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COMPLEX NUMBERS 
WITH THREE RADIX EXPANSIONS 

WILLIAM J. GILBERT 

1. Introduction. This paper deals with the lack of uniqueness of the 
representations of the complex numbers in positional notation using 
Gaussian integers as bases. 

Kâtai and Szabô [3] proved that all the complex numbers can be 
written in radix form using the base — n + i with the natural numbers 
0, 1, 2, . . . , n2 as digits. They remarked that they did not assert the 
uniqueness of these representations but gave no further indications of 
any multiple expansions. The geometry of these complex bases [2] 
indicates that some numbers have two expansions in a given base, while 
a few numbers even have three different expansions. 

We give a complete description of all the multiple representations in 
the base — n + i in terms of the complex base expansions. Numbers with 
two or three expansions correspond to certain infinite directed paths in a 
state graph which will be constructed for each complex base. The direc
tion of this path leaving a given state is determined by the digits in the 
&th place of the different expansions. 

The base — 1 + i provides a binary expansion of all the complex 
numbers and an example with three representations in this base is the 
number 

(1 - 2*)/5 = (0.001)-!+, = (l.ïÔS)_i+i = (lll.ÔÎÔ)_1+î-, 

where the bar over a sequence of digits indicates that the sequence is to 
be repeated indefinitely. In each base, except —2 + i, the numbers with 
three different representations have expansions that are ultimately 
periodic with period three. The corresponding infinite paths in the state 
graph become ultimately trapped in a 3-cycle. In the exceptional base 
— 2 + i, some numbers with three expansions have periods two and one, 
such as 

(9 + 2i)/25 = (0.034Ô)_2+Î = (1.22Ô4)_2+, = (14.4Q2)_2+Î, 

In the examples given above, the three expansions each have different 
integer parts. Geometrically, the points in the complex plane with two or 
more expansions with different integer parts lie on the boundary of a 
snowflake region of unit area surrounding each of the Gaussian integers 
[2]. These regions tile the plane and normally there are six points on 
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the boundary of each region that also lie in two other regions; these 
points correspond to the numbers with three expansions with different 
integer parts. We show algebraically that for each base — n + i {n 9^ 2) 
there are precisely six such numbers having a given integer part. We also 
show that for the base — 2 + i there are a countable number of such 
points. Geometrically this happens because the snowflake region cor
responding to the base — 2 + i has a much more jagged reentrant form 
than that for the other bases and each region has a countable number of 
places where its width is zero, see [1], Fig. 7. 

2. Expansions in complex bases. If n is a fixed integer then the set of 
natural numbers {0, 1, 2, . . . , n2} forms a complete residue system for 
the Gaussian integers modulo — n + i. If n is positive, the number 
b = — n + i can be used to uniquely represent the Gaussian integers 
with this complete residue system as digit set; that is, each Gaussian 
integer z can be expressed uniquely as 

i 

z = ^ ap3 where a, £ {0, 1, 2, . . . , n }. 

These numbers, together with their conjugates —n — i, are the only 
numbers suitable as bases for all the Gaussian integers using natural 
numbers as digits [3]. 

Each of these bases can be used to represent all the complex numbers 
by means of infinite expansions involving negative powers of the base. 
We say that the complex number z can be written in the base b = — n + i 
if it can be expressed in the form 

i 

z = ^2 afi3 with «j- £ {0, 1, 2, . . . , n) ; 
j=—oo 

we denote this expansion by 

z = {ciidi-i . . . aia0-a_1a_2 . . .)&• 

We will often omit the subscript b if the base is clear from the context. 
The digits to the left of the radix point define a Gaussian integer 
(aidt-.! . . . ai<2o)6 called the integer part of the expansion. 

We now investigate the relationship between the integer parts of two 
expansions that represent the same number. Suppose q and r are two 
expansions of the same complex number in the base b = —n + i. Let 

q = qfli-i . . . qiqo-q-iq-2 . . . 

and 

r = rf^x . . . rir0-r_i7-_2 . . . 
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where some of the leading digits may be zero. Then 

b~kq = qt . . . qk-qk-i • • • 

and 

b~kr = rx. . . rk-rk-! . . . 

also represent the same complex number. For any positive or negative 
integer k, let q(k) = (q&i-i . . . qk+iqk)b be the integer part of b~kq. 

