SERIES EXPANSIONS FOR DUAL LAGUERRE TEMPERATURES

DEBORAH TEPPER HAIMO

1. Introduction. In a recent paper [2], the author, with F. M. Cholewinski, derived criteria for the series expansions of solutions $u(x, t)$ of the Laguerre differential heat equation $x u_{x x}+(\alpha+1-x) u_{x}=u_{t}$ in terms of the Laguerre heat polynomials and of their temperature transforms. Our present goal is the characterization of those solutions which are representable in a Maclaurin double series in $x e^{-t}$ and in $1-e^{-t}$. Some of the results are analogous to those derived by D. V. Widder in [4] for the classical heat equation and by the author in [1] for the generalized heat equation.
2. Definitions. The Laguerre differential heat equation is given by

$$
\begin{equation*}
\nabla_{x} u(x, t)=(\partial / \partial t) u(x, t) \tag{2.1}
\end{equation*}
$$

where

$$
\nabla_{x} f(x)=x f^{\prime \prime}(x)+(\alpha+1-x) f^{\prime}(x)
$$

We denote by H the class of all C^{2} solutions of (2.1) and refer to a member of H as a dual Laguerre temperature.

The fundamental solution of (2.1) is the function

$$
\begin{equation*}
g(x ; t)=\left[\frac{e^{t}}{e^{t}-1}\right]^{\alpha+1} e^{-x /\left(e^{t}-1\right)}, t>0 \tag{2.2}
\end{equation*}
$$

whose associate function is

$$
\begin{equation*}
g(x, y ; t)=\left[\frac{e^{t}}{e^{t}-1}\right]^{\alpha+1} e^{-(x+y)\left(\left(e^{t}-1\right)\right.} \mathscr{I}\left[\frac{2\left(x y e^{t}\right)^{\frac{1}{2}}}{e^{t}-1}\right], t>0 \tag{2.3}
\end{equation*}
$$

where

$$
\mathscr{I}(z)=2^{\alpha} \Gamma(\alpha+1) z^{-\alpha} I_{\alpha}(z)
$$

$I_{\alpha}(z)$ being the ordinary Bessel function of imaginary argument.
The dual Laguerre temperature transform $u^{T}(x, t)$ of a function $u(x, t) \in H$ is given by

$$
\begin{equation*}
u^{T}(x, t)=g(x ; t) u\left(x /\left(e^{t}-1\right), \ln \left(1-e^{-t}\right)\right), t>0 \tag{2.4}
\end{equation*}
$$

[^0]A subclass H^{*} of H basic to our needs consists of those dual Laguerre temperatures for which

$$
\begin{gather*}
u(x, t)=\int_{0}^{\infty} g\left(x, y ; t-t^{\prime}\right) u\left(y, t^{\prime}\right) d \wedge(y) \tag{2.5}\\
d \wedge(y)=\frac{1}{\Gamma(\alpha+1)} e^{-y} y^{\alpha} d y
\end{gather*}
$$

for every $t, t^{\prime}, a<t^{\prime}<t<b$, with the integral converging absolutely. A member of H^{*} is said to have the Huygens property.

In addition, we need the class (ρ, τ) which includes those entire functions $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for which

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{n}{e_{\rho}}\left|a_{n}\right|^{\rho / n} \leqq \tau \tag{2.6}
\end{equation*}
$$

The Laguerre heat polynomials $p_{n, \alpha}(x, t)$ are given by

$$
\begin{equation*}
p_{n, \alpha}(x, t)=\sum_{k=0}^{n}\binom{n}{k} \frac{\Gamma(n+\alpha+1)}{\Gamma(n-k+\alpha+1)}\left(x e^{-t}\right)^{n-k}\left(1-e^{-t}\right)^{k} . \tag{2.7}
\end{equation*}
$$

