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1. Introduction

It is shown in Gudder and Schelp (1970) that partial Baer ""-semigroups co-
ordinatize orthomodular partially ordered sets (orthomodular posets). This means
for P an orthomodular poset there exists a partial Baer *-semigroup whose closed
projections are order isomorphic to P preserving ortho-complementation. This
coordinatization theorem generalizes Foulis (1960) in which orthomodular lattices
are coordinatized by Baer *-semigroups. In particular Foulis (unpublished)
shows that any complete atomic Boolean lattice is coordinatized by a Baer
•-semigroup of relations. Since Greechie (1968), (1971) shows that a whole class
of orthomodular posets can be formed by "pasting" together Boolean lattices,
it is natural to consider the following problem. Let SP be a family of Baer •-semi-
groups of relations which coordinatize the family 88 of complete atomic lattices.
Is it possible to construct a partial *-semigroup of relations & which contains
each member of SP such that when P is an orthomodular poset obtained by a
"Greechie pasting" of members of 38 then 91 coordinatizes PI This question is
considered in the sequel and answered affirmatively for a certain subclass of
"Greechie pasted" orthomodular posets. In addition the construction of 8)t nicely
fulfills another objective in that it provides us with "nontrivial" coordinate partial
Baer ""-semigroups for a whole family of well known orthomodular posets. This
is particularly significant since the only other known coordinate partial Baer
•-semigroups, for those posets in this family which are not lattices, are the "mini-
mal" ones given in Gudderand and Schelp (1970).

2. Construction of the partial Baer ^-semigroup

We first review the definition of a partial Baer ""-semigroup as given in Gud-
der and Schelp (1970). Let S be a set, R^SxSa relation, and (x, y)-*xy a map from
R into S. The pair (S, R) is a partial semigroup if for x,y,zeS with (x, y), (y, z)eR
we have (xy,z)eR if and only if (x,yz)eR and in that case {xy)z = x(yz). If
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[2] A partial Baer *-semigroup of relations 161

R)(S, hasa zero 0 (i.e., (0,x),(x,0)eR for every xeS with Ox = xO = 0) and in
addition there exist there exist maps ' and * from S into S such that

(a) x = x** for all xeS,
(b) (x, y) e R implies (y*, x*) e R with (xy)* = y*x*,
(c) (x', x') e R and x'x' = x'* = x' for all x e S, i.e., x' is a projection, and
(d) (x, y)eR with xy = 0 if and only if (x', y)eR with y = x'y,

then the quadruple (S,R, *,') is called a partial Baer *-semigroup. For con-
ciseness we will frequently reference such quadruples by a single symbol S. The
elements of the set {x' | x e S} are called the closed projections of S and this set
is denoted by P'(S). The set P'(S) is ordered by defining e ^ / in P'(S) if an
only if {e,f)eR and e = ef. Whenever R = S x S the partial Baer *-semigroup
becomes the Baer "-semigroup defined in Foulis (1960). A partial semigroup
satisfying conditions (a) and (b) alone is called a partial involution semigroup
with * as involution.

Before proceeding to the construction of the partial Baer ""-semigroup of re-
lations it is best to glimpse at the motivation behind it. Foulis (unpublished) con-
siders the set of relations £P(X x X), the power set of X x X, on a non-empty set X.
For S,Te0>(X x X) he defines the product ST to be the composition of the
relations S and T, that is,

ST = {(x, y) I there exists a z e X such that (x, z) e S and (z,y) e T}.

Also * and ' are defined on ^(X x X) by

S* = {(y,x)\(x,y)eS} and S' = Ax n (M x M)

where Se&(X x X), Ax is the identity relation on X, and

M = X\{yeX\(x,y)eS for some xeX}.

0>(X x X) with * and ' as just defined is a Baer *-semigroup. Furthermore
&(X x. X) coordinatizes the Boolean lattice {^(X), £ , c) where c denotes
set complementation, that is

xX)), £ , ' )

is isomorphic to {^(X), s c). Now Greechie (1965), (1971) shows that certain
orthomodular posets can be constructed by properly "pasting" together Boolean
lattices. Thus the objective is to generalize the Baer *-semigroup of relations
^{X x X) to a partial Baer *-semigroup of relations ^ o n a family {Xa}aEr of
sets such that if P is an orthomodular poset obtained by a "Greechie pasting"
of the Boolean lattices {&> (Xa)}^ e T, then P is isomorphic to P'(M). Furthermore
^ should be constructed so that each ^(Xa x XJ is contained in 8fc. The partial
Baer *-semigroup we construct does fulfill each of these objectives for a certain
subclass of "pasted" orthomodular posets.
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To facilitate the construction we first introduce much notation and several
definitions. Unless otherwise specified, this notation will be used throughout
the remainder of this paper. Let {Xa}aer be a collection of sets and X = Uoer-^«-
Ay denotes the identity relation on X x X. If M £ Xx, for some a e F, let

| T(M) | denote the cardinality of F(M),

K(M)= U (X,\M),
MT(M)

and
Mc = Ax U (X(M) x .K(M)).

