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Abstract. A review is given of the properties of waves in atmospheres, with particular emphasis on 
(Section 1) the variation of amplitude and phase with altitude for propagating waves (Figures 1 to 4) and 
the waveforms of standing modes (Figure 5). The cases dealt with concern waves under the combined 
influences of gravity and compressibility, and examine the effects of: (Section 2) temperature gradients in 
a non-isothermal atmospheric model; (Section 3) external magnetic field, either vertical or horizontal; 
(Section 4) dissipation by viscosity and electrical resistance. The results are relevant to (Section 5) the 
assessment of atmospheric wave growth and shock formation, and to the calculation of heating functions 
describing the deposition of wave energy. 

1. Approximate and Exact Theories of Atmospheric Waves 

The study of waves in atmospheres has been strongly influenced by the basic case 
(Rayleigh, 1890; Lamb, 1932 § 309)of acoustic-gravity waves in isothermal atmospheres, 
which exhibit for propagating modes an amplitude growing exponentially on twice the 
scale height and a phase increasing linearly with altitude. The aim of the present 
communication is to indicate the extent to which these properties of atmospheric waves 
are modified by the presence of: (Section 2) temperature gradients; (Section 3) external 
magnetic fields; (Section 4) viscous or resistive dissipation. 

In all these cases the linear wave equations describing small amplitude waves have 
variable coefficients, due to atmospheric stratification, viz., variation of density, 
temperature, wave speed or damping with altitude. Taking these coefficients approxi
mately constant leads to the W.K.B.J. approximation (Brekhovskikh, 1961; Moore and 
Spiegel, 1964; Lighthill, 1967; McLellan and Winterberg, 1968; Yeh and Liu, 1974; 
Campos, 1982); this approximation leads necessarily to sinusoidal waves, which can be 
described in terms of dispersion relation, phase speed, group velocity, etc. The W.K.B.J. 
approximation applies only to high-frequency waves over short distances, i.e., is invalid 
for: (i) wavelengths comparable to or larger than the scale height, i.e., the main part of 
the wave spectrum in the solar photo- and chromospheres (Bray and Loughhead, 1974; 
Athay, 1976); (ii) asymptoticaly for all frequencies at large distances compared with the 
wavelength, e.g., for waves generated in the photosphere and propagating in the high 
corona. 

In order to describe the wave fields for all wavelengths (including those comparable 
to the scale height), and all distances (including asymptotically), the wave equations 
must be solved exactly, i.e., taking into account the dependence of the coefficients on 
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altitude (Lamb, 1908; Hide, 1956; Yanowitch, 1967; Thorpe, 1968; Zhugzhda, 1971; 
Nye and Thomas, 1976; Thomas, 1978; Leroy, 1982). Although the frequency is 
conserved (if atmospheric properties do not depend on time), there is no wavenumber 
since the waveform is generally not sinusoidal in altitude, and dispersion relation, group 
velocity, etc... do not exist. The wave equation can be solved exactly for some forms 
of the variable coefficients, corresponding to specific atmospheric models, for which the 
wavefields are expressed at all altitudes in terms of special functions, e.g., Bessel or 
hypergeometric. Besides, it is possible to determine asymptotic properties for a wide 
range of atmospheric models (Campos, 1983a, b, c). 

Thus we are concerned with wave fields which are given: (i) exactly at all altitudes 
and frequencies for specific (isothermal or non-isothermal) atmospheric models; 
(ii) asymptoticaly at high altitude, for all frequencies, for any atmosphere with bounded 
temperature and vanishing density. The asymptotic form of the exact wave field for 
specific atmospheric models (i) can be used to check the general asymptotic laws for 
waves (ii). 

