PERMANENTS OF (0,1)-CIRCULANTS
Henryk Minc

(received July 10, 1963)

1. Introduction. The permanent of an n-square matrix
A =(a,,) is defined by
1

=B

p(A) = Z

ceS i=1
n

aicr(i)

where the summation extends over all permutations ¢ of the
symmetric group S . A matrix is said to be a {0, 1)-matrix
n

if each of its entries is either 0 or 1. A (0,1)-matrix of
n-1 .

the form Z O,P), where 6 ,=0o0r 1, j=1,...,n, and
j=0 J n J

Pn is the n- square permutation matrix with ones in the (1, 2),

(2,3), ..., (n-1,n), (n, 1) positions, is called a (0, 1)-circulant.
k-1

Denote the (0,1)-circulant Z P’ by Q(n,k). It has been
j=o "

conjectured that

(1) p(Q(n, ) > n!(r/n)” .

This is a special case of the famous unresolved van der Waerden
conjecture [5] which states that if S is a doubly stochastic
n-square matrix (i.e. a non-negative matrix whose row sums
and column sums are all 1) then p(S) > n! /nm.
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In [3] Mendelsohn gave the following asymptotic formula
for the permanent of Q(n,r):

for a fixed r
(2) p(Qn, 1)) ~ K(r) @

where K(r) is a constant depending on r only and o is the

root of x' - Zxr—1 + 4 =0 1in the interval 1 < a < 2. This

formula is of considerable interest since it implies the falsity
of (1) and thus of the van der Waerden conjecture. For,
according to (2),

p(Q(n, )~ K(r) o" < K(r) 2"

and for a fixed r > 5 and for a sufficiently large n

K(r)2" < (r/e) <z n'/n".
Thus
p(Q(n, r)) < n!(r/n)"”
which contradicts (1).

In the present note I show that (2) is false for r > 4 and
also that both the exact and the asymptotic formulas for
P(Q(n, 3)) and p(Q(n,4)) given in [3] are incorrect. I give
correct formulas for the permanents of Q(n, 3) and Q(n,4)
and I show that for every r and n, r <n, there exists a
doubly stochastic n-square matrix whose permanent is less
than that of Q(n,r)/r.

2. Results. Let f(n,r) denote the n'th Fibonacci
number of order r, i.e.

0, if n< O,
f(n,r) = 1, if n=0,
f(n-1,r)+ ... + f(n-r,r), if n> 0.
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r
-1
THEOREM 1. (i) f(n,r) = Z a? /(2-a) gl (@) where

r r-1 i=1
=x - - . - x - S e, >...
gr(x) x x x -1 and @, ar (la1!_ >
are the roots of gr(x) =0.
(i) "1)(2-a,) g' ()
ii n,r)«-'cx1 -ar1 gr cr1 .
Proof. We have, for n> 0,
f(n,r) = f(n-1,r)+ ... + f(n-r,r).
Solving this functional equation we obtain
£ )-can+cozn+ +<:c1'n
TT) = ey TR T e T
where the aj are the roots of gr(x) =0 and the c, are
constants to be determined. Now, f(n,r)=1,2,4, ..., Zr—1
for n=1,2,3,...,r. Therefore, in the matrix notation,
Ac=v

where A 1is the r-square matrix with a; in its (i, j) position
and ¢ and v are column vectors whose i'th entries are ci
and Zin1 respectively. Note that A = @p.-.a B = (-1)rB

where B = (bij) is a Vandermonde matrix with bi' = a%-i.

Therefore

r r

Ci = 1 (2-a)/ 1 (ai-at)
t=1 t=1
t#i t#i

g (2)/(2-a) g! ()

1/(2-2) g! () .
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To complete the proof we show that the equation g (x) =0 has
r

a real root in the interval (1, 2) and that the moduli of all other
roots are less than 1. We apply a classical result [1] on the
localization of characteristic roots of a matrix to the companion

1
matrix of (x—i)gr(x) = xr+ - 2:«:r + 1
0 0 o0 0o o0 1
1 0 O 0 0 O
0 1 O 0 0 O
0 0 1 0 0 ©
0O 0 O 1 0 O
0O 0 © 0o 1 2

and we find that one zero of (x-1)g (x) lies inside or on the
T

boundary of the circle |z-2| =1 and the other r zeros lie

inside or on the boundary of [z| =1. Since the only point

common to both circles is not a zero of g (x) we can conclude
r

from a result due to Taussky [4] that one zero of g (x) lies
r

inside |z- 2! =1 and the other r-41 =zeros inside Izl =1.

