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Abstract
Two-scale models pose a promising approach in simulating reactive flow and transport in evolving porous media.
Classically, homogenised flow and transport equations are solved on the macroscopic scale, while effective param-
eters are obtained from auxiliary cell problems on possibly evolving reference geometries (micro-scale). Despite
their perspective success in rendering lab/field-scale simulations computationally feasible, analytic results regard-
ing the arising two-scale bilaterally coupled system often restrict to simplified models. In this paper, we first derive
smooth dependence results concerning the partial coupling from the underlying geometry to macroscopic quanti-
ties. Therefore, alterations of the representative fluid domain are described by smooth paths of diffeomorphisms.
Exploiting the gained regularity of the effective space- and time-dependent macroscopic coefficients, we present
local-in-time existence results for strong solutions to the partially coupled micro–macro system using fixed-point
arguments. What is more, we extend our results to the bilaterally coupled diffusive transport model including a
level-set description of the evolving geometry.

1. Introduction

Multi-scale techniques are known as a powerful tool to model reactive transport in porous media [27].
They enjoyed large interest over the last decades due to their wide range of applicability in groundwater
treatment, bioremediation, soil formation due to precipitation and dissolution of minerals, or weathering
as well as technical/engineering applications and geothermal energy systems [6, 37]. For many of the
aforementioned applications, the structure of the porous medium is altered. Therefore, such problems
inherently belong to the class of free-boundary problems, i.e. moving boundary problems with a-priori
unknown interface evolution. Moving/free-boundary problems enjoy continuous mathematical concern
and development [6, 8]. An overview of methods to analyse moving boundary problems such as energy
methods or tools from operator and semi-group theory is found in [33]. Multi-scale models are typically
derived by means of volume averaging [45] or homogenisation [19] and can be extended to the situation
of evolving microstructures [27] in the context of reactive transport.

In two-scale models for reactive transport in evolving porous media such as derived in [5, 44] flow and
reactive transport equations are typically solved on the macroscopic domain. These Partial Differential
Equations (PDEs) encompass several effective parameters as coefficients such as porosity or diffusivity
that are connected to the underlying microscopic geometry. Due to the evolution of the porous medium,
the arising parameters depend on both space and time. As this evolution is for instance often driven by
chemical reactions, i.e. dependent on the solution of the transport equation, the type of models consid-
ered here inherently features a two-way coupling between the scales complicating analytical treatment.
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Figure 1. Schematic presentation of micro–macro coupling in multi-scale reactive transport mod-
els. Geometry-dependent effective parameters influence the macroscopic flow and solute transport, see
black-coloured arrows. In the fully coupled scenario, solute concentrations on the macroscopic domain
� additionally prescribe the evolution of the underlying microscopic geometry, see red-coloured arrows.

We illustrate the coupling of the macroscopic equations to the underlying geometry resolved in repre-
sentative unit cells in Figure 1. Henceforth, we distinguish two different types of coupling. The two-way
coupling between both scales will be referred to as full coupling. Commonly, also a simplified cou-
pling structure is investigated in the literature, disregarding the back-coupling from the macro to the
micro-scale, cf. Figure 1. We refer to the arising one-sided coupling as a partial coupling scenario.

An additional challenge is posed by a suitable framework to capture the evolving geometries.
A variety of convenient methods is outlined in [1] regarding the description of evolving microstruc-
tures. Commonly, level-set methods or phase-field approaches are used, in which case the macroscopic
concentrations either prescribe a normal interface velocity, cf. [44], or induce a source term to the phase
field [5], respectively. However, especially for highly symmetrical shapes, geometry evolution is often
modelled and simulated in a simplified way via Ordinary Differential Equations (ODEs) for typical char-
acteristic parameters such as the porosity in case of [35, 36] or the thickness of the precipitation layer as
in [43]. Furthermore, models can also handle the geometry evolution implicitly by computing porosity
from conservation of mass and deducing all geometry-related effective quantities therefrom by heuristic
laws, cf. [20, 41] facilitating the numerical treatment. In [14, 30] micro–macro models including fully
resolved microscopic geometries have been investigated numerically. Regarding the most general set-
ting, the associated evolution PDE (level-set or phase-field equation) is solved on reference geometries
virtually attached to each degree of freedom of the macroscopic discretisation. We note that the analysis
of upscaled diffuse interface (phase-field) models is relatively straightforward as the phase-field vari-
able describing the geometry directly enters the governing equations as coefficients. However, the direct
analysis typically involves estimates which do not hold in the corresponding sharp-interface limit, i.e.
blow up for diffusive interface width tending to zero, cf. [30] requiring an additional examination of the
limit model.

In the literature, different approaches are present to obtain existence results for the effective reactive
transport model including geometry alterations. In [12, 32] perforated microscopic domains are mapped
onto a periodic reference domain using diffeomorphisms. Existence results for the transformed micro-
scopic equations on the reference domain are then leveraged to the effective model by means of two-scale
convergence. Typically, the upscaling process of the transformed model is of increased complexity due
to the appearance of additional factors in the highest-order terms arising from the transformation itself.
Restricting to diffusion–reaction systems, [31] presents existence results to the fully coupled system
with geometry evolution modelled via an ODE for the determinant of the deformation gradient. As
such, only effects emerging from changes in the pore-space volume are reflected. Likewise, diffusion–
advection–reaction equations are treated in [11] assuming an a-priori given geometry evolution (partial
coupling).
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On the other hand, existence results can also be derived by investigating the effective model itself.
Existence of weak solutions to a homogenised diffusion-driven model with partial and full coupling
between the scales was shown in [24] using transformations of the model equations onto fixed reference
domains. However, the analysis performed requires the smoothness of the effective diffusion tensor as an
additional assumption (partial coupling) or neglects its evolution with time completely (full coupling).
Likewise, in [34], fully coupled systems with diffusion-driven transport are investigated. Furthermore,
[33] considered partially coupled systems with advection including degenerating hydrodynamic param-
eters. Yet, a key assumption is the a-priori knowledge of the relation between effective parameters and
the porosity which plays the role of an order parameter.

In this paper, we follow the latter approach performing analysis directly on the effective micro–macro
model. As a key result, we prove smooth dependence of effective parameters on the underlying geom-
etry. More precisely, we consider smoothly bounded underlying microscopic geometries and restrict to
setups precluding degeneracy of effective parameters. By describing geometry alterations by smoothly
parameterised paths of diffeomorphisms, we make use of an additional parameter characterising its
state. As such, the presented framework covers a broad range of geometry evolution which does not rely
on parameterisability by a single physical quantity such as the porosity. On the one hand, we use these
results to investigate the existence of strong local-in-time solutions to the partially coupled model poten-
tially including advective solute transport. On the other hand, we treat the scenario of full coupling and
diffusion-driven transport. In that case, the macroscopic concentrations are coupled to the full level-set
equation for geometry evolution. Thereby, we extend similar results known in the literature for simple
and restrictive geometries like cubes or spheres, cf. [34]. Moreover, we discuss sufficient conditions for
the long-term existence of solutions in the presented framework.

Our paper is outlined as follows: in Section 2, we present an established model for reactive flow
and transport in evolving porous media. Restricting to solute transport by diffusion only in Section 3,
we derive smooth dependence results for the diffusion tensor on the geometry and prove local-in-time
existence to the partially and fully coupled model. Establishing analogous results for the permeability
tensors in Section 4, smooth dependence of the Darcy velocity field on the underlying geometry is
shown. Finally, existence of solutions to the partially coupled model including advective solute transport
is proven in Section 4.4.

2. Model

This research is based on a micro–macro model for reactive flow and transport in evolving porous media
introduced by [42] where its derivation from a detailed pore-scale model by formal homogenisation
arguments was performed in two spatial dimensions. A generalisation to three dimensions was derived in
[34] by modification of the original deduction. More precisely, the model under consideration consists of
a set of coupled PDEs describing solute transport, fluid flow and geometry evolution. First, we introduce
the transport equation for a solute chemical species c on the macroscopic domain of interest � ⊂R

d with
d ∈ {2, 3}:

∂t(φc) + ∇ · (vc) − ∇ · (D∇c) = σ f (c) in (0, T) × �, (2.1)

where φ is the porosity, σ is the specific surface area, v is the flow velocity, D is the effective diffusion
tensor and f is a source/sink term due to heterogeneous reactions. As such, the parabolic equation (2.1)
models solute transport by diffusion and advection processes as well as chemical reactions at the fluid–
solid interface. In this paper, we consider equation (2.1) with Dirichlet boundary conditions as well as
initial conditions of the form:

c(t, x) = C0(t, x) t ∈ (0, T), x ∈ ∂�,

c(0, x) = c0(x) x ∈ �,

cf. Theorem 3, 6.
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The effective parameters in (2.1) are derived from unit cells Y = (− 1
2
, 1

2

)d representing a local ref-
erence elementary volume of the underlying geometry. The respective exterior boundary is denoted by
∂Y . For the following, we consider solid inclusions compactly contained within Y . Let us denote the
remaining fluid domain therein by P and the interior boundary by ∂ intP , cf. Figure 1. The diffusion
tensor is then given as

Di,j(t, x) :=
ˆ
P(t,x)

(
∂yiζj + δij

)
dy, i, j ∈ {1, . . . , d}, (2.2)

with Kronecker delta δij, where ζj are the solutions to the following elliptic problems:

−∇y · (∇yζj) = 0 in P(t, x),

∇yζj · ν = −ej · ν on ∂ intP(t, x), (2.3)

ζj periodic in y,
ˆ

P(t,x)

ζj dy = 0,

with outer unit normal ν = ν(t, x, y). For the derivation in the context of evolving geometries, see [42].
In this case, the evolution is reflected in time-dependent domains. Note that the shape of the elliptic
problem (2.3) is identical to the one derived under the assumption of fixed underlying geometries in
[18], leading to fixed domains P . We refer to (2.3) as diffusion cell problems.

Second, the advective flow field v and the associated pressure field p are given by Darcy’s
equation:

v = −K

μ
∇p in �, t ∈ (0, T), (2.4)

∇ · v = 0 in �, t ∈ (0, T),

with viscosity μ and permeability tensor K. As μ is a constant being characteristic to the solvent, we
set it to one for convenience. Darcy’s equation is supplemented by the following boundary condition:

p(t, x) = p0(t, x) t ∈ (0, T), x ∈ ∂�Dir,

v(t, x) = v0(t, x) t ∈ (0, T), x ∈ ∂�flux,

with a partition ∂�Dir∪̇∂�flux = ∂�. For uniqueness of the pressure solution, a positive measure of ∂�Dir

is required.
Note that the condition of a divergence-free velocity field in (2.4) is a common simplification as

discussed in [14]. Due to the much larger time-scale of geometry evolution compared to fluid flow, it is
justified to disregard the flow induced by fluid displacement arising from a variable pore-space volume.