PROPOSITION 1. Two expansions q and r represent the same complex 
number in the base b = —n + iif and only if, for all integers k, either 

q(k) - r(k) = 0, dbl, ± 0 - 1 + i), ±(n + i),ifn 9* 2 

or 

q(k) -r(k) = 0, ± 1 , ± ( 1 + i), ±(2 + i), ±i, ±(2 + 2i),ifn = 2. 

Proof. Let 5 = q(k) — r(k). Then, since b~kq = b~kr, 

00 

s = (0 • rk-irk-2 . . . ) & - (0 • Qk-iQic-z •••)& = X) </*-* _ °k-t)b~l. 
t=i 

Now |rfc_, — ^_ f | ^ ?z2 so 

\s\ ^ »* È \b\~l = TT^-7 = V ^ + l + K n + 2. 

For b = - w + i , n Gaussian integer and j a natural number, let 

Rb
j(z) = \zbj + a^ift^-1 + a,_2&>-2 + . . . + aj> + a0\ 0 ^ at ^ n2). 

Then Rb
j(0) is the set of Gaussian integers representable in the base b 

using at most j digits. For b = — 1 + i and — 2 + i, these regions 
Rb

j(0) are depicted in [2], Figs. 2 and 4. Each set Rb
j(z) is a complete 

residue system for the Gaussian integers modulo bj. For fixed j and b, 
the sets Rb

j{z) partition the Gaussian integers into congruent jigsaw 
pieces. 

Now, for any j ^ 0, 

00 

b3s + (g*_i . . . qk-j)b - OA-1 . . . rk-.j)b = J2 (r*-j-i - qk-j-t)b~l 

which has absolute value less than n + 2. However bjs + (qk-i. . .qk-j)b £ 
Rb

j(s) and (rfc_i . . . r * - ^ G Rb
j(0). Therefore the regions Rb

j(s) and 
RV (0) are within a distance n + 2 of each other for all 7 ^ 0. We will 
use the shape and configuration of these regions to determine the possible 
values for s. 

For the base b = — 1 + i, [2], Fig. 7 shows the regions R^i+i(z) divided 
by the factor ( — 1 + i)s = 16; the regions are labelled by z in this 

https://doi.org/10.4153/CJM-1982-093-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-093-4


1338 WILLIAM J. GILBERT 

figure. The two regions Rti+i(s) and i?ii+<(0) are within distance 3 of each 
other if the region labelled s is within 3/16 of the region containing the 
origin in [2], Fig. 7. Hence the only possible values of 5 are 0, dbl, dci 
or ± ( 1 + i). 

The form of the regions R^l{z) is shown in Figure 1 and the construc
tion of Rb

j(z) for higher values of j is described in [1]. For n è 3 it is 
sufficient to look at the regions Rb

z(z) to determine that 5 = 0, ± 1 , 
zh(n — 1 + i) or zh(n + i). The general pattern of these regions is seen 
in i?L3+i(z) shown in Figure 2. 

|R'b(o 1 * ^ ; ^ ^ 

I R ib ( n .U i ) j R i ( : 0 | 

FIGURE 1. 

The base b = — 2 + i is an exception due to the strongly reentrant 
form of the regions RL.2+i(z) (c.f. [1], Fig. 7 which shows i?i2+z(s) divided 
by ( — 2 + i)j for large j) and 5 cannot be restricted to seven values. 
However by comparing the regions RL2+j(z) within distance 4 of each 
other in Figure 3 it follows that s = 0, ± 1 , ± ( 1 + i), ± ( 2 + i), ± i or 
± ( 2 + 2i). 

This completes the proof of the necessity of Proposition 1. The suffi
ciency follows because the boundedness of q(k) — r(k) implies q and r 
must converge to the same value. 
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FIGURE 3. 

3. Description of the states. Let 

P = PlPl-l • • • PlpO'P-lp-2 • • • 

q = qiQi-i • • • qiqo-q-iq-2 . . . 

r = rfi-i . . . 7 w r _ i r _ 2 . . . 

be three expansions representing the same complex number in the base 
I) = —n~\-it For any integer &, let 

S(k) = (p(k) - q(k), q(k) - r(k), r(k) - p(k)). 