They are the Cauchy solutions (x, t) of (2.1) satisfying the initial condition $u(x, 0)=x^{n}$. Their dual Laguerre temperature transforms $w_{n, \alpha}(x, t)$ may be given in the form

$$
\begin{equation*}
w_{n, \alpha}(x, t)=\left(e^{t}-1\right)^{-2 n} g(x ; t) p_{n, \alpha}(x,-t), t>0 \tag{2.8}
\end{equation*}
$$

From the basic generating relationship

$$
\begin{equation*}
g\left(x, y ; t+t^{\prime}\right)=\sum_{n=0}^{\infty} \frac{\Gamma(\alpha+1)}{n!\Gamma(n+\alpha+1)} p_{n, \alpha}(x, t) w_{n, \alpha}\left(y, t^{\prime}\right) \tag{2.9}
\end{equation*}
$$

derived in [3], we have, by a direct computation,

$$
\begin{align*}
& g\left(x, y ; t+t^{\prime}\right)= \tag{2.10}\\
& \qquad \sum_{m=0}^{\infty} \frac{\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty} \frac{\left(1-e^{-t}\right)^{k}}{k!} \Gamma(\alpha+1) w_{m+k, \alpha}\left(y, t^{\prime}\right)
\end{align*}
$$

3. Region of convergence. We establish the region of convergence of the double Maclaurin series involved in our development.

Lemma 3.1. If, for $\gamma \geqq 0$,

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty} \frac{e\left|a_{n}\right|^{1 / n}}{n}=\gamma, \tag{3.1}
\end{equation*}
$$

then the series

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty} a_{m+k} \frac{\left(1-e^{-t}\right)^{k}}{k!} \tag{3.2}
\end{equation*}
$$

converges for $t \in \mathscr{D}_{\gamma}$, where

$$
\begin{align*}
\mathscr{D}_{\gamma}=\left\{t \ln \frac{\gamma}{1+\gamma}<t<\infty \text { if } 0 \leqq\right. & \gamma \leqq 1 \text { and } \tag{3.3}\\
& \left.\ln \frac{\gamma}{1+\gamma}<t<\ln \frac{\gamma}{\gamma-1} \text { if } \gamma>1\right\} .
\end{align*}
$$

Proof. For any $\theta, 0<\theta<1$, we have, as a consequence of (3.1),

$$
\left|a_{n}\right|<K\left(\frac{\gamma n}{\theta e}\right)^{n}
$$

for some constant K and n sufficiently large. Hence

$$
\begin{aligned}
I & =\sum_{m=0}^{\infty} \frac{\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty}\left|a_{m+k}\right| \frac{\left|1-e^{-t}\right|^{k}}{k!} \\
& \leqq K \sum_{m=0}^{\infty} \frac{\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty}\left[\frac{\gamma(m+k)}{e \theta}\right]^{m+k} \frac{\left|1-e^{-t}\right|^{k}}{k!} \\
& =K \sum_{k=0}^{\infty} \frac{\left|1-e^{-t}\right|^{k}}{k!} \sum_{m=k}^{\infty}\left[\frac{m \gamma}{e \theta}\right]^{m} \frac{\left(x e^{-t}\right)^{m-k}}{(m-k)!\Gamma(m-k+\alpha+1)} .
\end{aligned}
$$

Now, if $t>0$,

$$
I \leqq K \sum_{m=0}^{\infty}\left(\frac{m \gamma}{e \theta}\right)^{m} \frac{1}{m!\Gamma(m+\alpha+1)} p_{m, \alpha}(x, t)
$$

and an appeal to (4.8) of [3] yields the dominating series

$$
I \leqq K \sum_{m=0}^{\infty}\left(\frac{m \gamma}{e \theta}\right)^{m} \frac{1}{m!\Gamma(m+\alpha+1)} m^{\frac{1}{2} \alpha+\frac{1}{4}}\left[\frac{m}{e}\left(1-e^{-t}\right)\right]^{m} e^{2\left(m x /\left(e^{t-1))^{\frac{1}{2}}}\right.\right.}
$$

which converges for

$$
\gamma\left(1-e^{-t}\right) / \theta<1,
$$

or, on taking θ arbitrarily close to 1 , for

$$
\gamma\left(1-e^{-t}\right)<1 .
$$

Hence, if $0 \leqq \gamma \leqq 1$, the series (3.2) converges for all $t>0$, whereas if $\gamma \geqq 1$, the series converges for $0<t<\ln (\gamma /(\gamma-1))$.