The permeability tensor in (2.4) is defined as

Ki,j(t, x) :=
ˆ
P(t,x)

ωi
j dy, i, j ∈ {1, . . . , d}, (2.5)

where (ωj, πj) are the solutions to the Stokes-type problems, cf. [42]:

−�yωj + ∇yπj = ej in P(t, x),

∇y · ωj = 0 in P(t, x), (2.6)
ωj = 0 on ∂ intP(t, x),

ωj, πj periodic in y,
ˆ

P(t,x)

πj dy = 0.

Likewise, the shape of the Stokes-type problem is identical to the one derived under the assumption of
fixed underlying geometries in [18]. Again, the evolving geometry is reflected in the time-dependent
domains. We refer to (2.6) as permeability cell problems. Note that both cell problems (2.3), (2.6) result
in symmetric positive semi-definite tensors D, K.
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Finally, the level-set method is used to describe the evolving underlying geometries [37]. Therefore,
we assume the existence of a level-set function �0 : � × Y →R characterising the solid part within
the unit-cell attached to the macroscopic point x ∈ � at initial time by {�0(x, ·) > 0}. Consequently,
{�0(x, ·) < 0} refers to the fluid domain P and {�0(x, ·) = 0} denotes the fluid–solid interface ∂ intP . We
require that the gradient of �0 does not vanish along the zero-level-set to ensure the representation of
a submanifold of codimension one. For a normal interface velocity field vn : (0, T) × � × Y →R, the
evolution of �0 is described by the level-set equation for � : (0, T) × � × Y →R, cf. [37]:

∂�

∂t
+ vn|∇y�| = 0 in (0, T) × � × Y , (2.7)

�(0, ·, ·) = �0 in � × Y .

Due to the finite propagation speed of information in (2.7), cf. [10], we refrain from posing explicit
boundary conditions on (0, T) × � × ∂Y here, see also Section 3.4. The different sub-domains of Y
(fluid domain, solid domain, interface) at a certain time t are encoded by the sign of �(t, ·, ·) according
to the convention for the initial condition �0 above. As such, the level-set function uniquely determines
porosity φ and specific surface σ as required in (2.1) via

φ(t, x) =Hd({�(t, x, ·) < 0}), σ (t, x) =Hd−1({�(t, x, ·) = 0}), (2.8)

using the d-dimensional Hausdorff measure Hd. The interface velocity is coupled to the chemical
reaction in a mass conserving way, e.g.

vn(t, x, y) = −vmod(y)f (c(t, x)), (2.9)

potentially using a scalar speed modification function vmod which allows for a varying normal interface
velocity within a unit-cell, cf. [13]. Depending on the sign of f , the model allows for shrinking as well
as growing interfaces. Necessary restrictions on the shape of f are discussed in Sections 3.3, 3.5.

3. Smooth parameter dependence and existence for diffusive transport

In this section, we consider a special case of the model introduced in Section 2. Neglecting advective
transport for the solute species, we consider the partially and fully coupled case, cf. Figure 1. As such, the
coupling from the micro to the macro-scale is conveyed by φ, σ andD only, facilitating the analysis. After
discussing the setup in more detail, this section first considers the smoothness of the partial coupling.
Therefore, we investigate the dependence of the diffusion tensor D on deformations of the microscopic
geometry via diffeomorphisms in Section 3.2 as the principle step to establish existence results for the
partially coupled problem in Section 3.3. Moreover, we show the induction of suitable diffeomorphisms
by the level-set equation in Section 3.4. By doing so, we establish regular dependence of the required
effective quantities φ, σ , D on the level-set equation’s time variable, enabling the application of fixed-
point arguments. This ultimately leads to local-in-time existence results for the fully coupled case, cf.
Figure 1, in Section 3.5. The roadmap for this section as described above is illustrated in Figure 2.

3.1. Setting

For the following, we consider solute transport by diffusion only. As the term ∂t(φc) in (2.1) is difficult
to handle analytically, it is shifted to the right-hand side, cf. [34]. Therefore, we write

φ∂tc − ∇ · (D∇c) = σ f (c) − ∂tφc in (0, T) × �, (3.1)

rendering the equations for flow and permeability determination (2.4), (2.6) superfluous. Hence, it is
sufficient to close the model regarded in this section by (2.3), (2.7) and (2.9). We emphasise that the
following considerations assume good-natured conditions such as the smoothly bounded solid geometry
being compactly contained within the unit-cell Y . By considering local-in-time estimates, this setting
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Figure 2. Roadmap for Section 3: Key steps to perform fixed-point argument on existence of solutions
of the model specified in Section 3.1. Main statements are given in blue boxes, linking lemmas, theorems
and corollaries are highlighted in red boxes. Black arrows indicate the steps necessary in the partial
coupling scenario, red arrows refer to additional steps necessary for the fully coupled case, cf. Figure 1.

is maintained by an appropriate choice of initial conditions. Using diffeomorphisms to describe solid
alteration, we particularly exclude clogging scenarios and degenerating equations.

3.2. Continuous dependence of diffusion tensors

In order to prove existence to the model described in Section 3.1, we make extensive use of existence
theory for linear parabolic equations, cf. Theorem A.3 in the appendix. As such, we require moderate
regularity for D as the coefficient of the leading order term in (3.1).

Therefore, this section is concerned with the dependence of the diffusion tensor D on the evolving
geometry. To do so, we first focus on a single unit cell and therefore on a single cell problem posed on
the fluid domain P . While regarding (t, x) as independent parameters for now, we present in Section 3.3
how regularity with respect to the macroscopic variables is established. The method presented consists
of three steps: At first, we establish higher regularity for weak solutions to the diffusion cell problem
(2.3). Although using standard methods, we state the results in detail due to the uncommon periodic
boundary conditions. Based on that, a mapping between the geometry and the elliptic PDE’s solution
of desired regularity is constructed using the implicit function theorem following the technique of [16].
Finally, we extend our smoothness results from the solutions ζj, j ∈ {1, . . . , d}, of (2.3) to the diffusion
tensor D which is given as an affine-linear functional of ζj, cf. (2.2).

For the formulation of problem (2.3) and our regularity result Lemma 3.1, we assume ∂ intP to be
C2,1-regular. As it becomes apparent in Theorem 1, it is necessary to consider the full class of elliptic
PDEs of type (2.3) with general source term and Neumann boundary conditions. In a first step towards
a suitable weak formulation of problem (2.3), we introduce periodic Sobolev spaces according to [8].
Let Pext ⊂R

d denote the perforated domain obtained by periodic extension of P in R
d. Then we define

Hk
#(P) for k ∈N as the closure of Y-periodic functions in C∞(Pext) with respect to the Hk-norm. For the

weak formulation of the diffusion cell problem with Neumann boundary conditions, we introduce the
following function spaces:

Hk
#,0(P) =

{
v ∈ Hk

#(P) :
ˆ
P

v dy = 0

}
,

equipped with the norm ||u||Hk
#,0(P) = ||u|P ||Hk(P).
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Accordingly, the weak problem with general source term f and Neumann boundary condition g reads:
Find u ∈ H1

#,0(P) such that
ˆ
P

∇u · ∇v dy −
ˆ

∂ intP
gv dσ =

ˆ
P

fv dy, ∀v ∈ H1
#(P), (3.2)

with g ∈ L2(∂ intP), f ∈ L2(P). Apparently, the compatibility condition
´
P

f dx = − ´
∂ intP

g dσ is necessary

for solvability.
Next, we establish unique solvability for the above problem and present conditions ensuring solutions

to be of higher regularity. Particularly, a C2,1-regular interior boundary ∂ intP proves to be sufficient for
equations (2.3) to hold in the L2-sense and therefore point-wise almost everywhere in P .

Lemma 3.1. Elliptic regularity. Problem (3.2) as the weak generalisation of (2.3) has a unique solution
u ∈ H1

#,0(P). Let k be an integer number k ≥ 0. If the interior boundary ∂ intP is furthermore Ck+2,1-
regular and g ∈ Hk+ 1

2 (∂ intP), f ∈ Hk
#(P) fulfilling the compatibility condition

´
P

f dx = − ´
∂ intP

g dσ , then

u ∈ Hk+2
#,0 (P).

Proof. The coercivity of the bilinear form on the Hilbert space H1
#,0(P) is guaranteed by Poincaré’s

inequality. The Lax–Milgram theorem therefore implies the unique existence of a solution u ∈ H1
#,0(P)

to the weak formulation, cf. [8].
Let us now suppose that ∂ intP is Ck+2,1-regular. By the surjectivity of the higher-order trace operator

continuously extending the following function, cf. [27],

Trk : Hk+2(P) →
k+1∏
l=0

Hk−l+ 3
2 (∂ intP), ∀u ∈ Hk+2(P) ∩ Ck+1(P̄),

Trku = (
u|∂ intP , ∂νu|∂ intP , · · · , ∂ k+1

ν
u|∂ intP

)
,

we find a function  ∈ Hk+2
#,0 (P) with

∂

∂ν
= ∂u

∂ν
on ∂ intP in the trace sense vanishing in a neighbourhood

of ∂Y . Exploiting linearity of the problem and carrying out the subsequent argument for u −  and
the corresponding source term f̃ = f − � ∈ Hk(P), we can assume homogeneous Neumann boundary
conditions. By Theorem 3 of [25], the required interior higher regularity is established. Following the
lines of Theorem 4 of [25], higher regularity is also obtained in a neighbourhood of every interior
boundary point y ∈ ∂ intP . Using an open covering argument, we obtain u ∈ Hk+2

#,0 (P).

Remark 3.2. Neumann boundary conditions. As ∂ intP is of class C2,1, ν · e1 ∈ H
1
2 (∂ intP) holds.

Furthermore, we have
´

∂ intP ν · e1 dσ = 0 by Gauss’s theorem. As such, the last lemma covers the unique
solvability of problem (2.3) in H2

#,0(P) and the equation holds in a point-wise almost-everywhere sense.

Remark 3.3. Higher regularity for homogenised model. Note that the higher regularity result of Lemma
3.1 holds for the diffusion cell problems of the homogenised model. However, regarding the upscaling
process from the associated pore-scale diffusion equation to the effective one considered here, the con-
vergence of the sequence of transport problems cε defined on the ε-periodic domains �ε against the
homogenised solution c is not valid with respect to these stronger norms. This is essentially due to the
absence of uniform boundedness of cε with respect to ε.