Define
= U

= {MC|M £ Xa for some ae F and M ' ^ p Q } ,

and 9t{X) = « , (Z) U 9t2{X). For Se^ (X) let

ranS = {jeX|there exists a n x e l such that (x,j)eS}
and

domS = {xeX j there exists a yeX such that (x,y)eS}.

Define a relation p on ^ (X) as follows:

p = U Pi where
i = l

Pi = {(S, T) | S, T e ̂ i (Z) and there exists an a e F such that (ran S),
( domr )£ Za},

p2 = {(Mc,iVc)JMc,JVc6^2(X) with M £ N or iV £ M],

p3 = {(Mc, S) | S e ^ j (X), Mc e ^ 2 (Z), and there exists an a e F such that
M, (domS) £ ATa}, and

p4 = {(S, Mc) | S e mx (X), Mc e ®2 {X), and there exists an a e F such that
M, (ranS) £ X.}.

For (S, T)ep define ST as the composition of the relations S and T. Also for
Se®{X) define S* = {(>,x)|(x,y)eS}.

The construction depends upon the collection {Xa}xeT satisfying certain
conditions. We thus give a convention.

CONVENTION 2.1. Let {Xtt}a£r be a nonempty collection of sets such that
Xa $ Xp for a ^ £ in F. Also let X = (Jaer-^a- We assume that the collection
satisfies the following two additional conditions.
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(AS) If a, /?, y e F and M, N, Q are subsets of X such that M £ Xx O Xp,
JV £ Z«, Q £ Zp, and (N\M), Q £ ZT, then there exists a <5eF
such that JV, (Q\Af) £ Xa.

(UP) If there exist a,/?eF and sets M £ Za, JV £ Xp such that K(Jtf)
= K(JVf) with K(M) $ Zy for all y e F, then M = N.

Several remarks concerning the above convention are in order. We will show
that when the sets { I , } , E r satisfy 2.1 then (M(X),p), with * and ' properly
defined, becomes the desired partial Baer *-semigroup of relations. Condition (AS)
is used to prove the required associativity of 01 (X) and (UP) is needed to guarantee
the uniqueness of the map ' . It will be shown by examples that if either (AS) or
(UP) are not satisfied then & ((X) need not be a partial Baer *-semigroup. Also
by the same examples we will see that conditions (AS) and (UP) are independent.

Although condition (UP) does guarantee the uniqueness of ' , a comment
concerning its explicit use is needed. It is used in the following manner. Suppose
that {Mc,T)ep with TeSt^X) and Mce@2(X). Since (UP) holds, (Mc,T)ep
implies that there exists an a e F such that M, (dom T) £ Xa. Observe that if
(UP) did not hold then we could only conclude that there exists jSeF and an
JV £ Xp with Mc = JVC such that JV, (dom T) £ Zp. Similar deductions are made
by using (UP) when either (T,MC) or (JVF,JVC) belong to p with TeSt^X) and
Mc, Nc e 312 (%)• IQ t n e sequel no further mention of this use of (UP) will be made.

LEMMA 2.2. Let {Xa}aer be as given in 2.1. Then (^(AT),p,*) is a partial
involution semigroup with the empty set 0 as the zero.

PROOF. Observe that if (S,T)ep then STe@(X). In fact STeSi^X)
unless S,Te&$2 (^0 m which case ST e M2 (X). Since it is immediate that * is an
involution and that 0 is the zero, we need only show that (^(Z),p) is a partial
semigroup. To do this first let (S, T), (T, 17), (ST, U) e p. We show that (S, TU) e p
by considering five separate cases.

Case, 1. Let S,Ue&(X) and TeSt^X). Since (T,U)ep, TU is defined
and the definition of product gives (dom TL/) £ (dom T). But (S,T)ep implies
that there exists an a e F such that (ran5),(domT) £ Xa when Se^^X) and
such that g,(domT) £ Xa for S = Q.ce@2(

x)- Hence either (ranS), (domTU)
or Q, (dom TU) is contained in Xa so that (S, TU) e p.
Case 2. Let S,Ue@t(X) and T = Mce®2(X). Since (S,T),(T,U)ep there
exists a,/?eF such that (ranS), M £ Xa and (domI/), M £ X&. From the
definition of Mc, the fact that M, (ran S) £ Xa, and the definition of the product
ST, we have

(ranST) = (ranS) r\(Xa\M) = (ranS)\M.