2. Acoustic-Gravity Waves in a Non-Isothermal Atmosphere 

Waves under the combined influences of compressibility and gravity have been studied 
extensively in connection with the Earth's atmosphere (Yih, 1965; Beer, 1974; Gossard 
and Hooke, 1975; Lighthill, 1978), besides solar applications (e.g., Biermann, 1948; 
Mein, 1978, 1980). We consider three-dimensional acoustic-gravity waves in a model 
atmosphere with the temperature profile 

r(z) = r00 + ( r 0 - r 0 0 ) e - f e , (i) 

where we may choose at will: (i) the initial T0 and asymptotic Tx temperature, and thus 
the degree of heating or cooling with altitude; (ii)the steepness parameter 0, allowing 
larger or smaller values of the maximum temperature gradient 0(7^ - T0) or conductive 
heat flux. Some of the temperature profiles in the family (1) are illustrated in Figure 1, 
where we plot the ratio of temperatures T(z)/T0 (or its logarithm) against altitude z 
(made dimensionless dividing by the asymptotic scale height L = RT^/g, where R is 
the gas constant and g the acceleration of gravity): (top) the steepness parameter is kept 
fixed at GL = 1, and the ratio of asymptotic to initial temperature is given four values 
TOO/TQ = 0.5,1,10,100 corresponding to cooling with altitude, the isothermal case, and 
moderate or intense heating with alititude; (bottom) the ratio of temperatures is kept 
fixed at T^/TQ = 10, and the steepness parameter is given four values 9L = 0.5, 1, 2, 
4 corresponding to an increasingly steeper approach to the asymptotic temperature, and 
larger maximum temperature gradient. 

It can be shown (Campos, 1983a) that the vertical velocity W at altitude z, for a wave 
of frequency a> and horizontal wavevector k, satisfies 

L2(l - Pe~0z)W" - LW - {k2L2(l - $e-0z) + 
+ (co/2a>2)

2 + (kwl /to)2} W = 0 , (2) 
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Fig. 1. Temperature profiles for a range of atmospheric models (1) with four ratios of asymptotic to 
intitial temperature (top) and four values of steepness parameter (bottom). 

where L = RT^/g is the asymptotic scale height, fi = 1 - T0/Tx a measure of the 
non-isothermality of the temperature profile, and a)|, co2 denote the cut-off" frequencies: 

<»i = fe/0\/(y- 1), w2 = cx/2L, (3a, b) 

where c^ = ^/(yRT^) is the asymptotic sound speed and y the ratio of specific heats. 
Propagation is only possible below col (gravity mode) or above co2 (acoustic mode), since 
then the vertical wavenumber 

K = {(ca2/coi - 1)/4L2 + k\o>\/co2 - 1)}' / 2 (4) 
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is real, and the wave velocity field is given by 

W(z; k, co) = W(0; k, coy/2Le'Kz {E(z; k, co)/E(0; k, co)} , (5a) 

where: (i) the first three factors are the initial wave velocity, the exponential amplitude 
growth and linear phase increase as for a Lamb wave in an isothermal atmosphere; 
(ii) the factor in curly brackets, which involves the hypergeometric function 

E(z; k, co) = F(- l/(26L) - k/6- iK/6, - l/(26L) + k/9- iK/6; 

\-2iK/0;Pe-lh), (5b) 

reduces to unity in the isothermal case /? = 0, and otherwise concentrates all the effects 
of the non-uniform temperature profile. 

It is clear from (5b) that the Lamb's wave (first three factors in (5a)) will be most 
modified in the region e~ & ~ 1 of larger temperature gradient. At high altitude, as z -> oo 
and e~ & -> 0, the hypergeometric function in (5b) tends to unity £(oo; k, co) = 1, so that 
Lamb's wave is regained (5a), with an extra constant factor {E(0;k, co)}'1, which 
corresponds to a constant amplitude factor \E(0; k, co)\~l and a phase shift 
-arg {E(0; k, co)}. This is illustrated for vertical waves (with horizontal wavenumber 
k = 0) in Figure 2, where the logarithm of the ratio of the velocity spectrum at altitude 
z to the initial velocity V= log {W(z; 0, co)/W(0; 0, co)} is plotted against dimensionless 
altitude z/L, for four values of the compactness parameter e = kL = 0.5, 1, 2, 5, 
corresponding to wavelengths X = 2nL/e larger than or comparable to the scale height: 
(left) the real part of V, which is the logarithm of the ratio of amplitudes, shows that 
waves grow exponentially in the asymptotic regime (straight lines for z/L~+ 00), but 
growth is faster than exponential in the region of larger temperature gradients (z/L < 2); 
(right) the imaginary part of V, which is the difference in phase (or argument) between 
the wave spectrum W(z; 0, co) at altitude z and the initial value W(0; 0, co), increases 
linearly with altitude in the asymptotic regime (like Kz for z/L-y 00), but the phase 
increases faster in the region of larger temperature gradient. The faster than exponential 
amplitude growth and greater than linear phase increase with altitude are more noticeable 
when propagating through positive temperature gradients, for higher frequency waves 
(smaller kL); negative temperature gradients can be shown (Campos, 1983a) to have 
the reverse effect. 