Remark 3.2 enables us to define mappings from the solution space of equation (3.2) to the bulk and
boundary data spaces with a point-wise interpretation. More precisely, we consider such mappings which
involve the geometry alteration as a parameter. This idea poses the main ingredient in the subsequent
investigation of the dependence of solutions to the weak problem (3.2) and functionals thereof on the
geometry P . Following the approach presented by [16], a Lagrangian description of the initial problem
on varying domains is taken. The main step is to rewrite the equation on a fixed domain of reference
P . This technique has also been successfully applied to the homogenisation of PDEs on non-uniformly
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Figure 3. Smooth deformation of domain P with circular inclusion mediated by a diffeomorphism
h ∈ Diff1

�(Ȳ). As h preserves the exterior boundary ∂Y , the image-set h(P) is an admissible unit cell
pore-space geometry.

periodic or evolving domains in the context of porous media [11, 17, 30] or shape optimisation min-
imising energy functionals depending on a PDE’s solution [39]. In order to re-define functions mapping
from the altered domains as functions on a fixed domain of reference, we make use of the concept of
diffeomorphisms and pullbacks:

Definition 1. Diffeomorphism. Let h : Y → h(Y) ⊂R
d be a bijective mapping with h ∈ Ck,α(Y , Rd) for

k ≥ 1, α ∈ [0, 1]. We call h a diffeomorphism of class Diffk,α(Y , Rd) iff the inverse h−1 satisfies h−1 ∈
Ck,α(h(Y), Y).

The action of a diffeomorphism on the set P ⊂ Y is illustrated in Figure 3.

Definition 2. Pullback. Let h be a diffeomorphism h ∈ Diff1(Y) ⊂ C1(Y , Rd) and l : h(Y) →R
n, n ∈N.

We define the pullback h∗ by

h∗(l) : Y →R
n, h∗l(x) := l(h(x)).

Note that the pullback is a linear operation and its inverse is given as (h∗)−1(l) = (h−1)∗(l).
Furthermore, for sufficiently smooth diffeomorphisms, the pullback is a bounded operator between the
Hm function spaces on the original and deformed set, cf. [16, 23]. In Example 3.5, we present an explicit
construction of a family of diffeomorphisms mapping circular inclusion of different radii to one another
and provide illustrations of the associated pullback of a distance function in Figure 4.

Using the tools introduced in Definitions 1 and 2, we are now able to characterise solutions to (3.2) on
the domain h(P) as roots of a function F. Taking a Lagrangian point of view, we work on a fixed domain
of reference P . As such, functions first need to be conveyed to the deformed domain h(P) where the
differential operators according to (2.3) are applied. Performing a pullback with the inverse deformation,
functions are translated back onto the domain of reference. Accordingly, let us consider the following
mapping:

F : H2
#,0(P) × Diff2,1(Ȳ) → L2

0(P) × H
1
2 (∂ intP), (3.3)

F(u, h) =
⎛
⎝h∗�h∗−1u −

 

P

h∗�h∗−1u dy, h∗Trh(P)

(
νh(P) · (∇h∗−1u − e1)

)⎞⎠= (F1, F2),

where νh(P) denotes the outer unit normal with respect to the domain h(P) and Trh(P) the standard trace
operator on h(P). Note that the normal vectors can be extended within a tubular neighbourhood of ∂ intP ,
cf. Theorem A.1. By the trace theorem and change of variable rule, F is well-defined as a mapping
between the stated spaces. Note that in the first component F1 a vanishing mean value is enforced.
Thereby, we eliminate an additional degree of freedom to ensure surjectivity of F.

Since the image of the unit-cell under an arbitrary diffeomorphism may not be a unit cell, we must also
introduce a restricted class of deformations. Therefore, let Diff�(Ȳ) denote the set of diffeomorphism
preserving the exterior boundary ∂Y defined by:

Diffk,α
� (Ȳ) = {

h ∈ Diffk,α(Ȳ , Ȳ) : h|U = idU

}
, (3.4)
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Figure 4. Visualisation of diffeomorphism (3.7) for r2 = 0.3, r1 = 0.1: (a) illustrates the related circles
(r2-black, r1-red) posing the interior boundary of the domain. (b) The displacement field is shown, i.e.
hr1 − idY . As enforced by the interpolation function ξ in (3.7), the displacement smoothly vanishes close
to the exterior boundary ∂Y . (c), The graph of hr1 , cf. (3.7), is shown along the y1 axis illustrating the
three different sections (uniform contraction, transition and identity). (d) Displays the pullback h∗

r1
(�)

with �(y1, y2) = r1 − ||(y1, y2)||2. Contour lines uniformly spaced in increments of 0.1 are added in white.
The zero-level-set of h∗

r1
(�) highlighted in red corresponds to a circle of radius r2.

for some fixed neighbourhood ∂Y ⊂ U ⊂ Ȳ . In fact, the diffeomorphism illustrated in Figure 3 belongs
to this specified class. The construction (3.4) is inspired by the Hanzawa transformation, cf. [32], and
requires the diffeomorphism to decay smoothly towards the identity at the exterior boundary. As such,
periodic functions with respect to Y admit a periodic pullback for h ∈ Diffk,α

� (Ȳ). The importance of the
mapping F defined in (3.3) is now reflected in the following characterisation property. For u ∈ H2

#,0(P),
it holds

F(u, h) = (0, 0) ⇐⇒ ζ1 = h∗−1u −
 

h(P)

h∗−1u dy solves (2.3) weakly in h(P),

for all h ∈ Diff2,1
� (Ȳ). As such, we established a one-on-one relation between the roots of F and the PDE’s

solution on the deformed domain h(P).
We will now apply the implicit function theorem to F to obtain a continuous mapping h �→ u in the

respective spaces as summarised in Theorem 1 below. As a result, a relation between the deformation
of P and the associated solution to (2.3) is established. Therefore, we check the following properties:
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Continuity of F: Let us denote the pullback of u via h−1 by v = h∗−1u constituting a function on h(Ȳ)
and the image point on h(Ȳ) by y = h(x). First, we consider the first term of the first component F1 of
the mapping F. By applying the chain rule, we have

h∗�h∗−1u(x) = �v(y) = �u(h−1(y)) = (3.5)
d∑

i,j=1

∂2u

∂xi∂xj

(
d∑

k=1

∂h−1
i

∂yk

∂h−1
j

∂yk

)
+

d∑
i=1

∂u

∂xi

(
d∑

k=1

∂2h−1
i

∂yk∂yk

)
.

Note that by the inverse function theorem and the representation of a matrix’ inverse via the cofactor
matrix, we can rewrite all partial derivatives of h−1

i (y) as a function of derivatives of hi(x) only involving
multiplications and division by det(∇h(x)). By the uniform boundedness of the last expression away
from zero, this map is in particular locally Lipschitz continuous. For any sequence (ui, hi)i∈N in H2

#,0(P) ×
Diff2,1(Ȳ) converging to (u, h) in the product topology, we have the convergence of the derivatives of ui

in L2 and the convergence of the derivatives of hi uniformly. Hence, expression (3.5) is continuous in
(u, h) ∈ H2

#,0(P) × Diff2,1(Ȳ). As the integral is a linear and bounded operator
´

: L2(P) →R, we obtain
continuity for F1.

We can apply the same strategy to prove continuity of the second component F2 of F. Noting the
representation

νh(P)(y) = (∇h)−T(x) νP (x)||(∇h)−T(x) νP (x)||−1
2

derived in [16] using the inverse transposed Jacobian matrix (∇h)−T , we compute

F2(u, h)(x) = h∗Trh(P)

(
(νh(P) · ∇h∗−1u)(y) − νh(P)(y) · e1

)
= TrP

⎛
⎝((∇h)−TνP

) ·
[

d∑
i=1

∂u

∂xi

∂h−1
i

∂yj

− δj,1

]
j

· ||(∇h)−T(x) νP (x)||−1
2

⎞
⎠

for x ∈ ∂ intP . As Diff2,1(Ȳ) ⊂ C2,1(Ȳ , Rd) is open, we conclude the continuity of F on a neighbourhood
V of (u, idȲ).

Continuity of F′
u: By Definition 2 the pullback operator is linear. Using the linearity of the differential

and trace operators involved, we conclude

F′
u(u, h)(w) =

(
h∗�h∗−1w −

 
P

h∗�h∗−1w dy, h∗Trh(P)(νh(P) · ∇h∗−1w)

)

for all w ∈ H2
#,0(P). Following the arguments from above, we obtain continuous Fréchet differentiability

with respect to the first argument on a neighbourhood V of (u, idȲ).
Bijectivity of F′

u: The bijectivity of F′
u(u, idȲ) onto L2

0(P) × H
1
2 (∂ intP) is equivalent to finding a unique

solution to the elliptic problem (2.3) on P . More precisely, for a given point (f , g) in the image space
of F, we search for a weak solution u for the Neumann boundary condition g and source term f + c
for a constant c ∈R. By Lemma 3.1, there exists exactly one c such that the problem admits a solution
(compatibility condition) in H2

#,0(P). In that case, the solution is unique. Note that due to the set of
invertible bounded linear operators between Banach spaces being open and the continuity of F′

u, the
bijectivity property of F′

u in fact holds on a neighbourhood of (u, idȲ).
Summarising the above arguments, we conclude the following statement.

Theorem 1. Continuous dependence of weak solutions to (2.3) on diffeomorphisms. Assume a C2,1

open set Y \ P̄ ⊂ Y being compactly contained in Y and u ∈ H2
#,0(P) such that F(u, idȲ) = (0, 0), i.e. u

is a solution to problem (3.2). Then there exists a neighbourhood V ⊂ C2,1(Ȳ) of idȲ and a continuous
function g : V → H2

#,0(P), g(idȲ) = u, such that

F(g(h), h) = (0, 0), ∀h ∈ V .

Particularly, h∗−1g(h) solves (3.2) up to an additive constant on h(P) for all h ∈ Diff2,1
� (Ȳ) ∩ V .
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Proof. This is an immediate consequence of the implicit function theorem for Banach spaces as given
in [41] and the arguments above.

By the previous theorem, we established a continuous relation between the diffeomorphism h describ-
ing the alteration of the domain P and the pullback of the solution g(h) to the associated problem (2.3).
In a final step, we show that the continuous dependence carries over to the desired quantity D defined
in (2.3):

Corollary 3.4. Continuous dependence of D on diffeomorphisms. Under the assumptions of
Theorem 1, the mapping

R : V →R, h �→
ˆ

h(P)

∇h∗−1g(h) dy

is continuous. Therefore, the diffusion tensor depends continuously on Diff2,1
� (Ȳ)-variations of the

domain P .

Proof. By the change of variables theorem and chain rule, we have
ˆ

h(P)

∇h∗−1g(h) dy =
ˆ
P

∇gh(x) · ∇h−1(h(x))· | det(∇h(x)) | dx (3.6)

=
ˆ
P

∇gh(x) · ∇h(x)−1· | det(∇h(x)) | dx.

As g is continuous with respect to the H2-norm in the image space, continuity of the functional is
proven.

By the previous corollary, we established the continuous behaviour ofD on h ∈ Diff2,1
� (Ȳ) in the topol-

ogy of C2,1(Ȳ). However, this degree of regularity is insufficient for our later purposes, cf. Theorem A.2.
In order to obtain stronger results, we specify the setting more tailored to our later application. Let
us now consider a smooth mapping h : (−S, S) → Diff2,1

� (Ȳ) for some artificial time horizon S > 0 and
h(0) = idȲ . This relates to a 1-parametric deformation of the initial geometry.