On the other hand, if $t<0$,

$$
I \leqq K \sum_{m=0}^{\infty}\left(\frac{m \gamma}{e \theta}\right)^{m} \frac{1}{m!\Gamma(m+\alpha+1)}(-1)^{m} p_{m, \alpha}(-x, t),
$$

and an appeal to (4.6) of [3] yields the dominating series

$$
I \leqq A \sum_{m=0}^{\infty}\left(\frac{m \gamma}{e \theta}\right)^{m} \frac{1}{m!\Gamma(m+\alpha+1)} m^{\alpha+1}\left[\frac{m}{e}\left(e^{-t}-1\right)\right]^{m}
$$

which converges, since θ may be taken arbitrarily close to 1 , for

$$
\gamma\left(e^{-t}-1\right)<1 ;
$$

that is, for $\gamma \geqq 0$, for $\ln (\gamma /(1+\gamma))<t<0$. The proof is thus complete.

Note that if the series (3.2) were to converge at some point $\left(x_{0}, t_{0}\right), t_{0} \notin \mathscr{D}_{\gamma}$, then, in particular, the simple series

$$
\sum_{k=0}^{\infty} a_{k} \frac{\left(1-e^{-t_{0}}\right)^{k}}{k!}
$$

must also converge, and it would follow that

$$
\varlimsup_{k \rightarrow \infty}\left|\frac{a_{k}}{k!}\right|^{1 / k}=\varlimsup_{k \rightarrow \infty}\left|\frac{a_{k} e}{k}\right| \leqq \frac{1}{\left|1-e^{-t_{0}}\right|}
$$

contradicting hypothesis (3.1).
4. Series expansion. We now establish our principal result.

Theorem 4.1. A necessary and sufficient condition that a solution $u(x, t)$ of the Laguerre differential heat equation (2.1) have the double Maclaurin expansion

$$
\begin{equation*}
u(x, t)=\sum_{m=0}^{\infty} \frac{\left(x e^{-t}\right)^{m}}{\mathrm{~m}!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty} a_{m+k} \frac{\left(1-e^{-t}\right)^{k}}{k!} \tag{4.1}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{k}=\Gamma(k+\alpha+1)\left[(\partial / \partial x)^{k} u(x, 0)\right]_{x=0} \tag{4.2}
\end{equation*}
$$

for $t \in \mathscr{D}_{\gamma}$ is that $u(x, t) \in H^{*}$ for $t \in \mathscr{D}_{\gamma}$.
Proof. To prove sufficiency, assume that $u(x, t) \in H^{*}$ for $t \in \mathscr{D}_{\gamma}$. Then, for t, t^{\prime} with $\ln (\gamma /(\gamma+1))<t^{\prime}<t<\ln (\gamma /(\gamma-1))<\infty$, we have

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} g\left(x, y ; t+t^{\prime}\right) u\left(y,-t^{\prime}\right) d \wedge(y) \tag{4.3}
\end{equation*}
$$

with the integral converging absolutely. We choose $t^{\prime}>0$. On substituting (2.10) in (4.3) and on interchanging integration with summation, we have

$$
\begin{align*}
& u(x, t)=\sum_{m=0}^{\infty} \frac{\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty} \frac{\left(1-e^{-t}\right)^{k}}{k!} \tag{4.4}\\
& \quad \times \Gamma(\alpha+1) \int_{0}^{\infty} u\left(y,-t^{\prime}\right) w_{m+k}\left(y, t^{\prime}\right) d \wedge(y)
\end{align*}
$$