In general, for any atmosphere (isothermal or not) with bounded asymptotic tempera
ture, acoustic-gravity waves grow exponentially in amplitude and increase linearly in 
phase in the asymptotic regime; the growth is faster in positive temperature gradients 
and smaller in negative ones, the effect being more noticeable for higher frequency 
waves. Thus the amplitude and phase as function of altitude are similar in the asymp
totic regime for waves in isothermal or non-isothermal atmospheres with bounded 
temperature; the effect of temperature gradients at lower altitudes adds up to 
a constant amplitude factor and phase shift which will be larger for high frequency 
waves. 
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3. Alfven-Gravity and Magnetosonic-Gravity Waves 

The effectsof an external magnetic field will be exhamined in the case of vertical waves, 
for which the wave fields depend only on altitude z and time t, but not on horizontal 
coordinate x (this is equivalent to vanishing horizontal wavevector k = 0). We consider 
in the first instance a constant, vertical external magnetic field Hz, in which case 
(Campos, 1983b) the only propagating components of the velocity v and magnetic field 
h perturbations are horizontal and parallel, viz., along the x-axis, and satisfy 

82vJ8t2 - C2 82vx/8z2 = 0 = 82hJ8t2 -8{C2 dhjdz) /8z, (6a, b) 

where Cl denotes the Alfven speed, which depends strongly on altitude, e.g., for an 
isothermal atmosphere under a constant magnetic field H it increases exponentially on 
twice the scale height for density: 

C,(z) = \xH/J~\ np(z) = {iiH/yfe np0} exp(z/2L). (7) 

Thus, whereas in an homogeneous medium the Alfven speed is constant, and the 
velocity and magnetic field perturbations satisfy the same equation (6a), in an 
atmosphere the Alfven speed depends on altitude and the velocity and magnetic fields 
obey different laws, viz., (6b) has relative to (6a) an extra term - 2 C, dC,/dz 8hx/8z. 

In any atmosphere for which the density vanishes at high altitude, viz. p -> 0 as z -> oo, 
the Alfven speed diverges Cx -» oo, and thus from (6a) 82vx/8z2 ~*0 and (6b) 
dhx/dz -> 0, so that the velocity perturbation grows linearly and the magnetic field 
perturbation is asymptoticaly constant: 

vx(z; co) ~ {a(a))z + b(co)} rv(0; co) , 

hx(z; co) ~ i(H:/co)a(co)vx(0; co), (8a, b) 

for propagating Alfven-gravity waves of frequency co (we have used the induction 
equation 8hx/8t + Hz 8vx/8z = 0 to derive (8b) from (8a)). This result can be checked 
for an isothermal atmosphere (7), in which case (6a, b) can be solved exactly to yield 
the velocity and magnetic field perturbations at all altitudes (Campos, 1983b): 

vjz; co) = vx(0; co) {H^2\{2mL/Cl)e-^2L)/H^2\2mL/cx)} , (9a) 

hx{z; co) = i(HJCl)vx(0; co)e~^2L {H^dlcoL/c^e-^yH^coL/c,)} , 
(9b) 

where cx is the Alfven speed at altitude z = 0, and ^(0; co) the initial velocity perturbation 
for a wave of frequency co. It can be checked that the asymptotic forms of (9a, b) for 
large altitude z are (8a, b) with: 