But (ST, U)ep implies that there exists a y e T such that (ran ST), (dom U) £ Xy.
Therefore (ran S) \ M, (dom U) £ Xy so that by condition (AS) on {X^ 6l- there
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exists a SeT such that (ranS),(domU)\M £ Xs. But M,(domU) £ Zp so that

(dom TU) = (dom I/) n (A"p \ M) = (dom U) \ M.

Hence (dom TU), (ran S) £ Za from which (S, TU)ep.
Case 3. Let S = (?c, T = MceM2(X) and UeMl(X). Since (Sc,Mc)ep
either Q £ M or M £ g. First assume Q £ M. Since (Mc, C/)ep, there exists
a n a e F such that Af,(doml/) £ xa. Also (dom MCU) £ (dom[7). Therefore
(Q°, MCU) e p. Next assume M £ £>. Then QCMC = gc. Now (£)CMC, C/)
= (Qc, U)ep so that there exists a y e T such that Q, (dom U) £ Xy. But
(dom MCU) £ (dom L/) from which Q, (dom MCU) £ X r Hence (Qc,McU)ep.
Case 4. Let Se^1(Ar) and T = Mc, U = NceM2(X). Since (Mc,Nc)ep
either M £ JV or JV £ M. If N £ M then MciVc = Mc and hence (S,MCNC)
= (S, Mc) e p by hypothesis. Therefore we may assume M £ JV. Now (S, Mc) e p
implies that there exists an a e T such that (ran S), M £ Za from which (ran SMC)
= (ran S)\M. Also (Mc,Nc)ep with M £ JV implies MCNC = Nc while
(SAP, Nc) e p implies the existence of p16 T such that (ran SMC) £ Xp and
M £ JV £ Xp. Therefore

(ranS) £ ((ranS)\M) UM = (ranSMc) U M £ Zp

so that (ranS), JV £ Zp and thus (S,NC) = (S.M'N^ep.

c

Case 5. Let, S = Qc, T = Mc, U = Ncei%2(X). (Qc,Mc),(Mc,Nc)ep
imply [g £ M or M £ Q] and [M £ JV or JV £ M]. If JV £ M then MCNC = M
so that (Qc,McNc) = (Qc,Mc)ep by hypothesis. Therefore assume M ^ N.
If Q £ M £ JV, then MCJVC = JVC and Q £ M so (QC,NC) = (Qc,McNc)ep. If
M £ 6 and M £ JV then since (QCMC, JVC) = (Qc, Nc) e p and MCJVC = JVC we
have(ec,McJVc)ep.

To complete the proof that (0&(X),p) is a partial semigroup we next let
(S,T),(T,U),(S,TU)ep. Since * is an involution on 0l(X) it follows that
(T*,S*),(U*, T*),(C/*T*, S*)ep. By the part just proved (U*, T*S*)ep so that
applying * we obtain (ST, C/) e p as desired. Finally since our definition of partial
product is composition of relations and composition of relations is associative,
we have that (S, T),(T, U),(S, TU),(ST, U)ep implies (ST)U = S(TU) and the
proof is complete.

LEMMA 2.3. Let {Xtt}aer be as given in 2.1. For SeM(X) there exists a
projection S'eM(X) such that when Te@(X) we have (S, T)ep and ST = 0
if and only if (S\ T)epandT = ST.

PROOF. We prove the lemma by considering two cases.
Case 1. Let S e ^ p Q . We show that for this case S ' = (ranS)c. Notice
that since SeSil(X) there exists an oeeF such that (ranS) £ Xa so that (ranS)e

makes sense. Also from its definition (ranS)c is a projection.
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Let (S,T)ep and ST = 0 . First assume that Te9tx{X). Now
and ST = 0 implies that there exists an a e T such that (ranS),(domT) £ Za

with (ranS) n(domT) = 0 . Hence from the definition of K(ranS) we have
that (domT) £ K(ranS). If (ranS)ce^?1(A

r) then there exists a peT such that
( d o m T ) s ^ ( r a n S ) c i p from which ((ranS)c, T) s p with T = (ranS)T,
while if (ran S)c e ̂ ?2(X) then since (ran S), (dom T) £ Xx we again have
((ranS)c,T)ep with T = (ranS)T. Next assume T = Mce^2(A"). Then since
(S, T) e p we have that there exists an a e T such that M, (ran S) £ Za. Also
SAP = 0 implies from the definition of Mc that (ranS) n (Xa\M) = 0 and
hence, since (ran5) £ Za, (ranS) £ M £ Xa. Therefore 2C(M) £ K(ranS) so
that Mc £ (ran S)c. Now (ran S)ce^2(A") for otherwise Mc £ (ran S)c would imply
that Mce^1(X), a contradiction to our assumption. Hence (ranS) £ M £ Xa

and ((ran S)c,Mc)ep with Mc = (ran S)CMC.
Conversely, let ((ran S)c, T)ep with T = (ran S)CT. We first claim that