Example 3.5. Continuous path of diffeomorphisms. Consider inclusions Y \ P̄ of circular shape and of
different radii. In this case, a smooth diffeomorphism on Y can be easily constructed by radially com-
pressing/expanding annuli within a compact subset of Y . Given two radii 0 < r1 ≤ r2 < 1

2
, a deformation

mapping a circle of radius r2 to a circle of radius r1 is defined by

hr1 (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y, |y| > 1
2
,

(1 − ξ (|y|))y + ξ (|y|)
(

r1
r2

y
)

, r2 ≤ |y| ≤ 1
2
,

r1
r2

y, |y| ≤ r2

(3.7)

choosing a suitable ξ ∈ C∞ ([r2, 1
2
]
)

with ξ ′ ∈ C∞
0

(
(r2, 1

2
)
)
, ξ (r2) = 1, ξ ( 1

2
) = 0, see [9]. As such, the

domain remains unchanged for |y| > 1
2

and is uniformly contracted for |y| ≤ r2 with a smooth convex-
combination layer in between. We illustrate this procedure for the choice r2 = 0.3, r1 = 0.1 in Figure 4.
For r2 fixed, we can consider the path

h ∈ C0
(
0, r2;Diff2,1

� (Ȳ)
)

, h : s �→ hs.

Then R ◦ h with R being defined in Corollary 3.4 is also a continuous mapping. Consequently, the
diffusion tensor depends continuously on s.
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In the following, we prove differentiability of the diffusion tensors along such 1-parametric curves.
More precisely, Cm-mappings h : (−S, S) → Diff2,1

� (Ȳ) will be considered. Accordingly, we switch the
above setting to the following:

F : H2
#,0(P) × (−S, S) → L2

0(P) × H
1
2 (∂ intP),

F(u, s) =
⎛
⎝h∗

s �h∗−1
s u −

 

P

h∗
s �h∗−1

s u dy, h∗
s Trhs(P)

(
νhs(P) · (∇h∗−1

s u − e1)
)⎞⎠ ,

tracking along a fixed path of diffeomorphisms in comparison to (3.3). In order to obtain higher dif-
ferentiability of the resolution function g in Theorem 1, higher regularity of F needs to be established.
Revisiting the calculations performed in (3.5) we immediately see a transfer of regularity to F with
respect to the second variable. As the mapping is linear with respect to the first variable, we again obtain
Cm-regularity for F. More precisely, the following theorem holds extending the smooth dependence
results for simple parametric families of shapes as derived in [9, 34].

Theorem 2. Smooth dependence of solutions to (2.3) on geometric parameter. Consider a Cm-curve s �→
hs of Diff2,1

� (Ȳ)-embeddings and h0 = idȲ for m ≥ 1. Assume a C2,1 open set Y \ P̄ ⊂ Y being compactly
contained in Y and u ∈ H2

#,0(P) such that F(u, 0) = (0, 0), i.e. u is a solution to problem (3.2). Then there
exists a neighbourhood V of zero and a Cm-function g : V → H2

#,0(P), g(0) = u, such that

F(g(s), s) = (0, 0), ∀s ∈ V .

Particularly, h∗−1
s g(s) solves (3.2) up to an additive constant on h(P) for all s ∈ V .

Proof. This is again an immediate consequence of the implicit function theorem for Banach spaces as
given in [41].

Again, we can leverage this regularity to the diffusivity tensors (2.2).

Corollary 3.6. Smooth dependence of D on geometric parameter. Under the assumptions of
Theorem 2, the mapping

R : V →R, s �→
ˆ

hs(P)

∇h∗−1
s g(s) dy

is m-times continuously differentiable. Therefore, the diffusion tensor (2.2) depends Cm-regularly on
variations of the domain P along a path of diffeomorphisms of specified regularity.

Proof. Since the map s �→ hs is Cm-regular, we establish the same degree of Fréchet differentiability
in the spatial derivatives s �→ ∇hs as mappings (−S, S) → C1(Ȳ , Ȳ) with respect to the corresponding
norms. Revisiting the calculations performed in (3.6) and using the product rule for Fréchet differentiable
functions, we conclude the assertion.

Remark 3.7. Finite dimensional parametrisation. Due to the mathematical structure of the problem,
Theorem 2 holds analogously for families of diffeomorphisms that are parameterisable by a finite num-
ber of parameters. As such, the real-valued order parameter s can be replaced by its vector-valued
analogue, allowing for more sophisticated couplings and more complex geometries. A natural field of
application is posed by two-mineral-phase solids, cf. [14], where the two interacting phases obey their
distinct evolution laws.

3.3. Existence for partial coupling

In this section, we present an existence result for strong local-in-time solutions to (3.1) under the assump-
tion of no back-coupling from the macro- to the micro-scale, cf. Figure 1. That is, we assume the
evolution of the underlying pore geometry to be known a-priori. As such, the treatment of the problem is
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Figure 5. Left: Master unit cell Y∗ with interior boundary ∂ intP∗ in black corresponding to s = 0. Each
colour corresponds to the interior boundary of a deformed cell which is reachable from P∗ along a path
of diffeomorphisms parameterised by s. Right: Macroscopic domain � coloured according to the initial
underlying geometry displayed in the left image. For the two exemplary macroscopic points x1, x2 ∈ �

the associated microscopic geometry is displayed.

accessible more easily in comparison to the fully coupled system which we will discuss in Section 3.5.
In [34], a similar fully coupled problem was solved under the assumption of effective parameters being
parameterisable by the porosity φ in a smooth and a-priori known way. As opposed to this restriction, we
will introduce a new order parameter s which corresponds to the parametrisation in the path of diffeo-
morphisms used to describe evolved initial geometries. Particularly, this approach allows for the opposite
description of multiple geometries which admit the same porosity. Due to the identical structure of the
model, we will use the methods of [34] for our following analysis.

To this point, we considered an initial geometry P of class C2,1 and a parameterised path of diffeo-
morphisms h : (−S, S) → Diff2,1

� (Ȳ) of class C1 with S ∈R
+ and h0 = idȲ . In order to allow for spatial

variations of effective parameters, we realise the prescription of the geometry evolution by specifying
s : �T → (−S, S). That is, we assume the state of each microscopic unit cell Y(t, x) to be given as the
state of a single master unit cell Y∗ at time-parameter s(t, x). The corresponding setup is visualised in
Figure 5 illustrating the assignment of initial conditions on �. Accordingly, the effective parameters
of (3.1) are given by φ(s), σ (s), D(s). Note that we perform the necessary redefinition of the functions
φ, σ , D to mappings from an open interval of R without change of notation. We furthermore restrict to
the non-degenerative case, i.e. we assume

∀s ∈ (−S, S) : 0 < φ(s) < 1, σ (s) > 0, D(s) > 0, (3.8)

where the last inequality holds in the sense of matrices (Loewner partial ordering). This assumption is
naturally fulfilled for small times t > 0 by suitably prepared initial conditions. Moreover, we restrict our
consideration to locally Lipschitz reaction rates f (c) generalising the linear reaction rates prescribed in
[34]. Finally, we state the following anisotropic Sobolev spaces:

X1 := W1,2
r (�T) = Lr(0, T;W2,r(�)) ∩ W1,r(0, T;Lr(�)),

with r > d + 2 which play a crucial role in the subsequent existence result. Following the major steps of
[34], we have

Theorem 3. Existence of strong solutions, partial coupling, diffusive transport. Let � ⊂R
d, d ∈ {2, 3},

be a C2-domain, r > d + 2 with initial conditions c0 ∈ W2− 2
r ,r(�) and Dirichlet boundary conditions

C0 ∈ W
1− 1

2r ,2− 1
r

r (∂�T) being compatible in the sense of C0(0, ·) = c0 on ∂�. Moreover, let the evolution of
the pore-space geometry be given by an order parameter s ∈ C1(�T1 ), s(t, x) ∈ (−S + ε, S − ε), ε > 0,
∀(t, x) ∈ �T , and a path h ∈ C1(−S, S;Diff2,1

� (Ȳ)) of diffeomorphisms such that h0 = idȲ . Assume the initial
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inclusion Y∗ \ P̄ ⊂ Y∗ to be a compactly contained C2,1 open set. Let (3.8) hold true and f be locally
Lipschitz. Then there exists a time 0 < T ≤ T1 such that (3.1) admits a unique solution c ∈X1.

Proof. First, we note that using the results of Theorem 2 the mapping D : (−S, S) →R
d,d is of class C1

and accordingly D ◦ s ∈ C1(�T1 ). Similarly, we obtain φ ∈ C1((−S, S)) as a consequence of the following
representation:

φ(s) =
ˆ

hs(P)

1 dy =
ˆ

P

|det (∇hs)| dx

using the change of variables theorem. In order to establish regularity for σ , we consider h(∂ intP)
as an evolving manifold. Let ϕ : U ⊂R

d−1 →R
d be a suitable local parameterisation of ∂ intP . Then,

ϕ̂ : (−S, S) × U →R
d defined as

ϕ̂(s, x) := hs(ϕ(x))

is a parameterisation of hs(∂ intP) for each s ∈ (−S, S). Using the regularity of ϕ̂, we infer continuity of
the mapping

s �→
ˆ

hs(ϕ(U))

1 dσ =
ˆ

U

√
det

(∇ϕ̂(∇ϕ̂)T
)

dx

which translates to the continuity of σ by using a partition of unity subordinate to the domains of param-
eterisation, cf. [22]. As a result of the continuity of all effective parameters with respect to s, there exists
a δ ∈ (0, 1) such that:

∀s ∈ (−S + ε, S − ε) : δ < φ(s) < 1 − δ, σ (s) > δ, D(s) > δ1d. (3.9)

Note that the continuity of the eigenvalues is inherited from the continuity of D, cf. [20]. Following the
technique presented in [34], the proof is now based on Schauder’s fixed-point theorem applied to the set

K1 = {
c ∈X1 : ||c||X1 ≤ K

}
for a constant K ≥ 1 chosen appropriately later. Apparently, K1 is a convex, closed and bounded subset
of X1. In order to apply standard linear solution theory of parabolic equations, we rewrite equation
(3.1) in the following fixed-point form:

∂tc − ∇ ·
(
D(s)

φ(s)
∇c

)
= −∂t[φ(s)]

φ(s)
c̃ + σ (s)

φ(s)
f (c̃) + D(s)

φ(s)2
∇[φ(s)] · ∇ c̃. (3.10)

Now consider the mapping F1 : K1 → Lr(�T) which maps a concentration c̃ ∈K1 to the right-hand
side of (3.10). Using the compact embeddings

X1 ↪→ W
3
4 , 3

2
2r (�T), X1 ↪→ C

1
2 ,1(�T), (3.11)

F1 shows to be compact, cf. [34]. Furthermore, the parabolic theory of Theorem A.3 delivers a contin-
uous solution operator F2 : Lr(�T) → W1,2

r (�T) to (3.10). More precisely, we apply Theorem A.3 to the
above-prescribed initial and boundary conditions with coefficients defined as

ai,j(t, x) = Di,j(s(t, x))

φ(s(t, x))
, ai(t, x) = −

d∑
j=1

∂j

(
Di,j(s(t, x))

φ(s(t, x))

)
, a(t, x) = 0

and source term f according to the right-hand side of (3.10).
As such, for a given c̃ ∈X1, we have

||c||X1 ≤ Cp

(
DC +

∥∥∥∥−∂t[φ(s)]

φ(s)
c̃ + σ (s)

φ(s)
f (c̃) + D(s)

φ(s)2
∇[φ(s)] · ∇ c̃

∥∥∥∥
Lr (�T )

)
,
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abbreviating the contributions from initial and boundary data by

DC := ||c0||W2− 2
r ,r (�)

+ ||C0||
W

1− 1
2r ,2− 1

r
r (∂�T )

.