H^2\2(oL/ct) x {a(co), b{co)} = 2i/nL, 1 - i2<f>/n - i{2/n) \og{2nL/cx), 

(10a, b) 

where cp is Euler's constant, and H(2) the Hankel function of second kind order n. 
The boundary conditions used to determine the constants of integration in the 

solution of (6a) are: (i) the initial velocity perturbation 1 (̂0; co) for a wave of frequency 
co at altitude z = 0; (ii) the velocity perturbation at low altitude and high-frequency 
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corresponds to an upward propagating wave, i.e., scales on exp {ico(z/cl -1)} . The 
wave fields (9a, b) are thus determined from the condition, which appears relevant to 
the solar case, that we know the velocity perturbation of upward propagating waves of 
all frequencies at a given level z = 0, e.g., in the photosphere. The wave fields (9a, b) 
are plotted in dimensionless form: 

V=vx(z;co)/vx(0;co), H = cxhx(z;oi)IHzvJ$;oi), ( l la, b) 

against dimensionless altitude z/L in Figures 3 and 4, the former for amplitudes (or 
modulus of (11 a, b)) and the latter for phase shifts (arguments of (11 a, b)). Four values 
of the compactness parameter e = OJL/CX are considered, corresponding to wavelengths 
A larger than or comparable to the scale height, and density changes by a factor of 
A = exp(A/L) = exp(27r/e) within a wavelength that are large to moderate. It is clear 
from Figures 3 and 4 that asymptoticaly as z -» oo: (i) the velocity perturbation grows 
linearly, faster for higher frequencies; (ii) the magnetic field perturbation is constant 
asymptoticaly, and smaller for higher frequencies; (iii) the phase difference between the 
wave fields at altitude z and 0 is finite asymptoticaly as z -» oo, and generally larger for 
high frequency waves. 

Besides propagating waves, which can transport energy from one atmospheric region 
to another, we also consider standing modes, which appear as atmospheric oscillations. 
The boundary conditions for a wave trapped between the atmospheric layers z = 0 and 
z = a are vx(0; co) = 0 = vx(a; co); as a -> oo we find that the wave reflected from infinity 
cannot give a zero but only a finite amplitude, i.e., a 'node at infinity' corresponds to 
a finite, non-zero velocity perturbation. The solution of (6a) which vanishes at z = 0 and 
is finite at infinity corresponds to standing modes with frequencies and wavelengths: 

«>n = cJn/2L , X„ = 4nL/jn , (12a, b) 

where j„ are the roots of the Bessel function J0(j„) = 0. The wave fields for the wth mode 
are given by the velocity and magnetic field perturbations: 

vx(z, t) = (JTC./2L) Im {v0(ajn)e-^'} UoO>"z / 2 i )A.O„)} , (13a) 

hx(z, t) = {nHJIL) Re {v0(con)e-^'} {/,0>-z/2Z-)/•/,(/„)} - (1 3 b) 

where v0(co) is the spectrum at altitude z = 0 and frequency co. The first four standing 
modes of vertical Alfven-gravity waves in an isothermal atmosphere are illustrated in 
Figure 5, showing that asymptoticaly: (i) the velocity perturbation is finite but non-zero, 
increasing with the order of the mode; (ii)the magnetic field perturbation decays 
exponentially to zero. 

Having considered two magneto-acoustic-gravity wave modes, namely, an acoustic-
gravity wave (Section 2) and an Alfven-gravity wave (Section 3), we now turn to a mode 
coupling compressibility and magnetism (besides gravity). This is a vertical magneto-
sonic-gravity wave, corresponding to a constant, horizontal external magnetic field Hx, 
which propagates an horizontal, parallel magnetic field perturbation hx and a vertical 
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velocity perturbation vz. The wave equations 

dhjdi2 - (Cg + C2)8\/dz2 + ygdvjdz = 0 , (14a) 

d2hx/dt2 - 5{(Cg + C2)dhjdz}/dz + ygdhjdz = 0 , (14b) 

where the sound C0(z) and Alfven Cr(z) speeds generally depend on altitude, can be used 
to derive asymptotic laws, and can be integrated exactly in terms of hypergeometric 
functions in the isothermal case. It can be shown (Campos, 1983b) that there exist two 
altitude ranges, separated by a transition layer, defined by the equality of sound and 
Alfven speeds C0(z.) = Cx{z»): (i) below the transition layer the gas pressure pre
dominates over the magnetic pressure, and the magnetosonic-gravity waves ressemble 
acoustic-gravity waves, which apart from modifications due to the magnetic field, exhibit 
exponential amplitude growth, whether standing or propagating; (ii) above the transition 
layer the magnetic pressure predominates, and the magnetosonic-gravity waves 
ressembles, apart from modifications due to compressibility, an Alfven-gravity wave, 
exhibiting: (a) asymptoticaly finite velocity and decaying magnetic field for standing 
modes; (b) linearly diverging velocity and asymptoticaly constant magnetic field for 
propagating waves. 