That termwise integration is justified is a consequence of the fact that an appeal to (4.14) of [3] yields, for $\delta>0$,

$$
\begin{aligned}
& \sum_{m=0}^{\infty} \frac{\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty} \frac{\left|1-e^{-t}\right|^{k}}{k!} \\
& \times \Gamma(\alpha+1) \int_{0}^{\infty}\left|u\left(y,-t^{\prime}\right)\right|\left|w_{m+k}\left(y, t^{\prime}\right)\right| d \wedge(y) \\
& \leqq A \sum_{m=0}^{\infty} \frac{\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty} \frac{\left(1-e^{-t}\right)^{k}}{k!}\left(\frac{m+k}{e\left(e^{t+\delta}-1\right)}\right)^{m+k} \\
& \times \int_{0}^{\infty} e^{y(e \delta-2) /(e \delta-1)}\left|u\left(y,-t^{\prime}\right)\right| d \wedge(y) .
\end{aligned}
$$

The rightmost integral converges by Lemma 7.4 of [3], and the series clearly converges by an argument similar to that used in the proof of Lemma 3.1.

Now, setting

$$
\begin{equation*}
a_{k}=\Gamma(\alpha+1) \int_{0}^{\infty} u\left(y,-t^{\prime}\right) w_{k}\left(y, t^{\prime}\right) d \wedge(y) \tag{4.5}
\end{equation*}
$$

and noting, by Corollary 7.2 of [3], that the integral of (4.5) is independent of t, we have, on substituting (4.5) in (4.4), $u(x, t)$ given by the double series as required. Further, since

$$
u(x, 0)=\sum_{m=0}^{\infty} a_{m} \frac{x^{m}}{m!\Gamma(m+\alpha+1)},
$$

the determination of the coefficients a_{k} by (4.2) is immediate.
Conversely, to prove the necessity of the condition, assume that u has the series expansion (4.1) for $t \in \mathscr{D}_{\gamma}$. Now, for t, t^{\prime}, with

$$
\ln (\gamma /(\gamma+1))<t^{\prime}<\ln (\gamma /(\gamma-1)) \leqq \infty
$$

we have

$$
\begin{aligned}
& \int_{0}^{\infty} g\left(x, y ; t-t^{\prime}\right) u\left(y, t^{\prime}\right) d \wedge(y) \\
& =\int_{0}^{\infty} g\left(x, y ; t-t^{\prime}\right) d \wedge(y) \sum_{m=0}^{\infty} \frac{\left(y e^{-t^{\prime}}\right)^{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty} a_{m+k} \frac{\left(1-e^{-t^{\prime}}\right)^{k}}{k!} \\
& =\int_{0}^{\infty} g\left(x, y ; t-t^{\prime}\right) d \wedge(y) \sum_{k=0}^{\infty} \frac{\left(1-e^{-t^{\prime}}\right)^{k}}{k!} \sum_{m=k}^{\infty} \frac{a_{m}\left(y e^{-t^{\prime}}\right)^{m-k}}{(m-k)!\Gamma(m-k+\alpha+1)} \\
& =\int_{0}^{\infty} g\left(x, y ; t-t^{\prime}\right) d \wedge(y) \sum_{m=0}^{\infty} \frac{a_{m}}{m!\Gamma(m+\alpha+1)} p_{m, \alpha}\left(y, t^{\prime}\right) \\
& =\sum_{m=0}^{\infty} \frac{a_{m}}{m!\Gamma(m+\alpha+1)} p_{m, \alpha}(x, t)
\end{aligned}
$$

where we have used the fact that $p_{n, \alpha}(x, t) \in H^{*}$ for all t, and where termwise integration can be justified by appeals to (4.4) and (4.8) of [3]. Hence, using the definition of $p_{n, \alpha}(x, t)$ we have