Due to f being locally Lipschitz, there exists a monotone function f̃ satisfying

f̃ : [0, ∞) →R, |f (x)| ≤ f̃ (|x|), (3.12)

Similar to the estimates established in [34], we obtain using Hölder’s inequality and (3.12)

||c||X1 ≤ Cp

(
DC + CsT

1
r |�| 1

r

(
||c̃(t)||L∞(�T ) + f̃ (||c̃||L∞(�))

))
+ CpCs

(
T

1
2r ||∇[φ(s)]||L∞(0,T;L2r (�))||∇ c̃||L2r (0,T;L2r (�))

)
,

with constant Cs depending on the bounds of σ , φ, ∂tφ, D, cf. (3.9). By the embeddings (3.11), every
appearing norm of c̃ is bounded by a multiple of ||c̃||X1 and therefore by a multiple of K. As such, we
obtain the self-mapping property ofF =F2 ◦F1 : K1 →K1 for sufficiently large K and sufficiently small
T , finishing the existence proof. Uniqueness follows analogously to [34] by considering two solutions
c1, c2 ∈X1 as well as their difference c̄ = c2 − c1. Subtracting both associated equations in fixed-point
form (3.10), we obtain

∂t c̄ − ∇ ·
(
D(s)

φ(s)
∇ c̄

)
= −∂t[φ(s)]

φ(s)
c̄ + σ (s)

φ(s)
(f (c2) − f (c1)) + D(s)

φ(s)2
∇[φ(s)] · ∇ c̄. (3.13)

Testing (3.13) with c̄ and estimating the right-hand side with Hölder’s and Young’s inequality show

1

2
∂t||c̄||2

L2(�) ≤
(∥∥∥∥∂t[φ(s)]

φ(s)

∥∥∥∥
L∞(�)

+ L

∥∥∥∥σ (s)

φ(s)

∥∥∥∥
L∞(�)

+ C(ε)

∥∥∥∥ D(s)

φ(s)2
∇[φ(s)]

∥∥∥∥
L∞(�)

)
||c̄||2

L2(�)

−
ˆ

�

D(s)

φ(s)
∇ c̄ · ∇ c̄ dx + ε

∥∥∥∥ D(s)

φ(s)2
∇[φ(s)]

∥∥∥∥
L∞(�)

||∇ c̄||2
L2(�), (3.14)

where L denotes the Lipschitz constant of f with respect to the compact interval[
− max

i∈{1,2}

{||ci||C0(�T )

}
, max

i∈{1,2}

{||ci||C0(�T )

}]
.

By the uniform coercivity of D, we can absorb the last addend of (3.14) into the diffusion term for
sufficiently small ε > 0. Uniqueness now follows from Gronwall’s inequality.

3.4. Level-set equation induced diffeomorphisms

The smooth dependence results derived in Section 3.2 are based on geometry deformation by smooth
paths of diffeomorphisms. In the following, we investigate under which conditions on the initial geom-
etry and normal velocity field alterations performed by the level-set equation (2.7) induce such paths.
To do so, we make use of the method of characteristics. As a result, we can replace the assumption of
a prescribed path of diffeomorphisms in Theorem 3 by a prescribed normal velocity field vn(t, x, y) and
let the geometry evolve according to the level-set equation which is a much more natural setup from the
viewpoint of applications. At first, we must fix the class of real-valued functions whose level sets are
guaranteed to be smooth submanifolds of codimension one:

Definition 3. Regular level-set function. Let � ⊂ Y denote the boundary of an open set of class Ck,α, k ≥
2, compactly contained in Y . Then we call a function � ∈ Ck,α(Y) regular level-set function associated
with � iff � = {y ∈ Y : �(y) = 0} and ∇� = −ν on �.

Remark 3.8. Equivalence of representation. For every manifold � as given in Definition 3, there exists
an associated regular level-set function, cf. [16] Chapter 1 or Theorem A.1.
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Remark 3.9. Level-set solution concepts. We note that viscosity solutions pose a powerful and popular
weak solution concept for a wide range of non-linear first-order PDEs like the level-set equation, for
a basic introduction to this topic, see e.g. [4]. However, the solutions obtained by the related theory
are only continuous by definition providing insufficient regularity of the level sets, cf. Section 3.2. We
therefore directly consider classical solutions in the following. Note that due to the hyperbolic nature of
the non-linear level-set equation, the evolution of singularities such as shocks is to be expected within
finite time. As such, this framework is particularly unsuited for obtaining solutions existing globally in
time.

In order to apply the theory for non-linear first-order PDEs, we rewrite the level-set equation (2.7) in
the form F(�x, �, D�) = 0 with F : (�x, z, �p) �→R. Note that in this notation, �x = (x, t), �p = (p, pd+1) cor-
responds to the spatial and temporal variable, and D = (∇x, ∂t) denotes the related differential operator.
Apparently, we have

F(�x, z, �p) = pd+1 + vn(�x)|p|.
with the normal interface velocity vn of (2.7). Prescribing vn smooth such that it vanishes in a neigh-
bourhood of {|p| = 0}, we have F ∈ C2(R2d+3, R). Switching to the characteristic system of ODEs, the
equations read

�̇p(s) = −∂�xF(�x(s), z(s), �p(s)) − ∂zF(�x(s), z(s), �p(s))�p(s) = −Dvn(�x)|p|,
ż(s) = ∂�pF(�x(s), z(s), �p(s)) · �p(s) = vn(�x)

p

|p| · p + pd+1 = 0, (3.15)

�̇x(s) = ∂�pF(�x(s), z(s), �p(s)) =
(

vn(�x)
p

|p| , 1

)
,

with initial conditions

�p(0) = (∇�(0, y), −vn(y)|∇�(0, y)|) , z(0) = �(0, y), �x(0) = (y, 0). (3.16)

According to (3.15), the projected characteristics of a solution to (2.7) move in normal direction to the
interface with speed vn(�x). Furthermore, the function value of � remains constant along trajectories. As
such, the zero-level-set describing the position of the fluid–solid interfaces is transported along x. Note
that every admissible point of the characteristic ODE system is non-characteristic, i.e. the characteris-
tics admit a strictly monotone distance to the set of prescribed initial data Ȳ × {0}. As such, equation
(2.7) admits a unique local-in-time C2-solution by standard theory [10]. Furthermore, the parameterised
trajectories associated with x induce a smooth path of diffeomorphisms and the artificial parameter s
coincides with the actual physical time t. More precisely, we have the following statement:

Lemma 3.10. Smooth path of diffeomorphisms generated by level-set solution. Let a normal veloc-
ity field vn ∈ C4,1(Ȳ , R) be given. Furthermore, let a regular level-set function �0 ∈ C4(Ȳ , R) be given,
such that P̄ = {�0 ≤ 0} with Y \P being compact in Y . Then the local-in-time solution to the level-
set equation (2.7) with respect to initial conditions �0 induces a C1-path h in Diff2,1

� (Ȳ) such that
ht(P̄) = {�(t, ·) ≤ 0} for all times t sufficiently small.

Proof. In the following, we investigate the regularity of the trajectories associated with �x solving the
systems of ODEs (3.15). More precisely, we consider the smaller system in the spatial variables x and p
which is closed due to the time independence of vn. As a suitable Banach space for (x, p), we introduce

X = (C3(Ȳ , R))d × (C3(Ȳ , R))d.

Then the reduced initial conditions (3.16) are element of X . It is straightforward to check that the
structure function f : X ⊃ V →X of the reduced ODE system

f (x, p) =
(

vn(x)
p

|p| , −∇vn(x)|p|
)

(3.17)
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is well-defined and locally Lipschitz continuous with respect to the norm |.|X for a small neighbourhood
V of (x(0), p(0)), as long as vn = 0 in a neighbourhood of {y ∈ Y : |∇�0(y)| = 0}. Due to the tubular
neighbourhood theorem (Theorem A.1), this can be achieved by modifying vn appropriately without
changing the solution locally at ∂ intP . More precisely, we force vn to zero away from a neighbourhood
of ∂ intP and within a neighbourhood of ∂Y in a smooth manner. By Picard–Lindelöf theorem, there exists
T > 0 such that the ODE system admits a unique solution (x, p) ∈ C1(0, T;X ). Due to the convexity of the
domain, we obtain x ∈ C1(0, T;C2,1(Ȳ , Rd)). By the choice of vn, we have im(x(s)) = Ȳ for all s ∈ (0, T).
Since the initial conditions fulfil x(0) = idȲ ∈ Diff2,1(Ȳ), the diffeomorphism property for x(s) is obtained
in a possibly reduced time interval (0, T). Consequently, x ∈ C1(0, T;Diff2,1

� (Ȳ)). Since the value of � is
constant along the trajectories associated with x, we finally see ht(P̄) = {�(t, ·) ≤ 0}.

In order to underline the power of the above Lemma 3.10, let us reconsider the case of contracting
and expanding circles as in Example 3.5. Previously, a suitable family of diffeomorphisms had to be
constructed explicitly in (3.7) to apply Theorem 2. With the help of Lemma 3.10, it is now sufficient to
check that the function

�r(y) = r − ||y||2

has a zero-level-set of a circle of radius r < 0.5 and can be smoothed locally around 0 to fulfil
�r,0 ∈ C4(Ȳ). The statement follows by applying Lemma 3.10 to �r,0 and vn ≡ 1. However, the pre-
sented framework also applies to much more general geometry deformations as illustrated in Figure 3
where an explicit construction of diffeomorphisms is unsuitable. It especially includes the transition to
non-convex shapes as well as the treatment of disconnected components of solid.