These three differences must satisfy Proposition 1 for each k. Now p(k) 
is obtained from p{k + 1) by shifting p(k + 1) left one place and adding 
pk\ that is p(k) — bp(k + 1) + pk. Given S(k + 1 ) there are only 
certain values of (pk, qky rk) for which the three differences in S(k) satisfy 
Proposition 1. For each base we will produce a state graph whose states 
are the allowable values of S(k), subject to Proposition 1, and whose 
transition function from the state S(k + 1) to the state S(k) is deter
mined by these certain values of (pk, qkj rk). Each directed edge in the 
state graph will be labelled by the permissible values of (pk,qk1rk), 
written in column form. Each triple p> q, r of expansions representing 
the same complex number will correspond to an infinite path in this state 
graph through the states S (I + 1), 5(/), S (I - 1), 

The possible types of states are described by the symbols in Figure 4. 
These symbols show the relative position of p(k), q{k) and r(k) in the 
state S(k). One square to the east of another denotes a difference of 1; 
one square north denotes a difference of n — 1 + i and one square 
northeast a difference of n + i. For the case n = 2 only, one square 
northwest denotes a difference of n — 2 + i = i. 

A state is in fact a triple of numbers, occurring in Proposition 1, 
whose sum is zero. The symbols in Figure 4 describe the following states: 
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pqr 

(a) 

r pq] 

(b) 

pq 

(c) 

Pq] 

1 r 

(d) 

(e) 

| r | | r | p | | r | | r | p | [ q | 

q P rôi u pi w\ rn 
(f) (g) (h) 

FIGURE 4. The types of states. 

(i) 

(a) S(k) = (0, 0, 0) (the initial state) 
(b)S(k) = ( 0 , 1 , - 1 ) 
(c) S(k) = (0, n - 1 + i, -n + 1 - i) 
(d) S(jfe) = (0, « + i, - » - i) 
(e) 5(jfe) = (1, -n - i, « - 1 + i) 
(f).S(fc) = (n + i, -n + 1 - i, - 1 ) 
(g) S(k) = (1, - 1 - i, t) (for n = 2 only) 
(h) 5(fc) = (1 + i, -h - 1 ) (for n = 2 only) 
(i) 5(fe) = (1 + h 1 + i, - 2 - 2i) (for n = 2 only). 

There are theoretically other possible types of states when n = 2, such 
as £(&) = (0, i, — i). However we shall see in Section 6 that these are 
essentially contained in the types given in Figure 4. 

If n T̂  2, it is not possible to have four different numbers p(k), q(k)y 

r(k), t(k)y all of whose differences satisfy Proposition 1. If n = 2, it is 
possible to have four such numbers, but we show in Section 6 that they 
cannot lead to four different expansions of a given number. 

4. Multiple expansions in the base —1 + i. We now indicate how 
the state graph for the base —1 + i, shown in Figure 5, is constructed. 

Let p} q and r be three expansions representing the same complex 
number in the base —1 + i. The initial state S (I + 1 ) = (0, 0, 0) is 
indicated by an unlabelled arrow at the top of the state graph. Suppose 
that the expansions p, q and r agree down to the (k + l)st position; that 
is Pj = <Li = rj iorj^k + 1. This corresponds to the state S(k + 1) = 
(0, 0, 0). The base —1 + i provides a binary representation so pkr qkl rk Ç 
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(0, 1} and either 

(i) Pk = Qk = rfc 

or 

(ii) two of pk} qkl rk are equal and one is different. 

In case (i), S(k) = S(k + 1) = (0,0,0) and so the &th state is the 
same. This is indicated by the loop at the top of Figure 5. The digits in 
the &th position are 

0 
which is abbreviated to 0 + in Figure 5. In case (ii) relabel p, g, r, if neces-

0 
sary, so that pk = qk. Then the next state is either 

(iia) S(k) = (0, 1, - 1 ) with (pk, qkl rk) = (1, 1, 0) 

or 

(iib) S(k) = (0, - 1 , 1) with (pk, qk, rk) = (0, 0, 1). 

These two states are shown in the second level of the state graph in 
Figure 5. Case (iia) is the state shown in Figure 4(b), while case (iib) 
corresponds to a similar state in which pq and r are reversed. 

Now consider the successor to the state S(k + 1) = (0, 1, — 1). This 
means p(k + 1) = q(k + 1) = r(k + 1) + 1 and multiplying by the 
base — 1 + i w e obtain 

P(k) - Pk = q(k) - qk = r(k) - rk - 1 + i. 

The only possible binary values for the digits in the &th position for which 
Proposition 1 is satisfied are (pk, qky rk) = (1, 1, 0). Therefore there is 
only one directed edge leaving the state (0, 1, —1) in Figure 5 and the 
next state is S(k) = (0, i, — i), which is the one shown in Figure 4(c). 
If (pk, qkl rk) takes any values other than (1, 1,0) then the expansions 
p, q and r cannot all represent the same complex number in the base 
-1 +i. 