(S,(ran S)c) e p. To see this suppose the claim does not hold. Then from the
definition of p there exists a y e T such that K (ran S) £ XY but either (ran S) $ 3Ta

or X(ranS) $ Za for all aeT. Hence there must exist fS,8eT, 0 ^ 5, such that
(ran 5)^x^1^ Xd. Thus since K(ran S) £ XY, we have A"p\(ran S), A"a\(ran S) £ Xy

which implies by condition (AS) that there exists a ^ e T such that Zp, ̂ \ ( r a n S)
£ Xv. But Xp £ ZM implies p = (i so that Za\(ranS) £ Zp. Therefore since
(ranS) £ X,,

Xd = (Xs\ranS) U (ranS) £ X^

which implies that (} = d, a contradiction. Hence the supposition is false and
(S,(TanS)c)ep. Since (ranS) n K(ranS) = 0 it is clear that S(ranS)c = 0 .
Therefore since {0t(X),p) is a partial semigroup and ((ranS)c, T), (S, (ran S)C) e p
with

T = (ran S)CT and S(ranS)c = 0 ,

we have ( 0 , T) = (5(ranS)c, T)ep and thus (S, (ran S)CT) = (S, T) e p with
ST = 0 .

Case 2. Let S = Mce@2(X) where M £ Xa for some aeT. For; this case
we show

S' = Ax O (M x M).

For convenience we denote Ax n (M x M) by PF. It is clear that W is a projection.
Let (Mc, T) 6 p with MCT = 0. If T e ^ (X) there exists an a e T such that

(dom T), M £ -X« and K(M) n (dom T) = 0 , that is, (dom T) S M S Xx. But
(domT) £ M = (ranff) so that (Ff,r)ep and T = WT. If T = Nce0t2(X)
then {Mc,Nc)ep with MciVc = 0 so that either Mc = 0 or JVC = 0 , a contra-
diction to AT, ATCe^2(Z). Hence (Mc, T)ep with MCT = 0 implies
and {W, T)ep with T = WT.
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Conversely if (W, T) e p and T = WT then since (AT, W), {W, T), (MCW, T)
= ( 0 , T) e p, we have (Mc, WT) = (Mc, T) e /? with M T = 0 .

We summarize Lemmas 2.2 and 2.3 in the following theorem.

THEOREM 2.4. (@(X),p,*,') is a partial Baer *-semigroup whenever the
family {Xtt}aer satisfies 2.1 and ' is as defined in 2.3.

Except for the fact that P'(S) will still denote the closed projections of a
partial Baer *-semigroup S, in the sequel the symbol ' will be restricted to the
mapping given in 2.3.

Observe that when F = {a} and X = Xa, then the partial Baer *-semigroup
0t{X) of 2.4 is simply the Baer *-semigroup of relations 2?(X x X) of Foulis (un-
published). Also for any family {Xa~]ae.r of 2.1 each Baer *-semigroup 82(XX) =
0>{Xa x l j , a6T, is contained in 0i{X) with 0!(XC[) x @(Xa) S P•

We close this section by considering two examples which indicate why
conditions (AS) and (UP) are used in our construction of tM (X). These examples
also show the independence of (AS) and (UP).

EXAMPLE 2.5. Let X± = {a, b, d], X2 = {a, e], X3 = {b, e), with T = {1,2,3}.

EXAMPLE 2.6. Let Xt = {a,b,d,e}, X2 = {d,e,f,g}, X3 = {f,g,h,j},
X4 = {h,j,a,b} with T = {1,2,3,4}.