We now construct an n-square (0, 1)-matrix whose
permanent and principal subpermanents are Fibonacci numbers
of prescribed order. Let F(n,r), r<n+ 41, denote the n-square
(0,1)-matrix with 1 in the (i,j) positionfor i-1<j<i+r -2
and 0 otherwise, o

F(n,r) = 1 1 1 0 0 0 0
1 14 1...14 1 0 0 0
014 41...14 1 1 0 0
0 0 1...4 41 1 1 0
0 ...... 0 1 1 1 1 0
0 .ovnn. 0 0 1 1 1 1
0 .u.... 0 0 0 1 1 1
0 .ovnn. 0 ...... 0 1 1
0 ... 0 v 0 1 1
256
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THEOREM 2.
p(F(n,r)) = f(n,r-1).

Proof. It is easy to see that expanding p(F(n,r)) by the
elements of the first row we obtain in case n > 2(r-1)

p(F(n,r)) = p(F(n-1,r))+ ... + p(F(n-r+1, r))
and in the case r - 1 <n < 2(r-1)

p(F(n,r)) =p(F(n-1,r))+ ... + p(F(r-1,1)) + p(F(xr-2,r-1)) +
.. + p{(F(r-(2r-n-1), r-(2r-n-2}))).

-2
It remains to show that p(F(s-1, s)} ={(s-1,s-1) = 2° . We use
induction on s:

p(F(s-1,s)) = p(F(s-2,s-1))+ ... + p(F(2,3)) + p(F(1,2)) + 1
= 25_3 +...+2+ 1+ 1, by the induction hypothesis,
s-2
= 2 .

COROLLARY. p(Q(n,r))> f(n,r-1)
THEOREM 3.

f(n-1,2) + 2{(n-2,2)+ 2,

(i) p(Q(n, 3))

(ii) p(Q(n, 3)) = p(Q(n-1,3)) + p(R(n-2,3)) - 2,

(1+ ~1’5\n+(1 - «fs’n s

(iii) p(Q(n, 3)) z 5

Proof. We use Laplace expansion of the permanent on

the first two columns.

P(R(n, 3)) = 1+ p(F(n-3,3)) + 2p(F(n-2, 3)) + p(F(n-4, 3))
+ p(F(n-3,3)) + 1
= p(F(n-1, 3)) + 2p(F(n-2,3)) + 2
= f(n-1,2) + 2{(n-2,2) + 2, by Theorem 2.
Thus
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p(Q(n, 3)) = (f(n-2,2) + 2f(n-3,2) + 2)
+ (f(n-3,2) + 2f(n-4,2) + 2) - 2

p(R(n-1, 3)) + p(Q(n-2,3)) - 2.

The last part of the theorem is obtained by solving this linear
difference equation using the fact that p(Q(3,3)) =6 and
p(Q(4,3)) =9.

THEOREM 4.

1]

(i) p(Q(n,4)) = 2(f(n-1,3) + 2£(n-2,3) + 3f(n-3,3) + 1),

1]

(ii) p(Q(n,4)) = p(Q(n-1,4)) + p(Q(n-2,4)) + p(Q(n-3,4)) - 4,

1]

(iii) p(Q(n, 4)) 2(0111 + a’zl + a‘; + 1)

3 3
where a1=(~ﬁ9+ 333 + 19 - 333 + 1) /3 =1.839286...

3
and az, a3 are the other tworoots of x - x -x-1=0.

Proof. We expand p(Q(n,4)) using the first three
columns, and after some simplification we obtain

p(Q(n,4)) = 8p(F(n-3,4)) + 12p(F(n-4,4)) + 14p(F(n-5, 4))
+ 8p(F(n-6,4)) + 2p(F(n-7,4)) + 2
= 8f(n-3,3) + 12f(n-4, 3) + 14£f(n-5, 3) + 8f(n-6, 3)
+ 2{(n-7,3) + 2
= 2f(n-1,3) + 4f(n-2, 3) + 6£f(n-3,3) + 2.

It follows that
p(Q(n, 4)) = (2f(n-2,3) + 4f(n-3, 3) + 6f(n-4,3) + 2)
+ (2£(n-3, 3) + 4f(n-4, 3) + 6£f(n-5,3) + 2)
+ (2f(n-4, 3) + 4f(n-5,3) + 6£f(n-6,3) + 2) - 4
= p(R(n-1,4)) + p(Q(n-2,4)) + p(Q(n-3,4)) - 4.

Part (iii) is obtained by solving the above difference equation
in the usual way.

Note that formulas (3), (10), (4) and (11) in [3] are
inconsistent with Theorems 3 and 4 and are incorrect.
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Theorems 3(ii) and 4(ii) suggest that the formula

p(Q(n, r)) = p(Q(n-1,r)) + ... + p(Q(n-r+1,r)) + constant
~ K(r) an ,

where K(r) and o are defined as in (2),. may hold for all r.
We show that for r > 4 this is not the case.

Let Vn = (Vij) be the n-square (0, 1)-matrix with v, =1

ij
if 'i-j[ <2 and vij =0 otherwise. We compute directly:

p(Vn) =1, 2, 6, 14, 31 for n=1, 2, 3, 4, 5 respectively.