3.5. Existence for full coupling

In geoscientific applications of our model, the evolution of the microscopic geometry of the porous
medium is not known in advance but depends on the time-dependent macroscopic concentration field.
Accordingly, this chapter is dedicated to the local-in-time existence of strong solutions to a model where
the geometry evolution is described by the level-set equation (2.7). For clarity, we restate the model
equations:

φ∂tc − ∇ · (D∇c) = σ f (c) − ∂tφc in (0, T) × �,
∂�

∂t
+ vn|∇y�| = 0, in (0, T) × � × Y ,

supplemented by boundary and initial conditions as well as diffusion cell problem (2.3), where the
level-set normal interface velocity is given by

vn(t, x) = f (c(t, x)), (3.18)

i.e. depending on the solution of the macroscopic concentration. In simplification of (2.9), we consider
a uniform velocity within each unit cell to facilitate the establishment of higher regularity for quantities
derived from the geometry. Furthermore, we restrict to scenarios where the porosity can be used as the
natural order parameter uniquely characterising the geometry state which is the typical case in dissolu-
tion/precipitation processes. Moreover, we assume linear reaction rates. By doing so, we retract to the
setting investigated in [34] enabling us to use respective results stated therein. Additionally, we again
consider a single evolving master unit cell Y∗ as in Section 3.3 and introduce spatial inhomogeneity in
� by choosing different evolution states of Y∗ as the initial condition.

In the following, we approach existence of solutions (c, �) ∈ (X1, �x × C1((0, T) × Y)) to the fully
coupled model described above, where the solution space with respect to � is defined as

�x × C1((0, T) × Y) = {
� : (0, T) × � × Y →R : ∀x ∈ � �(·, x, ·) ∈ C1((0, T) × Y)

}
.
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To do so, we rewrite the given problem in the variables (c, φ) ∈X 2
1 . As such, we can apply Theorem A.2

to obtain local-in-time existence in the variables (c, φ). In order to do so, the effective parameters D, σ
must be expressed as functions of φ. As we will see, this relation is independent of the concentration
solution c and is therefore determined by the level-set initial condition alone. Given the solution (c, φ)
of the transformed system, we construct the solution (c, �) to our model of consideration.

Let us consider the geometry evolution being preliminarily parameterised by the time t of the level-
set equation. Using the properties of (3.18), we can reparametrise all effective parameters as a function
of φ by setting:

σ̂ = σ ◦ φ−1, D̂=D ◦ φ−1. (3.19)

The main difficulty in proving existence for the bilaterally coupled system is establishing sufficiently
high regularity in the coefficients σ̂ , D̂ as required to apply Theorem A.2.

First, we notice that the mapping φ �→ σ̂ , D̂ is independent of the particular choice of a normal veloc-
ity vn in (3.18) in the set of y-independent functions which can be seen as follows: Let �1 solve (2.7)
with vn ≡ 1. Then �(t, x) = �1(V(t), x) solves (2.7) with vn = v and V being the primitive of v. As such,
solutions are solely rescaled with respect to the time variable but not with respect to space, i.e. the indi-
vidual geometries relating to �1(s, ·) remain unaffected. It is therefore sufficient to consider the case
vn ≡ 1, where, due to

∂sφ(s) = −σ (s), (3.20)

φ is strictly monotonically increasing. This fact justifies the transformations introduced in (3.19). As
such, the regularity of φ �→ σ̂ , D̂ follows immediately from the regularity of φ, σ , Dwhich we investigate
using the same means as in Theorem 3.

Let ϕ : U ⊂R
d−1 →R

d be a suitable local parameterisation of ∂ intP . Then, ϕ̂ : (−S, S) × U →R
d

defined as

ϕ̂(s, x) := ϕ(x) + sν(ϕ(x)) (3.21)

is a local parameterisation of the deformed interface at times s ∈ (−S, S) using the results of Section 3.4.
Note that ϕ̂(s, ·) is a bijection for s close to zero and in case of �0 ∈ C4(Y), the map (3.21) is of class C3,
cf. Theorem A.1. Using the regularity of ϕ̂, we infer the mapping

s �→
ˆ

U

√
det

(∇ϕ̂(∇ϕ̂)T
)

dx

to be of class C2, which translates to σ (s) by using a partition of unity, cf. [22]. By (3.20), we also
obtain φ ∈ C3((−S, S)). As such, we finally conclude D̂ ∈ C1((φmin, φmax)), σ̂ ∈ C2((φmin, φmax)) for suffi-
ciently narrow bounds φmin < φ0 < φmax around the initial condition. Summing up the observations of
this section, we obtain the following existence result using Theorem A.2.

Theorem 4. Existence of strong solutions, full coupling, diffusive transport. Let � ⊂R
d, d ∈ {2, 3},

be a C2-domain, r > d + 2 with initial conditions c0 ∈ W2− 2
r ,r(�), c0 ≥ 0, fulfilling c0 = 0 on ∂�.

Furthermore, consider an initial inclusion compactly contained in Y∗ given by a regular C4(Ȳ∗) level-
set function evolving according to the level-set equation (2.7) such that solutions for vn ≡ ±1 cover φ ∈
(φmin, φmax) ⊂⊂ (0, 1). Let φ0 ∈ W2,r(�), φ0(x) ∈ (φmin + ε, φmax − ε) for some ε > 0, x ∈ � and the reac-
tion rate given as f (c) = c. Then there exists a local-in-time solution (c, �) ∈ (X1, �x × C1((0, T) × Y))

to the bilaterally coupled model. In case of higher regularity, i.e. c0 ∈ W
4− 2

r
r (�), φ0 ∈ W

3− 2
r

r (�) fulfill-
ing the compatibility condition (∇c0 · ∇φ0) ≡ 0, �c0|∂� ≡ 0 it either holds for the maximum existence
time T:

lim
t→T

inf
x∈�

φ(t, x) = φmin or T = ∞. (3.22)
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Proof. In the setup presented above, Theorem A.2 ensures the short-time existence of solutions (c, φ) ∈
(X1)2 to the equations

φ∂tc − ∇ · (D̂(φ)∇c) = σ̂ (φ)c2 − σ̂ (φ)c,

∂tφ = −σ̂ (φ)c,

with D̂, σ̂ as constructed in (3.19). Apparently, the second equation corresponds to the level-set function
� fulfilling

∂t�(t, x, y) + c(t, x)|∇y�(t, x, y)| = 0, ∀x ∈ �, (3.23)
for y sufficiently close to the zero-level-set as required. By the embedding theorems (3.11), t �→ c(t, x)
is continuous for all x ∈ �. Furthermore, a solution �1 related to vn ≡ 1 in a neighbourhood of the
zero-level-set exists and is of class C2 as discussed in Section 3.4. As such, the transformed solution
�(t, x, y) = �1(C(t, x), x, y) with C(·, x) being a primitive of c(·, x) solving (3.23) is of class C1((0, T) ×
Y) for each x ∈ �. Finally, we investigate the case of high regularity initial conditions. Note that the
structure function f in (3.17) is smooth by the regularity of vn, leading to a solution x smooth in time.
Therefore, we particularly have D̂ ∈ C3((φmin, φmax)) due to Theorem 2. As such, the assumption follows
by Corollary 1 of [34].

Remark 3.11. Global existence. The range of porosities (φmin, φmax) the solutions in the above theorem
attain depends on the radius r of the tubular neighbourhood of the master unit cell’s fluid–solid interface
at s = 0, cf. Theorem A.1. More precisely, φmax − φmin is bounded by the volume of the tubular neigh-
bourhood, beyond which the appearance of shocks prevents the continuation of solutions. Consequently,
global-in-time existence cannot be expected in general due to the requirement of classical solutions to
the non-linear hyperbolic level-set equation in our framework, cf. Remark 3.9. In the case of circular
geometries as illustrated in Example 3.5, we can allow for (φmin, φmax) ⊂⊂ (1 − π

4
, 1), i.e. the full range

between complete dissolution and clogging. Moreover, under the stronger assumptions on the smooth-
ness of parameters and the additional compatibility conditions of the initial data the existence interval
of (c, �) is solely limited by the well-behavedness of the underlying microscopic geometry evolution.

Remark 3.12. Uniqueness. Note that a proper level-set function uniquely determines the geometry state
of the system but not vice versa. In that sense, the problem of Theorem 4 features multiple solutions (c, �).
However, all these solutions are equivalent as they describe the same geometry evolution. By Theorem
4.2 in [34], the solution (c, φ) ∈X 2

1 is unique. By the one-on-one relation between geometry state and
porosity, this translates to the uniqueness of the solid part within each unit cell Y(t, x). Fixing an initial
value �0, also the solution (c, �) is uniquely determined.

4. Smooth parameter dependence and existence for diffusive–advective transport

In this section, we consider an extension of the model analysed in Section 3 involving fluid flow and
including advective solute transport. To do so, we follow a similar strategy as in Section 3. After fixing
the setting in Section 4.1, we prove smooth dependence of the permeability tensor on the geometry using
a variant of the implicit function theorem in Section 4.2. Building upon those results, the continuous
dependence of Darcy velocity and pressure on the permeability field is shown. Finally, we obtain local-
in-time existence results for the diffusive–advective transport case with partial one-way micro-to-macro
coupling in Section 4.4. A graphical representation of the roadmap for this section is found in Figure 6.

4.1. Setting

In the following, we consider solute transport by diffusion and advection:
φ∂tc + ∇ · (vc) − ∇ · (D∇c) = σ f (c) − ∂tφc in (0, T) × � (4.1)
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Figure 6. Roadmap for Section 4. Main statements are given in blue boxes, linking lemmas, theorems
and corollaries are highlighted in red boxes.

which is coupled to Darcy’s equation

v = −K∇p in �, t ∈ (0, T), (4.2)
∇ · v = f̃ in �, t ∈ (0, T).

In comparison to the equations stated in Section 2, we allow for a general constant-in-time divergence
f̃ . In contrast to the previous analysis, we now consider a partial coupling from the microscopic to the
macroscopic scale as in Section 3.3. That is, we suppose the evolution of the underlying geometry is a-
priori given by a sufficiently smooth path of diffeomorphisms. Finally, the model regarded in this chapter
is closed by the two effective tensors and associated cell problems (2.3), (2.6).

4.2. Continuous dependence of permeability tensors

Using a similar strategy as in Section 3.2, we also show the continuous dependence of the permeability
tensor on the geometry evolution.