If S(k + 1) = (0, i, —i), there are five possible values of (pk, qk, rk) 
for which Proposition 1 is satisfied; namely 

(ia) (pk, qk, rk) = (0, 0, 0) with S(k) = (0, 1 + i, - 1 - i), 
(ib) (pk, qk, rk) = (1, 1, 1) with S{k) = (0, 1 + i, - 1 - i), 
(ii) (pky qk, rk) = (1, 1, 0) with S{k) = (0, -i, i), 

(iiia) (pk, qk, rk) = (1,0, 0) with S(k) = (1, - 1 - i, i) and 
(iiib) (pk, qk} rk) = (0, 1, 0) with S(k) = ( - 1 , - i , 1 + i). 
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[pq r] 

y\<M 
[T 

1 P1 r i 

! 7̂  fp] 
" LLHJ 

[pfql , 

LU ^ s ? 

0 r 

T T] 

FIGURE 5. The state graph for the base — 1 + i. 

Cases (ia) and (ib) lead to the same state. In the last case (iiib), the 
labels p and q can be interchanged and this then is equivalent to the case 
(iiia). Hence there are three possible successors to the state (0, i, — i) 
shown in Figure 5. 

By continuing in this manner and considering the successors to the 
states until all the possibilities have been exhausted we obtain the state 
graph shown in Figure 5. Proposition 1 now yields the following result. 

THEOREM 2. The three expansions, p, q and r will represent the same 
complex number in the base — 1 + iif and only if they can be obtained from 
an infinite directed path in the state graph of Figure 5 starting with the state 
(0, 0, 0) and, if necessary, relabelling p, q and r. 

If the infinite path remains in the initial state then p, q and r have 
identical expansions; that is pk — qk = rk for all k. If the path remains in 
the next six states then p and q have identical expansions but r has a 

https://doi.org/10.4153/CJM-1982-093-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-093-4


RADIX EXPANSIONS 1343 

different expansion which represents the same complex number as p 
and q. Finally if the path enters one of the bottom six states it is trapped 
and must cycle with period three. This implies the following corollary. 

COROLLARY 3. The numbers with three representations in the base 
— 1 + i have expansions that are ultimately periodic with period three 
whose periodic digits are Ô0Ï or ÏÏÔ. 

COROLLARY 4. For a given Gaussian integer z, there are precisely six 
numbers that have three expansions in the base — 1 + i, all with different 
integer parts, one part being z. The fractional parts of these six numbers 
are (.00I)_i+« =__(_1 - 2t)/5, (.ÔÏÔ)_1+I- _=_(1 + 3t)/5, (.IÔÔ)_i+f = 
( r 4 - 2 i ) / 5 , (.011)-!+, = (2 + *')/5, (.110)_1+i = (S + i)/5 and 
(.101)_i+i = ( - 3 - 4f)/5. 

Proof. The only sets of three different expansions obtainable from 
Figure 5 which have different integer parts, one of which is zero, are as 
follows. 

p = 000.ÔÔÏ; p = 0000.010; p = 00000.ÏÔÔ; 
q = 001.100 q = 0011.001 q = 00110.010 
r = 111.010 r = 1110.100 r = 11101.001 

p = 0001.ÎÏÔ; p = 00011.ÎÔÏ; p = 1H.ÏÎÔ 
q = 0000.011 q = 00000.Ï10 q = H0.Ô1Ï 
r = 1110.101 r = 11101.011 r = 000.101 

The values of each of these expansion can be calculated in the usual 
way by multiplying an expansion by the cube of the base and subtracting 
the expansion from it. This yields the stated values and proves the corol
lary. 

Note that there are only countably many complex numbers with three 
different expansions and they all have rational real and imaginary parts. 
However there are an uncountable number of choices of paths that leave 
the initial state but remain in the next six states and hence there are 
uncountably many complex numbers with two different expansions. This 
agrees with the geometric view. The numbers with two expansions con
taining different integer parts, one being zero, form the boundary curve 
of a snowflake region such as shown in [1], Fig. 6. Examples of such 
numbers with irrational real or imaginary parts may be constructed as 
follows. Let 0-s-iS-2S-3... be an irrational binary number in base 2. 
Then 

q = 0-0s_il0s_210s-3. • • 

r = Ms_i01s_201s_3. . . 

https://doi.org/10.4153/CJM-1982-093-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-093-4


1344 WILLIAM J. GILBERT 

are two aperiodic expansions representing the same complex number in 
base —1 + i. 