4. Dissipation by Viscosity or Electrical Resistance 

As a first instance of dissipation of atmospheric waves we consider the effect of viscosity 
on a vertical acoustic-gravity wave. The velocity perturbation is vertical and satisfies the 
equation (Campos, 1983c) 

d\/dt2 - Cld\/8z2 + ygdvjdz = vd\/dz2dt, (15) 

where the sound speed C0 and kinematic viscosity v depend generally on altitude. In 
an isothermal atmosphere the former is constant, and if the static viscosity is also 
constant, the kinematic viscosity varies inversely with density, i.e., grows exponentially 
with altitude, and (15) can be solved in terms of hypergeometric functions. The 
appearance of hypergeometric solutions once more (they also apply to magnetosonic-
gravity waves) is associated with the fact that these are the simplest special functions 
with three singularities: (i) at z = 0, corresponding to the initial wave field; (ii) at z = oo, 
corresponding to the asymptotic regime; (iii) at a transition or reflecting layer z = z* 
which separates two altitude ranges. In the case of viscous acoustic-gravity waves the 
reflecting layer is determined by the condition a>C0(z) = v(z), so that it depends on 
frequency, and below it waves grow exponentially whereas above they tend to a finite 
asymptotic value. 

For any atmosphere, isothermal or not, with asymptoticaly vanishing density p-> 0 
for z-> oo, the kinematic viscosity diverges v-» oo (if the static viscosity does not 
vanish), and it would appear from (15) that d2vjdz2 -> 0, so that the velocity pertur
bation would grow linearly. However, this would correspond to dvjdz asymptoticaly 
constant, so that the rate of dissipation of energy by viscosity, which scales on (dvjdz)2 

would be infinite when integrated over an atmospheric column from z = 0 to z = oo, 
which is physically absurd since energy can be supplied to the waves only at finite rate. 

https://doi.org/10.1017/S0252921100095683 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100095683


366 L. M. B. C. CAMPOS 

The condition of finite dissipation rate (Yanowitch, 1967; Lyons and Yanowitch, 1974) 
oc 

\dvz{z; 0})/dz\2 dz < oo , (16) 

o 

implies that the velocity perturbation is asymptoticaly bounded for standing modes and 
propagating waves. 

Having mentioned viscous dissipation of an hydrodynamic wave, we now turn to 
Ohmic resistive dissipation of Alfven-gravity waves. In this case (16) is replaced by a 
condition of finite rate of dissipation by Joule effect, i.e., it holds with 8v,(z; co)/dz 
replaced by the electric current j(z; co) which scales on dhx(z; co)/8z, where hx is the 
magnetic field perturbation. The velocity vx and the magnetic field hx perturbations 
satisfy (Campos, 1983c): 

8\/8t2 - C282vx/8z2 - C28{X 8(C^28vx/8t)/8z}/8z = 0 , (17a) 

82hx/8t2 - 8(C2 8hx/8z)/8z - x 83hx/8t 8z2 = 0 , (17b) 

which reduces to (6a, b) when the electrical diffusivity vanishes x - 0- The electrical 
diffusivity % is approximately independent of density, and thus can be taken as a 
constant in an isothermal atmosphere, in which case the Alfven speed is given by (7). 
The exact solution of (17a, b) appears again in terms of hypergeometric functions, so 
that there is a transition layer, specified by coCx{z) = #(z), separating: (i) a low altitude 
region where diffusion predominates, and the velocity and magnetic fields have a 
wavenumber k given by k2 = co/2x; (ii) a high-altitude region where propagation 
predominates and the amplitude and phase laws are similar to those for non-dissipative 
hydromagnetic waves (Section 3). 