$$
\begin{aligned}
& \int_{0}^{\infty} g\left(x, y ; t-t^{\prime}\right) u\left(y, t^{\prime}\right) d \wedge(y) \\
& \quad=\sum_{m=0}^{\infty} \frac{a_{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty}\binom{m}{k} \frac{\Gamma(m+\alpha+1)}{\Gamma(m-k+\alpha+1)}\left(x e^{-t}\right)^{m-k}\left(1-e^{-t}\right)^{k} \\
& \quad=\sum_{k=0}^{\infty} \frac{\left(1-e^{-t}\right)^{k}}{k!} \sum_{m=0}^{\infty} \frac{a_{m+k}}{m!} \frac{\left(x e^{-t}\right)^{m}}{\Gamma(m+\alpha+1)} \\
& \quad=u(x, t)
\end{aligned}
$$

so that $u(x, t) \in H^{*}$ as required, and the proof is complete.

Theorem 8.1 of [3] provides the following restatement of the theorem.
Corollary 4.2. For $t \in \mathscr{D}_{\gamma}$,

$$
\begin{equation*}
u(x, t)=\sum_{m=0}^{\infty} \frac{\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)} \sum_{k=0}^{\infty} a_{m+k} \frac{\left(1-e^{-t}\right)^{k}}{k!} \tag{4.6}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!\Gamma(n+\alpha+1)} p_{n, \alpha}(x, t) . \tag{4.7}
\end{equation*}
$$

An example illustrating the theorem is given by

$$
\begin{equation*}
u(x, t)=e^{a\left(1-e^{-t}\right)} \mathscr{I}\left(2\left(x a e^{-t}\right)^{\frac{1}{2}}\right) \tag{4.8}
\end{equation*}
$$

a function belonging to H^{*} for all t. We have, in this case,

$$
u(x, t)=\Gamma(\alpha+1) \sum_{k=0}^{\infty} \frac{\left(1-e^{-t}\right)^{k}}{k!} \sum_{m=0}^{\infty} \frac{a^{m+k}\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)}
$$

which is (4.1) with

$$
a_{k}=\Gamma(\alpha+1) a^{k}
$$

as predicted by (4.2).
5. Simple series expansions. We establish the fact that if the double series (4.1) is summed by columns, a dual Laguerre temperature with the Huygens property may be represented by a simple Maclaurin series in x.

Theorem 5.1. If $u(x, t) \in H^{*}$ for $t \in \mathscr{D}_{\gamma}$, and if $g(t)=u(0, t)$, then, for $t \in \mathscr{D}_{\gamma}$,

$$
\begin{equation*}
u(x, t)=\sum_{m=0}^{\infty} \frac{\Gamma(\alpha+1)}{m!\Gamma(m+\alpha+1)} g^{(m)}(t) x^{m} . \tag{5.1}
\end{equation*}
$$

Proof. By Theorem 4.1, we have

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} \frac{\left(x e^{-t}\right)^{n}}{n!\Gamma(n+\alpha+1)} \sum_{m=0}^{\infty} a_{n+m} \frac{\left(1-e^{-t}\right)^{m}}{m!} \tag{5.2}
\end{equation*}
$$

so that

$$
\begin{align*}
g(t) & =u(0, t) \tag{5.3}\\
& =\frac{1}{\Gamma(\alpha+1)} \sum_{m=0}^{\infty} a_{m} \frac{\left(1-e^{-t}\right)^{m}}{m!} .
\end{align*}
$$

Hence, successive differentiation yields

$$
\begin{equation*}
g^{(k)}(t)=\frac{1}{\Gamma(\alpha+1)} \sum_{m=0}^{\infty} \frac{a_{m+k}}{m!}\left(1-e^{-t}\right)^{m}\left(e^{-t}\right)^{k} . \tag{5.4}
\end{equation*}
$$