5. Multiple expansions in the base -n + i. In this section the 
multiple expansions in the base — n + i are determined for n ^ 3. The 
state graph shown in Figure 6 is similar to that for the base — 1 + i 
except that there are a few more directed edges and more choices for the 
digits at each stage. The digits pkj qkj rk £ {0, 1, 2, . . . , n2) and in 
Figure 6 the notation 

a means that pk = a + h for any integer h 

b + qk = b + h 

c rk = c + h 

such that a + h, b+h and c + h are allowable digits for the base 
-n + i\ that is, 0 ^ a + h ^ n\ 0 S b + h S n2 and 0 ^ c + h ^ n2. 

The construction of the state graph is similar to that for the base 
— 1 + i and, as before, Proposition 1 leads to the following results. 

FIGURE 6. The state graph for the base —n+i where « ^ 3. 
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THEOREM 5. Let w ^ 3 . Then three expansions p, q and r will represent 
the same complex number in the base —n + i if and only if they can be 
obtained from an infinite path in the state graph of Figure 6 starting with 
the state (0, 0, 0) and, if necessary, relabelling p, q and r. 

COROLLARY 6. The numbers with three expansions in the base —n + i 
(for n ^ 3) have expansions that are ultimately periodic with period three 
whose periodic digits are n2 — 2n+10n2or2n — In2 0. 

COROLLARY 7. For a given Gaussian integer z, there are precisely six 
numbers that have three expansions in the base —n + i (n ^ 3), all with 
different integer parts, one part being z. 

The six sets of expansions in this corollary, with one integer part zero, 
are as follows. 

p = 0 0 0 -n2 - 2n+ 1 0~ 

q = 0 0 1 • n2 n2 - 2n + 1 

r = 1 2n - 1 n2 - 2n + 2- Ô n2 

p = 1 2n - \-n2 - 2n + 1 0 

q = 0 2n • n2 n2 - 2n + 1 

r = 0 0 0 n2 n2 - 2n + 1 

p = 1 2n - 1 n2 - 2n + 1 • 0 n2 n2 - 2n + 1 

q = 1 2n n2 • n2 - 2n + 1 0 

0 0 0 • n2 n2 - 2n + 1 

p 

II 
II 

II 
II 

II 

0 1 

0 0 

1 2n 

0 1 

0 0 

-2n - 1 n2 0 

q 

II 
II 

II 
II 

II 

0 1 

0 0 

1 2n 

0 1 

0 0 

• 0 2n - 1 n2 

r 

II 
II 

II 
II 

II 

0 1 

0 0 

1 2n 

0 1 

0 0 

• n2 

2n -

0 

1 

0 2n - 1 

P 

II 
II 

II 
II 

II 

0 1 

0 0 

1 2n 

0 1 

0 0 

• n2 

2n -

0 

1 • n2 0 2n - 1 

<1 II 
II 

II 
II 

II 

0 1 

0 0 

1 2n 

0 1 

0 0 

• n2 

2n -

0 

1 

•2n - 1 n2 0 

0 2n - 1 

p = 1 2n - 1 n2 - 2n + 2>2n 

q = 1 2n - 1 n2 - 2n + 1 • 0 2n 

r = 0 0 0 • n2 0 2n - 1 

In particular, the digit set for the base — 3 + i is {0, 1, 2, . . . , 9} 
and so this base yields a decimal representation of the complex numbers. 
Therefore two numbers with three different decimal expansions are 

(O.309)_8+* = (1.940)_3+i = (155.094)_3+* = ( - 2 3 - 10i)/17 
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and 

(1.59Ô)_3+i = (O.Ô59)_34-* = (16.9Ô5)_3+< = (4 + ï)/17. 

6. Multiple expansions in the base — 2 + i. The base — 2 + i yields 
a more complicated state graph because of the extra possibilities in 
Proposition 1 and hence the extra states shown in Figure 1(g), (h) and 
(i). The state graph shown in Figure 7 is constructed in a similar way to 
the previous ones. 

FIGURE 7. The state graph for the base — 2 + i. 

As we mentioned earlier, there are some states which satisfy Proposition 
1 that have not been included. For example, suppose S(k + 1) = 
(1, — 1— iy i), the state shown in Figure 1(g). Then pk, qk, rk £ 
{0, 1, 2, 3, 4} and there are six sets of possible values of these digits in 
the &th position that satisfy Proposition 1. They are as follows. 

