplace-Stieltjes
transform of the expected number of departures, in the interval (0, t], for the M IM II queue.
It is then shown that for an initially empty queue, this expression is invariant under an
interchange of arrival and service rates. This result is similar to that of Hubbard etal. (1986),
who have shown that the probability of j departures in (0, t] has this invariant property.
However, if the queue is not initially empty, this property does not hold.

As a partial generalization of this result, a duality theorem of Ali (1970) is invoked to show
that for the GIIG/I queue, with a single customer initially, this invariant property again does
not hold.

2. Departures from the MIMI1 queue

Consider the MIG/I queue with arrival rate A. Let N(t) be the number of departures in the
interval (0, t]. Theorem 16 of Takacs (1962) states that

(2.1) m(s)=i~e-"dN(t)= 'lj1(s) {1- SUo(Y(S»}, Re(s»O,
o 1 - 1J1(s) s + A(1 - y(s)

where z = y(s) is the root of the equation

z = 1J1(s + A(I- z)

with the smallest modulus, Uo(z) = E[z~(O)] is the probability generating function of the initial
queue size, and .1J1(s) is the Laplace-Stieltjes transform of the service time distribution.

For the MIMll queue with service rate J.l and ;(0) =i, 1J1(s) = J.lI(J.l+s) and Uo(Y(s) =
[y(s)r, so that (2.1) reduces to

J.l( s[y(s)r )
m(s) =~ 1 - s + A(I- y(s»

where y(s) is the unique solution in [zI= 1 satisfying

(2.3) AZ 2
- (A+ J.l +s)z + J.l =0.
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Case (a). i =O.
From (2.2), we have

(2.4)
A'Jl(l - y(s»

m(s)--~-~-
- s[s + A(l- y(s)]
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where y(s) is defined as above. It will be shown that (2.4) is unaltered by interchanging A and
Jl. This is equivalent to showing that

(2.5)
AJl(l - y(s» AJl(l - <5(s»

s[s + A(l- y(s)] s[s + Jl(l- <5(s»]

where <5(s) is the unique root in lzI= 1 satisfying

(2.6) Jlt2
- (A + Jl + s)t + A= O.

It is clear that the roots of (2.3) and (2.6) are reciprocals of each other. Let the second root of
(2.3) be 71(S), then

(2.7) y(s) + 71(s) = (A+ Jl + s)1A, y(s)71(s)= JlIA.

Further since 71(S) is the unique root of (2.3) outside [z] = 1, we must have

(2.8) <5(s )71(S) = 1.

From (2.7) and (2.8), we obtain the following identities:

{

<5(s) - y(s) = (A - Jl)<5(S)/A
(2.9) 1 + <5(s )y(s) = (A + Jl + s )<5(s)1A

<5(s) + y(s) = (A + Jl)<5(s)1 A

whence we can readily show that (2.5) holds, so that the invariant result is established for
i=O.

Case (b). i >0.
In this case

m(s) =~ (1- s[y(s)r ) = Jl(1- [y(s)r) + AJl(1- y(s»
s s + A(1- y(s» s + A(1 - y(s» s + [s+ A(1 - y(s»] .

Since the second term of the right-hand side is invariant, the first term cannot be and we have
thus proved the following result.

Theorem 1. For the MIM/1 queue, with i initial customers, m(s) is invariant under an
interchange of arrival and service rates only for i =o.

3. Departures from the GIIG/1 queue

For the GIIG/1 queue, let the customers Co, Ct , ••• , arrive at times To, 1;, ... , and wait
for times Wo =0, Wi, . · . , respectively before entering service. If R; is the instant of serving
of Cn , then R; = 1'" + Wn • It is shown in Ali (1970) that the distribution of Rn is symmetric
with respect to the distributions of the interarrival and service times.

Let So, St, ... , denote the service times of Co, Ct, ... respectively. If T~ is the instant of
departure of Ci, then T~ = R; + Sn. Clearly the distribution of T~ cannot have the same
symmetric property as that of Rn • Further if, as before, N(t) is the expected number of
departures in (0, t], renewal theory arguments indicate that

00

N(t) = L P(T~ ~ t).
n=O

It follows then that m(s) =f~e-s t dN(t) is also not symmetric with respect to the distribution
of the interarrival and service times. If we bear in mind that Co represents the single initial
customer, we have the following result.
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Theorem 2. For the GIIG/1 queue, with a single initial customer, m(s) is not symmetric
with respect to the distributions of the interarrival and service times.

This generalizes the equivalent result for the MIM/1 queue with i = 1.

Corollary. Result (b) of Theorem 1 with i = 1 is a special case of Theorem 2.

4. Comments

The joint distribution of the number of arrivals (number in the system) and departures in the
MIM/1 queue are discussed not only by Hubbard et al. (1986) but also in two other papers.

Greenberg and Greenberg (1966) derive the joint distribution of the number in the system
at time t and the number of departures in (0, t], assuming i(~O) customers initially. This is
then used to determine the distribution of the number of departures in (0, t]. In Boxma
(1984) the joint distribution of the number of arrivals and departures in (0, t], assuming
x( ~ 0) customers initially, is found. From it, the distribution of the number of departures in
(0, t] is then obtained.

The result of Hubbard et al. (1986), who assume an empty queue initially, is a special case
of both Greenberg and Greenberg (1966) and Boxma (1984). In particular equation (5) in the
first paper is equivalent to equation (41) in the second with i =0, and equation (17) in the
third with x =0.

A similar equivalence of the three results relating to the distribution of the number of
departures can also be established. By setting x =°in equation (27) of Boxma (1984), it can
be shown that the distribution of the number of departures in (0, t] is invariant under an
interchange of A and IJ. Boxma (1984) has not pointed out this invariance property explicitly.
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