Substituting (5.4) in (5.2), we obtain (5.1) as required.
We note that the example of (4.8) illustrates the theorem since, in this case,

$$
g(t)=e^{a\left(1-e^{-t}\right)}
$$

so that

$$
g^{(k)}(t)=\left(a e^{-t}\right)^{k} e^{a\left(1-e^{-t}\right)} .
$$

We then have

$$
e^{a\left(1-e^{-t}\right)} \mathscr{I}\left(2\left(x a e^{-t}\right)^{\frac{1}{2}}\right)=\sum_{m=0}^{\infty} \frac{\Gamma(\alpha+1)}{m!\Gamma(m+\alpha+1)}\left(a e^{-t}\right)^{m} e^{a\left(1-e^{-t}\right)} x^{m}
$$

as expected.
Corollary 5.2. There exists a solution $u(x, t)$ of the Laguerre difference heat equation which is equal to its Maclaurin double series expansion in $x e^{-t}$ and $1-e^{-t}$ for $t \in \mathscr{D}_{\gamma}$ and $u(0, t)=g(t)$ if and only if $g(t)$ is equal to its Maclaurin expansion in $\left(1-e^{-t}\right)$ for $t \in \mathscr{D}_{\gamma}$.

Proof. The necessity of the condition is a consequence of the theorem. To establish sufficiency, set

$$
g(t)=\sum_{n=0}^{\infty} \frac{a_{n}}{\Gamma(\alpha+1) n!}\left(1-e^{-t}\right)^{n}
$$

and form the series

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{\Gamma(\alpha+1)}{m!\Gamma(m+\alpha+1)} g^{(m)}(t) x^{m} . \tag{5.5}
\end{equation*}
$$

Since the series defining $g(t)$ is assumed to converge for $t \in \mathscr{D}_{\gamma}$, it follows that

$$
\varlimsup_{n \rightarrow \infty}\left|\frac{a_{n}}{n!}\right|^{1 / n} \leqq \gamma .
$$

But by Lemma 3.1 this inequality is sufficient for the convergence of the series (5.2) for $t \in \mathscr{D}_{\gamma}$ and for its being equal to the series (5.5) for $t \in \mathscr{D}_{\gamma}$.

An alternative simple series expansion may be derived if the double series (4.1) is summed by rows as indicated in the following result.

Theorem 5.3. Let $u(x, t) \in H^{*}$ for $t \in \mathscr{D}_{\gamma}$ and let $f(x)=u(x, 0)$. Then

$$
\begin{equation*}
u(x, t)=\sum_{k=0}^{\infty} \frac{\left(e^{t}-1\right)^{k}}{k!} A_{x}^{k} f\left(x e^{-t}\right) \tag{5.6}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{x} f(x)=x f^{\prime \prime}(x)+(\alpha+1) f^{\prime}(x) \tag{5.7}
\end{equation*}
$$

and f belongs to class $(1, \gamma)$.
Proof. By the principal theorem, we have, for $t \in \mathscr{D}_{\gamma}$, since $u(x, t) \in H^{*}$ there, that

$$
\begin{equation*}
u(x, t)=\sum_{k=0}^{\infty} \frac{\left(1-e^{-t}\right)^{k}}{k!} \sum_{m=0}^{\infty} \frac{a_{m+k}\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)} \tag{5.8}
\end{equation*}
$$

Hence

$$
\begin{align*}
f(x) & =u(x, 0) \tag{5.9}\\
& =\sum_{m=0}^{\infty} \frac{a_{m} x^{m}}{m!\Gamma(m+\alpha+1)} .
\end{align*}
$$

Now, successive applications of the operator A_{x} to $f\left(x e^{-t}\right)$ yield

$$
\begin{equation*}
A_{x}^{k} f\left(x e^{-t}\right)=\sum_{m=0}^{\infty} \frac{a_{m+k}\left(x e^{-t}\right)^{m}\left(e^{-t}\right)^{k}}{m!\Gamma(m+\alpha+1)} \tag{5.10}
\end{equation*}
$$

so that on substituting (5.10) in (5.8), we obtain (5.6) as required. Further, since $f(x)$ is given by the series (5.9) which converges for $t \in \mathscr{D}_{\gamma}$, the conditions that f belong to class $(1, \gamma)$ are satisfied and the proof is complete.