(ia) (pk, qkl rk) = (3, 0, 2) with S(k) = = (1 + i, 1 + i, - 2 - 2i) 

(ib) (pk, qk, rk) = (4, 1, 3) with S(k) --= (1 + i, 1 + i, - 2 - 2i) 

(iia) (pk, qk} rk) = (2, 0, 1) with S(k) = = (i,2 + i, - 2 -- 2%) 
(iib) (pk, qk, rk) = (3, 1, 2) with S(k) = = (i, 2 + i, - 2 • - 2Ï) 

("c) (pk, qk, rk) = (4, 2, 3) with S(k) --= (i ,2 + i, - 2 - 2Ï) 

(iii) (Pk, g*, rk) = (4, 0, 3) with S(k) = = (2 + i,i, - 2 - 2i). 
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The cases (ia) and (ib) are shown in Figure 7 as the farthest left vertical 
directed edge. The other cases are not shown in Figure 7 because there 
are no successor states to S(k) = (i, 2 + i, — 2 — 2Ï) or (2 + i, i, 
— 2 — 2i) satisfying Proposition 1. 

There are three possible types of states with four different expansions 
p, q, r, t, namely 

(i) p(k) = q(k) + 1 = r{k) - 1 - i = /(*) - i 

(ii) p{k) = q(k) + i = r(k) + 1 + i = /(*) + 2 + 2i 

(iii) p(k) = q(k) + 1 + i = r(k) + 2 + i = t{k) + 2 + 2L 

All the six differences between p(k), q(k), r(k) and t(k) satisfy Proposition 
1. The possible successors to the state shown in case (i) are the states 
in cases (ii) and (iii). However, these latter states have no successors 
satisfying Proposition 1 because they contain the states mentioned in 
the previous paragraph, namely 

(p(k) - q(k), q{k) - t(k), t(k) - p{k)) = (i, 2 + i, - 2 - 2i) 

and 

(p{k) - r(k), r(k) - /(*), /(*) - p(k)) = (2 + i, i, -2 - 2i). 

Hence four different expansions in the base — 2 + i cannot occur. 
One type of state that can occur, but is not shown, is S(k) = (0, i, —i). 

However, any path entering this state ends up cycling with period two 
between the states (0, - 2 - 2i, 2 + 2i) and (0, 2 + 2i, - 2 - 2i). 
Hence p and q have the same expansions but the number these expan
sions represent in fact has three different expansions. Therefore q can be 
replaced by a third expansion, different from p and r, such that the path 
corresponding to this new triple p, q, r does appear in Figure 7. For 
example, the following expansions represent the same complex number in 
the base — 2 + i. 

p = 0.120Ô4 

q = 0.12004 

r = 0.00140. 

However q can be replaced by another expansion representing the same 
complex number ; namely 

p = 0.120Ô4 

q = 0.1332 

r = 0.0014Ô. 

Eliminating such cases we obtain the following result. 

THEOREM 8. The three expansions p> q and r will represent the same 
complex number in the base —2 + iif and only if they can be obtained from 
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an infinite path in the state diagram of Figure 7 starting with the state 
(0, 0, 0), if necessary relabelling p, q and r and in some cases, if p = q, by 
replacing q by another expansion. 

COROLLARY 9. The numbers with three representations in the base 
— 2 + i have expansions that are ultimately periodic with period three, 
two or one, whose periodic digits are ÏÔ4, 340, 04 or 2. 

COROLLARY 10. For a given Gaussian integer z, there are a countable 
number of complex numbers that have three expansions in the base — 2 + i 
all with different integer parts, one part being z. 

As before there are six such numbers with period three. However, for 
this base, there are a countable number with period one and two. For 
example, a countable collection of such expansions, with one integer 
part being zero, is 

p = 01.(340)s2204 
q = 00.(034)*034Ô 
r = 14.(403)s402 

for any nonnegative integer s. 
Corollary 10 has the following geometric interpretation. For each 

Gaussian integer z, there is a snowflake region of unit area consisting of 
all the complex numbers with a base —2 + i expansion having integer 
part z [1], Figure 7. The boundary of this region is a fractal curve con
sisting of numbers with at least two expansions in base —2-\-i with 
different integer parts. This boundary intersects itself a countable 
number of times, giving rise to a countable number of points lying on 
the boundary of three such snowflake regions. 
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