In order to capture the underlying stationary Stokes equations in (2.6), we introduce the following
function spaces for the velocity field v and pressure field q for k ≥ 1, cf. [12]:

Hk
v (P) = {

v ∈ (Hk
#(P))d : TrP (v) = 0

}
,

Hk−1
q (P) =

{
q ∈ Hk−1

# (P) :
ˆ
P

q dy = 0

}
,

Hk
v,�(P) = {

v ∈ Hk
v (P) : ∇ · v = 0 on U

}
for some fixed neighbourhood ∂Y ⊂ U ⊂ Ȳ , cf. (3.4). In order to formulate the notion of weak solutions
stated in [12], we furthermore introduce the space

H1
v,σ (P) := {

u ∈ H1
v (P) : ∇ · u = 0

}
of solenoidal functions in H1

v (P). As in Section 3.2, we are required to consider the general inhomo-
geneous class of Stokes equations. Therefore, the weak form of the Stokes problem with general force
term f ∈ (L2(P))d and inhomogeneity j ∈ H1(P) ∩ L2

0(P) with j = 0 in a neighbourhood of ∂Y reads: Find
(u, p) ∈ H1

v (P) × H0
q(P) such that
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ˆ
P

∇u : ∇v dy =
ˆ
P

fv dy,
ˆ
P

∇u : ∇ dy −
ˆ
P

p∇ ·  dy =
ˆ
P

f  dy, (4.3)

∇ · u = j,

for all (v, ) ∈ (H1
v,σ (P) × C∞

0 (P)).
Following the procedure of Section 3.2, we next implement higher regularity of solutions to the

Stokes problem given a sufficiently smooth interior boundary ∂ intP .

Lemma 4.1. Regularity Stokes. Let ∂ intP be of class C2, f ∈ (L2(P))d and j ∈ H1(P) ∩ L2
0(P) vanish-

ing in a neighbourhood of ∂Y . Then there exists a unique solution (u, p) to (4.3) in H2
v (P) × H1

q(P).
Furthermore, the associated solution operator is linear and bounded.

Proof. We start considering the homogeneous case j ≡ 0. By standard Hilbert space arguments, there
exists a uniquely determined function u ∈ H1

v,σ (P) such that
ˆ
P

∇u : ∇v dy =
ˆ
P

fv dy, ∀v ∈ H1
v,σ (P).

Due to the smoothness of the domain and source term, there exists a unique pressure field p ∈ L2(P)
with vanishing average such that

ˆ
P

∇u : ∇ dy −
ˆ
P

p∇ ·  dy =
ˆ
P

f  dy, ∀ ∈ (C∞
0 (P))2

by Lemma IV 1.1 in [12]. Furthermore, Theorem IV 4.1 in [12] ensures the interior regularity claimed.
As the boundary is of class C2, the regularity can be extended to the full domain by Theorem IV 5.1 in
[12]. Next, we consider the problem for general inhomogeneities j of the specified class. According to
Theorem 3.4 in [15], there exists a function β ∈ H2

0(P) satisfying ∇ · β = j. Solving the homogeneous
system for f̃ = f − �β and adding β to the velocity solution, the full statement is shown. Combining the
estimates associated with the previous steps, we conclude boundedness of the solution operator.

In comparison to the case of elliptic equations in Section 3.2, we need to slightly change the setting
here in order to accommodate for the additional condition on ∇ · u which is not invariant under pullbacks
and cannot be additively compensated for without changing the solution itself. More precisely, we switch
to a setting that does not require surjectivity of operators. Serving the analogous purpose as F defined
in equation (3.3), let us consider the following mappings:

G : H2
v,�(P) × H1

q(P) × (−S, S) → L2(P) × H1
#(P),

(u, p, s) �→ (
h∗

s �h∗−1
s u − h∗

s ∇h∗−1
s p, h∗

s ∇ · h∗−1
s u

)
,

G̃ : (−S, S) → L2(P) × H1
#(P),

(s) �→ (h∗
s e1, 0),

with h being a C1-path of diffeomorphisms in Diff2
�(Ȳ) and h0 = idȲ . As the interior boundary conditions

are invariant under pullbacks and already implemented in the underlying function spaces, it is sufficient
to only map to the function spaces associated with the bulk data j, f . Differentiability of this mapping is
established using the same reasoning as above. Summing up our considerations, we obtain the following
theorem.

Theorem 5. Smooth dependence of weak solutions to (2.6) on geometric parameter. Assume a C2 open
set Y \ P̄ ⊂ Y being compactly contained in Y and (u, p) ∈ H2

v,�(P) × H1
q(P) such that G(u, p, 0) = G̃(0),

i.e. (u, p) is a solution to problem (4.3) with force term f = e1 and heterogeneity j ≡ 0. Furthermore, let
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h be an m-times differentiable path in Diff2
�(Ȳ) with h0 = idȲ . Then there exist a neighbourhood V of

zero and a function g : V → H2
v (P) × H1

q(P) m-times differentiable in 0 ∈ V , g(0) = (u, p), such that

G(g(s), s) = G̃(s), ∀s ∈ V ,

i.e. h∗−1
s g(s) solves (4.3) on h(P) for s ∈ V .

Proof. By calculations similar to Section 3.2, we find G, G̃ to be differentiable in s = 0. Furthermore,
G(·, ·, s) is a bounded linear operator for fixed s. The unique solvability of

G(u, p, s) = G̃(s)

is guaranteed for all s ∈ V by Lemma 4.1, i.e. we can properly define the map g(s). Finally, we obtain
the estimate

||G(u, p;0)||L2(P)×H1(P) ≥ C−1||(u, p)||H2(P)×H1(P) ∀(u, p) ∈ H2
v,�(P) × H1

q(P)

using the operator norm C < ∞ of the Stokes solution operator on P introduced in Lemma 4.1. The
assertion is a consequence of Theorem A.4. This is due to the fact that all values in the second image
space of G vanish close to ∂Y by the restrictions on the preimage spaces.

This result immediately translates to the permeability tensor:

Corollary 4.2. Smooth dependence of K on geometric parameter. Under the assumptions of
Theorem 5, the mapping

R : V →R, s �→
ˆ

hs(P)

h∗−1
s gu(s) dy

is m-times differentiable. Therefore, the permeability tensor, cf. (2.5), depends differentiably on varia-
tions of s.

4.3. Continuous dependence of Darcy velocity and pressure

The Darcy velocity field v enters the first-order term of the transport equation (2.1) as a parameter.
Again, in order to apply linear parabolic theory as in Section 3.3, we first need to establish sufficient
regularity of v which immediately rises the question of dependence on the permeability K. A special
difficulty arises from the fact that the stationary Darcy equation (2.4) acts on time-slices of the space-time
cylinder �T . In this chapter, we investigate the effect of permeability tensors continuously depending
on space and time on the flow field fulfilling Darcy’s equation. The following result establishes local
Lipschitz continuity with respect to the L2-norm in the velocity field. Assume a typical flow-channel
scenario with flux boundary conditions on ∂�flux and an outlet ∂�Dir with zero Dirichlet data for the
pressure with ∂� = ∂�Dir ∪ ∂�flux and Hausdorff measure Hd−1(∂�Dir) > 0. First, we consider (2.4) as
an elliptic equation for the pressure p in the following weak form with a general source term f̃ ∈ L2(�):

Find p ∈ H1
Dir(�) := {

v ∈ H1(�) : v = 0 on �Dir
}

such that for all q ∈ H1
Dir(�)ˆ

�

K∇p · ∇q dx − (gflux, q)L2(∂�flux) =
ˆ

�

f̃ q dx. (4.4)

The associated velocity field is then given as

v = −K∇p.

As such, we can establish regularity of v by analysing the pressure equation (4.4) and deduce the rel-
evant properties from p. Next, we follow the approach taken in [6] where continuous dependence on
parameters in case of the Brinkman–Forchheimer equation was established. Considering two pressure
solutions to Darcy’s equation (p1, p2) related to a pair of coefficients (K1, K2), we test the difference of
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the weak formulations with p2 − p1. Using suitable estimates on the new right-hand side, the assertion
is established. More precisely, the following statement holds:

Lemma 4.3. Continuous dependence of Darcy solutions on K

Let � be a Lipschitz bounded and connected domain with flux boundary conditions on ∂�flux and
homogeneous pressure boundary conditions on ∂�Dir:

K∇p|∂�flux · ν = gflux ∈ L2(∂�flux), p = 0 ∈ H
1
2 (∂�Dir).

Assume that the Dirichlet boundary part ∂�Dir is of positive measure. Furthermore, let K1, K2 ∈
(L∞ (�))

d×d be permeability tensor fields uniformly λ > 0 -coercive and uniformly bounded in the
Frobenius norm a.e. by Kmax. In addition, let f̃ ∈ L2(�). Denoting the respective solutions to Darcy’s
equation by (v1, p1), (v2, p2) ∈ L2(�) × H1(�) the following estimates hold:

||p2 − p1||H1(�) ≤ C||K2 −K1||L∞(�),

||v2 − v1||L2(�) ≤ C||K2 −K1||L∞(�),

where the constant C only depends on λ, Kmax, � and the Darcy data gflux, f̃ .

Proof. First of all, we note that standard elliptic theory guarantees the existence of solutions p1, p2 ∈
H1

Dir(�) to (4.4). In a first step towards continuous dependence of solutions on K, we show uniform
boundedness of p in the H1-seminorm by revisiting well-established energy methods. AsK is symmetric
positive definite, there exists a unique symmetric root K 1

2 . As p itself is an admissible test function, the
weak formulation directly yields for an arbitrary ε > 0:

λ||∇p||2
L2(�) ≤ ||K 1

2 ∇p||2
L2(�) ≤ (gflux, p)L2(∂�flux) + ||f̃ ||L2(�)||p||H1(�)

≤ C(ε)
(
||gflux||2

L2(∂�flux) + ||f̃ ||2
L2(�)

)
+ ε||∇p||2

L2(�)

using Young’s and Poincaré’s inequality as well as the trace theorem. The eigenvalues of K being
bounded from below by λ and choosing ε small enough, we have

||∇p||L2(�) ≤ C
(
||gflux||L2(∂�flux) + ||f̃ ||L2(�)

)
with C depending on Poincaré’s constant and λ only.

Next, assume p1, p2 to be pressure solutions to the Darcy problems respective to K1, K2. Testing the
difference of the weak formulations with p := p2 − p1 leads to

||K 1
2
1 ∇p||2

L2(�) =
ˆ

�

(K1 −K2)∇p2 · ∇p dx

≤ ess sup
x∈�

(||K1 −K2||F)
(
C(ε)||∇p2||2

L2(�) + ε||∇p||2
L2(�)

)
≤ ess sup

x∈�

(||K1 −K2||F)C(ε)||∇p2||2
L2(�) + 2Kmaxε||∇p||2

L2(�),

where ||.||F denotes the Frobenius norm of the matrices. Using the uniform boundedness in the gradient
of p2 established in the first step and choice of ε small enough yields the assertion on the pressure.
Calculating

||v1 − v2||L2(�) = ||K1∇p1 −K2∇p2||L2(�)

≤ ||K1||L∞(�)||∇p||L2(�) + ||K1 −K2||L∞(�)||∇p2||L2(�)

≤ C||K2 −K1||L∞(�),

we obtain the assertion on the velocities applying the same reasoning.

Unfortunately, the last result cannot be generalised to stronger norms in v by demanding higher reg-
ularity to the data, coefficient or � due to the mixed boundary conditions. For a counter-example in a
setting of maximal smoothness see [38].
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Yet, in the case of pure Dirichlet boundaries, it is straightforward to show that the above estimate
indeed can be refined to hold in L∞(�) by standard elliptic theory [10]. We capture this observation in
the following corollary.