THEOREM 5. If n>5 then

(V) = 2p(V__ )+ 2p(V__ ) - BV ).

-5

Proof. let Y 1 be the (n-1)-square submatrix obtained
———— n-
from V_ by deleting the first row and the second column. Then
n

expanding p(Vn) by the first row we obtain

V) =2V _J+pY J+(p(Y )+p(V )+p(V ).

-4
Similarly
)

P(Vn_i) = P(Vn_z) + p(Yn—Z) + (p(Yn_ 3') + p(vn_4) + p(vn

-5
and therefore
PV )-pV ) =pV J+Y )-pY . )-pV_ )

t(Y S)-p(Y N+p(V _)-pV ).

Now, expanding p(Yn 1) by the first column we have

T
Y ) =pV )+pY ).,

n-1 2
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where T denotes the transpose, and therefore

]
=2
<

PY_ )= P(Y_ )

and

)

I
=8
<

p(Y ,)-pY .

Hence

p(V)-p(V ) =pV J+2p(V_ .)-pV ).

n-1 -5

THEOREM 6. If K(r) and a are defined as in (2) then
for a fixed r> 4

lim p(Q(n, r))/K(r)e" = .
n-» oo )

Proof. For n> 5, by Theorem 5,

p(V. ) =2p(V__)+2p(V__,)-Pp(V )

-5

and therefore
r
Vv = )2
p( n) _ CJ.B

4 2
where c, are constants and Bj the roots of x5 -2x -2x +1=0.
J

A straightforward computation shows that one real root of this
equation is greater than 2.3 while the moduli of the other four
roots do not exceed 1.2. It follows that for sufficiently large n

pv )>2.2".
n
Now observe that for r > 5
-2
P Qn,r)>VvV ,
n - n

. -2
i.e. all the entries in the (0, 1)-circulant P Q(n,r) are greater
n
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than or equal to the corresponding entries in the (0, 1)-matrix

V . Hence
n

-2
p(P_Q(n,r)) = p(R(n,r)) > p(V )

and for a sufficiently large n and r>5
n n n n
P(Q(n, r))/K(r)a > p(Q(n,r))/2" > p(Vn)/Z >4.4 —~ .
We now show that for r < n the permanent of the doubly
stochastic matrix Q(n,r)/r cannot be minimal in the polyhedron

of doubly stochastic n~square matrices.

THEOREM 7. Forany n and r, r <n, there exists a
doubly stochastic n-square matrix S such that

p(S) < p(Q(n, r)/r) .

Proof. For r=1,n>1, and r=2, n> 2, we have

p(Q(n, 1)) = 1> p(Q(n,n)/n) = n!/n",
p(Q(n,2)/2) = 1/2°° 1> pi@(m, n)/n) = nt/n”.

We now prove the theorem for r>2. I p(Q(n,r)/r) < p(A),

r < n, for all doubly stochastic n-square matrices A “then,

by a result due to M. Marcus and M. Newman [2], no permanental
minor of a non-zero element of Q(n,r)/r can exceea the perma-
nental minor of a zero element. We show that Q(n,r), and thus
Q(n,r)/r, does not possess this property. Let Qij denote the
submatrix of Q(n,r) obtained by deleting the i'th row and the
j'th column of Q(n,r). Then p(Q“) is the permanental minor

of a non-zero element while p(Q21) is the permanental minor

of a zero element of Q(n,r). We show that, for r > 2,
p(Qii) > p(Q21). Now, Qii =Q21 + Eir where Eij denotes

the (n-1)~square (0,1)-matrix with 1 in the (i,j) position and
0 elsewhere. The (n-1)-square (0, 1)-matrix Q11 has 1's in

its (2,2), (3,3), ..., (r-1,r-1), (r,r+1), (r+1,r+2), ...,
(n-2,n-1), (n-1,1) positions and thus the permanental minor
of the (1, r) element of Q11 is positive. Hence
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P(Q“) = p(Q +E1r)>p(Q ) .

21 21

A table of p(Q(n,r)) is appended. Note that the entries
differ from the corresponding entries in a table given in [3].

n/r 3 4 5 6 7

3 6

4 9 24

5 13 44 120

6 20 80 265 720

7 31 144 579 1,854 5,040

8 49 264 1,265 4,738 14,833
9 78 484 2,783 12,072 43,387
10 125 888 6,208 30,818 126,565
11 201 1, 632 13,909 79,118 369,321
12 324 3,000 31, 337 204, 448 1,081, 313
13 523 5,516 70,985 528,950 3,182,225
14 845 10, 144 161, 545 1,370,674 9,411,840

15 1,366 18,656 369,024 3,557,408 27,888,139

The values of p(Q(n,r)) for r =5, 6 and 7 were computed
at the Computing Center, University of Florida, using a program
by Paul J. Nikolai to whom the author expresses his thanks.
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