It may be concluded that exponential amplitude growth is the exception rather than 
the rule for atmospheric waves, since it applies only to acoustic-gravity waves (standing 
or propagating), and is modified: (i) in the presence of an external magnetic field, with 
or without resistance, to linear growth for propagating waves and asymptoticaly finite, 

TABLE I 

Asymptotic laws2 for the amplitude1 of atmosphere waves 

Type Standing mode Propagating wave 

Acoustic-gravity Exponential growth Exponential growth 

Alfven-gravity Finite, non-zero3 Linear growth4 

Magnetosonic-gravity Finite, non-zero3 Linear growth4 

Viscous acoustic-gravity Finite, non-zero Finite, non-zero 
Resistive Alfven-gravity Finite, non-zero3 Linear growth4 

1 The phase shift for propagating waves is linear in the acoustic-gravity case and 
asymptoticaly finite and non-zero in all other cases. 

2 These asymptotic laws apply to the velocity perturbation. 
3 The magnetic field perturbation decays exponentially. 
4 The magnetic field perturbation is asymptoticaly finite, non-zero. 
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non-zero amplitude for standing modes; (ii) in the presence of dissipation by viscosity 
to finite asymptotic amplitude for standing modes or propagating waves. The magnetic 
field perturbation (for magnetic and coupled modes) is asymptoticaly finite for propa
gating waves and decaying for standing modes. These results are summarized in the 
Table I, and apply to waves in isothermal and non-isothermal atmospheres with 
asymptoticaly bounded temperature and vanishing density. A consequence for all 
atmospheric magnetic or coupled modes is: (i)the kinetic energy E = pv2/2 (per unit 
volume) tends asymptoticaly to zero, since the density decays (exponentially) faster than 
the square of velocity may grow (algebraically); (ii) the magnetic energy G = fxh2/%n (per 
unit volume) decays to zero for some standing modes, but for propagating waves is 
asymptoticaly bounded. Thus a magnetic or coupled (magneto-acoustic) wave propa
gating upward in an atmosphere violates the equipartition of energy which holds in an 
homogeneous medium, since asymptoticaly all energy is magnetic. 

5. Shock Fomation and Atmospheric Heating 

As an indication of the relevance of these results to solar physics we recall that it is 
generally accepted that waves are generated in the solar photosphere; these consist 
(Campos, 1977) of three magneto-acoustic-gravity wave modes, and it is often argued 
that they grow into shocks during propagation upward into the chromosphere. If waves 
grow exponentially, then, even if the initial amplitude is small, after a few scale heights, 
the non-linear effects which lead to shock formation come into play. It should be borne 
in mind, however, that in the solar atmosphere both magnetic fields and dissipation 
mechanisms are present, and thus waves may grow only linearly or have bounded 
amplitude. In these cases it is necessary to calculate, for the particular wave mode and 
in the physical conditions considered, whether waves grow enough for shocks to form 
within the height range of interest or: (i) shock formation is delayed by the magnetic field 
until higher altitude; (ii) the dissipation mechanisms limit amplitude to a level at which 
non-linear effects are small and shocks do not form. 

We have concerned ourselves with the properties of waves in non-isothermal, com
pressible, viscous and ionized atmospheres, and leave the detailed application to solar 
phenomena (Osterbrock, 1961; Uchida, 1968; Meyer, 1968; Hollweg, 1972; Mein and 
Mein, 1980) to subsequent works. We do however mention another consequence of 
these results, concerning the calculation of atmospheric heating functions, specifying the 
rate of deposition of wave energy with altitude. An accurate law of variation of wave 
amplitude and phase with altitude is necessary for the computation of the heating 
function, which in turn is critical for the establishment of solar atmospheric models. In 
this respect the W.K.B.J. approximation is of limited use, since it assumes sinusoidal 
waveforms and linear phases, and does not apply to wavelengths comparable to or larger 
that the scale height nor does it hold after several scale heights. Instead an exact theory 
should be used, applying to all frequencies and altitudes, yielding amplitude and phase 
laws from which the heating functions can be calculated as input to solar atmospheric 
models. 
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