Corollary 4.4. Stronger norms. Let the assumptions of Lemma 4.3 hold with ∂�flux = ∅, a C3-domain
� ⊂R

d, f̃ ∈ H1(�) and d ∈ {2, 3}. Furthermore, let K1, K2 ∈ (C2(�̄))d×d be uniformly coercive and
uniformly bounded. Then

||v2 − v1||L∞(�) ≤ C||K2 −K1||1− d
4

L∞(�).

Proof. Using standard elliptic theory, the solutions p1, p2 to (4.2) are uniformly bounded in W3,2(�), cf.
[10]. By the Gagliardo–Nirenberg interpolation theorem [28] we have for p = p2 − p1

||∇p||L∞(�) ≤ C1||D3p|| d
4
L2(�)||∇p||1− d

4
L2(�) + C2||∇p||L2(�).

Using the uniform boundedness of ||D3p||L2(�) and Lemma 4.3, we see

||∇p||L∞(�) ≤ C||K2 −K1||1− d
4

L∞(�)

which translates to the statement claimed.

Remark 4.5. Continuity on space-time cylinder. In case K : �T →R
d×d fulfils the conditions of

Corollary 4.4 for each time-slice and the additional condition K ∈ C
(
0, T;(L∞(�))d×d

)
holds, Darcy’s

velocity v : �T →R
d is a continuous function on the whole space-time cylinder.

4.4. Existence for partial coupling

Analogously to Section 3.3, we use our prior results to prove local-in-time existence of solutions to the
model specified in Section 4.1. Using the prior regularity results of this section, sufficient smoothness
of the Darcy velocity field is established. Again, we re-define the functions φ, σ , D, K from mappings
on �T , cf. (3.1), to mappings of the real-valued order parameter without change of notation. In order to
avoid additional difficulties due to degeneracy, we require

∀s ∈ (−S, S) : 0 < φ(s) < 1, σ (s) > 0, D(s) > 0, K(s) > 0, (4.5)

to hold along the prescribed path h of diffeomorphisms within the master unit cell Y∗.

Theorem 6. Existence of strong solutions, partial coupling, advective transport. Let � ⊂R
d, d ∈ {2, 3}

be a C3-domain. Concerning the transport equation (4.1), let r > d + 2 hold with initial conditions c0 ∈
W

2− 2
r ,r

r (�) and boundary conditions C0 ∈ W1− 1
2r ,2− 1

r (∂�T) being compatible in the sense of C0(0, ·) = c0

on ∂�. Concerning Darcy’s equation (4.2), let p|∂� = 0 and f̃ ∈ H2(�). Furthermore, let the evolution of
the pore-space geometry be given by an order parameter s ∈ C1([0, T1);C2(�̄)), s(t, x) ∈ (−S + ε, S − ε),
ε > 0 ∀(t, x) ∈ �T , and a path h ∈ C3(−S, S;Diff2,1

� (Ȳ)) of diffeomorphisms such that h0 = idȲ . Assume
the initial inclusion Y∗ \ P̄ ⊂ Y∗ to be a compactly contained C2,1 open set. Let (4.5) hold true and the
reaction rate f be locally Lipschitz. Then there exists a time 0 < T ≤ T1 such that the system (4.1), (4.2)
admits a unique solution (c, v, p) ∈X1 × C(0, T , L2(�)) × C(0, T , W1,2(�)).

Proof. The proof of this assertion follows along the lines of the proof of Theorem 3. In addition, we
must now also consider the smoothness of K(s(t, x)) as well as of the associated Darcy velocity field
v(t, x). By the assumptions on the geometry alteration and Corollary 4.2, K(s(t, ·)) ∈ (C2(�̄)

)d×d for
every t ∈ [0, T1). Due to (4.5) and Remark 4.5, we obtain v ∈ C(�T) for some 0 < T ≤ T1. By standard
Sobolev embedding theorems, also ∇ · v ∈ C(�T) holds true. As such, we ensure the regularity of v
as required for coefficients in Theorem A.3 and may therefore proceed with the fixed-point argument
analogously to Theorem 3. As mentioned before, the solutions (v(t, ·), p(t, ·)) for Darcy’s equation are
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uniquely determined for each time-slice t. Repeating the arguments following (3.13), uniqueness for the
full solution triplet is obtained.

5. Conclusion

In this research, we presented local-in-time existence results to a common class of multi-scale models
for reactive transport in evolving porous media. Describing geometry alterations by diffeomorphisms,
smooth dependence of the diffusion and permeability tensors on the evolving domain is proven. Being
computed as affine-linear functionals of solutions to elliptic and Stokes-type PDEs, the method of trans-
formation to a reference domain in combination with the implicit function theorem was applied for this
purpose. Subsequently, we leveraged the resulting smoothness in the micro–macro coupling to short-
time existence results to the partially and fully coupled system in the diffusive transport case. Similar
results are presented for the partial coupling in the advective case additionally incorporating Darcy’s
equation.

As the second major aspect, we proved the induction of suitable paths of diffeomorphisms by the level-
set equation. Therefore, our results cover a broad range of possible underlying microscopic geometries.
In particular, no explicit construction of adequate families of diffeomorphisms is needed using this
methodology.

Further research is needed to derive conditions under which the short-time existence results presented
in this paper can be extended to global solutions. This especially concerns the adequate treatment of
topological changes in the underlying geometry which is not approachable using diffeomorphisms. As
such, the methods used in this research are in particular unable to analyse the behaviour of solutions in
scenarios involving clogging or the complete dissolution of the porous structure.

In addition, further work is required to extend our results to local-in-time existence for the fully
coupled model including advective transport. More precisely, methods need to be refined in order to
compensate for the drop of regularity between the permeability tensor field and the advective velocity
field. Finally, future effort is required to generalise our findings to the multi-solute and multi-mineral
case, leading to a system of possibly non-linearly coupled parabolic equations on the macroscopic scale.
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Appendix A.

Theorem A.1. (Tubular neighbourhood theorem, adapted from Theorem 1.5, [16]) Let � ⊂R
d open

have a Cm,α-regular boundary, 2 ≤ m ≤ ∞. There exists r > 0 so that if

Br(∂�) = {x : dist(x, ∂�) < r},
π (x) = the point of ∂� nearest to x,

t(x) = ±dist(x, ∂�) (’+’ outside, ’-’ inside),

then t( · ) : Br(∂�) → (−r, r), π ( · ) : Br(∂�) → ∂� are well defined, π is a Cm−1,α-retraction onto ∂�

(π (x) = x when x ∈ ∂�) and t has the same smoothness as ∂�. Further

x �→ (t(x), π (x)) : Br(∂�) → (−r, r) × ∂�

is a Cm−1,α-diffeomorphism with inverse

(t, ζ ) �→ ζ + tν(ζ ) : (−r, r) × ∂� → Br(∂�).

t( · ) is the unique solution to |∇t(x)| = 1 in Br(∂�). The largest choice of r is r = 1/ max |k|, where k is
the sectional curvature of the boundary in any (tangent) direction at any point of ∂�.

Theorem A.2. (Local-in-time existence of strong solutions, Theorem 4.1, [34]) Let the system of PDEs
be given by

φ∂tc − ∇ · (D(φ)∇c) = τ (φ)c2 − σ (φ)c in �T ,

∂tφ = −τ (φ)c in �T ,

c(t, x) = 0 on ∂�T , (A.1)
c(0, x) = c0(x) in �,

φ(0, x) = φ0(x) in �,

Let � ⊂R
d, d ∈ {2, 3}, be a domain with C2-smooth boundary ∂�, r > d + 2, c0 ∈ W2− 2

r ,r(�), c0 ≥ 0,
satisfying the compatibility condition c0|∂� ≡ 0 and let φ0 ∈ W2,r(�) hold with φ0(x) ∈ (δ, 1 − δ) ⊂ (0, 1)
for all x ∈ � and some δ ∈ (0, 1

2
). Furthermore, let D ∈ C1((0, 1)) be a positive scalar function and σ ∈

C((0, 1)), τ ∈ C2((0, 1)). Then, there exists a constant T > 0 and at least one strong solution (c, φ) ∈X 2
1

solving (A.1) with

X1 := W1,2
r (�T) = Lr(0, T;W2,r(�)) ∩ W1,r(0, T;Lr(�)).

Theorem A.3. (Parabolic regularity, specialised form of Theorem 9.1, Chapter IV [21]) Let a parabolic
problem be given by

L
(

t, x,
∂

∂t
,

∂

∂x

)
u(t, x) = f (t, x) in �T ,

u = U0 on ∂�T , (A.2)
u(0, ·) = u0 in �,
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with the uniformly parabolic operator L in non-divergence form

L
(

t, x,
∂

∂t
,

∂

∂x

)
= ∂u

∂t
−

d∑
i,j=1

ai,j(x, t)
∂2u

∂xi∂xj

+
d∑

i=1

ai(x, t)
∂u

∂xi

+ a(x, t)u.

Let r > d + 2. Suppose that the coefficients ai,j of the operatorL are bounded and continuous in �T , while
the coefficients ai and a have finite norms ||ai||Lr (�T ) and ||a||Lr (�T ). Furthermore, let � be a bounded
domain of class C2. Then for any f ∈ Lr(�T), Dirichlet data U0 ∈ W

1− 1
2r ,2− 1

r
r (∂�T) and u0 ∈ W2− 2

r ,r(�)
being compatible in the sense of U0(0, ·) = u0 on ∂�, problem (A.2) has a unique solution u ∈ W1,2

r (�T)
satisfying the a-priori estimate

||u||W1,2
r (�T ) ≤ Cp

(
||u0||W2− 2

r ,r (�)
+ ||U0||

W
1− 1

2r ,2− 1
r

r (∂�T )
+ ||f ||Lr(�T )

)
.

Theorem A.4. (Differentiability of an implicit equation solution, Theorem 6 [39]) We give us

• an open set U in a Banach space U, u0 ∈ U , two reflexive Banach spaces A and B,
• a map F : U × A → B, such that F(u; · ) ∈L(A;B) for all u ∈ U ,
• a function m : U → A, and a function f : U → B, such that

F(u, m(u)) = f (u) ∀u ∈ U .

1. Assume that u �→ F(u; · ) is differentiable at u0 into L(A;B), f is differentiable at u0,

||F(u0;x)||B ≥ α||x||A ∀x ∈ A, for some α > 0.

Then the map u �→ m(u) is differentiable at u0. Its derivative m′(u0; · ) is the unique solution of

F(u0;m
′(u0;v)) = f ′(u0;v) − ∂uF(u0;m(u0);v) ∀v ∈ U.

2. In addition, assume that for some integer k ≥ 1,

u �→ F(u; · ) and f are k times differentiable at u0.

Then, the map u �→ m(u) is k times differentiable at u0.
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