Corollary 5.4. There exists a dual Laguerre temperature $u(x, t)$ which is equal to its Maclaurin double series for $t \in \mathscr{D}_{\gamma}$ and which reduces to $f(x)$ at $t=0$ if and only if f belongs to class $(1, \gamma)$.

Proof. The necessity of the condition follows from the theorem. To establish sufficiency, we assume that f belongs to class $(1, \gamma)$ and is given by the series

$$
f(x)=\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{n!\Gamma(n+\alpha+1)}
$$

Then

$$
A_{x}^{k} f\left(x e^{-t}\right)=\left(e^{-t}\right)^{k} \sum_{m=0}^{\infty} \frac{a_{m+k}\left(x e^{-t}\right)^{m}}{m!\Gamma(m+\alpha+1)}
$$

Now consider the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left(e^{t}-1\right)^{k}}{k!} A_{x}^{k} f\left(x e^{-t}\right) \tag{5.11}
\end{equation*}
$$

Since f belongs to class $(1, \gamma)$, we have that

$$
\varlimsup_{n \rightarrow \infty} \frac{n}{e}\left[\frac{\left|a_{n}\right|}{n!\Gamma(n+\alpha+1)}\right]^{1 / n}=\varlimsup_{n \rightarrow \infty} \frac{e}{n}\left|a_{n}\right|^{1 / n} \leqq \gamma
$$

so that the series (5.11) converges for $t \in \mathscr{D}_{\gamma}$ and represents there the dual Laguerre temperature $u(x, t)$ sought. Clearly $u(x, 0)=f(x)$.

As an example illustrating the corollary, consider, for $t_{0}>\ln 2$, the function

$$
f(x)=g\left(x ; t_{0}\right) .
$$

It clearly belongs to class $\left(1,1 /\left(e^{t_{0}}-1\right)\right)$, and as predicted by the corollary, there is a dual Laguerre temperature

$$
\begin{aligned}
& u(x, t)=g\left(x ; t+t_{0}\right) \\
& \begin{aligned}
= & \sum_{k=0}^{\infty} \frac{\left(1-e^{-t}\right)^{k}}{k!} \sum_{m=0}^{\infty}\left[\frac{(-1)^{m+k}\left(e^{t_{0}}\right)^{\alpha+1} \Gamma(m+k+\alpha+1)}{\left(e^{t_{0}}-1\right)^{m+k+\alpha+1}}\right] \\
& \quad \times \frac{\left(e^{-t} x\right)^{m}}{m!\Gamma(m+\alpha+1)}
\end{aligned}
\end{aligned}
$$

for $t \in \mathscr{D}_{1 /\left(e^{\left.t_{0}-1\right)}\right.}$ such that $u(x, 0)=f(x)$.

References

1. D. T. Haimo, Series representations of generalized temperature functions, SIAM J. Appl. Math. 15 (1967), 359-367.
2. D. T. Haimo and F. M. Cholewinski, The dual Poisson Laguerre transform, Trans. Amer. Math. Soc. 144 (1969), 271-300.
3. - Expansions in terms of Laguerre heat polynomials and of their temperature transforms, J. Analyse Math. 24 (1971), 285-322.
4. D. V. Widder, Analytic solutions of the heat equation, Duke Math. J. 29 (1962), 497-504.

University of Missouri,
St. Louis, Missouri

[^0]: Received October 26, 1971 and in revised form, December 21, 1971. This research was supported by the Air Force Office of Scientific Research Grant No. 71-2047.