We first claim that the sets {Xi}i=l2i3 of 2.5 do not satisfy (AS) and in
addition that 01 (X), for this example, is not even a partial semigroup. To show
this choose M = {a},N = {a, b}, andQ = {e}. It is apparent that M S X1C\X2,
N £ Xu Q Z X2, and N\M, Q s X3, but there does not exist a <5eF such
that N, Q\M s Xs. Therefore (AS) is not satisfied. To see that (^(X),p) is not
a partial semigroup first set S = N x N, U = Q x X3. By definition

Mc = Axn({b,d,e} x {b,d,e})

and we have (S,MC), (Mc, U), (SMC, U)ep with SMC = JV x {b}. But U = MCU
and there does not exist a SeF such that N,Q £ x, . Hence (S,McU)$p and
(^ (X), />) is not a partial semigroup. It is immediate that these sets do satisfy (UP).

Next we examine 2.6. It is straightforward to check that the sets of this example
do satisfy (AS) while {d, e}c = {h,j}c implies that (UP) fails to hold. Also by in-
spection there is no projection We0i{X) such that ({d,e}c, T)ep with {d,e}cT
= 0 if and only if (W, T)ep with T = WT. Hence 3t(X), for this example, also
fails to be a partial Baer *-semigroup.

3. A class of orthomodular posets coordinatized by 0t (X)

In the previous section we have seen that 01 (X) is, for {Xa}a e r properly
chosen, a partial Baer *-semigroup generalizing Foulis' Baer *-semigroup of

https://doi.org/10.1017/S1446788700029463 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029463


[8] A partial Baer '-semigroup of relations 167

relations. We now wish to show further that 01{X) coordinatizes certain ortho-
modular posets which are "Greechie pastings" of the complete atomic Boolean
lattices {^(X^j^^j-. In order to accomplish this we first adopt a convention.

CONVENTION 3.1. Let (P, ^P, # ) be an orthocomplemented poset such that
(1) P = {JaerBa where (Ba, ^ a # J is a complete atomic (Boolean lattice

for all a e r ,
(2) if a jt £(a,j8er) then Ba n P,p = {0,1} or {0,1,a,a*} where a is an

atom of both Ba and J3p, a* = a** = a#p,
(3) Ba % 21, Ba % 22 for all a e T, where 2" denotes the Boolean lattice of

all subsets of an n element set,
(4) for x, y e P, x ^ P y if and only if there exists an a e T such that {x, y} £ Ba

and x ^Bo-V' a nd
(5) for x e P there exists an a e T such that xeBa and x # = x #ct.

Greechie (1971) calls a finite set {J3j,=1>2#...,„, each B, e {Ba}a E r of 3.1, an
atomistic loop of order n whenever for 1 ^ j < i ^ n

J{0,l,a,a*} if i - j e { l , n - l }
B'nBj = \{0,l} otherwise,

and for l g J t < j < i ^ n we have B; n B} n Bk = {0,1}. Furthermore he
shows that the orthocomplemented poset (P,^P,#) of 3.1 is orthomodular if
and only if all atomistic loops of P are at least of order four. Thus we put additional
stipulations on 3.1.

CONVENTION 3.2. Let (P, ^ P , # ) and {Ba}aer be as in 3.1 such that
(1) all atomistic loops of P are at least of order four, and
(2) Xa is defined as the set of atoms of Ba, a. e T, with X = [J a e rXa.

Observe that X = atoms of P and that Xa $ X^ for a # /? in T (see (2) and
(3) of 3.1).

LEMMA 3.3. The sets {Xa}aer of 3.2 satisfy condition (AS) of 2.1.

PROOF. The proof is by contradiction. Suppose there exist a, /?, y e T and
sets M,N,e such that M £ Xa n Xp, JV c xa , Q s *„, and JV\M, Q £ X7

but N $ ^ or 6 \ M $ Z 3 for all ^eT . Notice that this supposition implies
that a,p,y are distinct indices. Now N\M £ Xy and N £ Xy imply that there
exists an m^ e M with mt $ Xr Also M £ Xp, JV $ Zp imply the existence of an
m2eN\M with m2 $X^ while Q\M $ Za implies there exists an m3eQ\M
with m 3 ^Z a . Observe that mleXa O Zp, m2eXa n X r , and w 3 eX p n l r

Therefore {m1,m2, wi3} are distinct atoms and {Ba, Bp,BY} form an atomistic
loop of order three, a contradiction to (1) of 3.2. Hence the supposition is false
and (AS) holds.
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LEMMA 3.4. The sets {Xa}aer of 3.2 satisfy condition (UP) of 2.1.

PROOF. Suppose here exist a,/?eF and sets M s Xs, N £ x p such that
X(N) = i<:(,Af) with K(M) <£ Xy, ye F. Since K(M) £ Xy, ye F, we have
| F(M) | > 1. By (2) of 3.1 M = 0 or {a} where a s l . Clearly K(M) = X(JV) = X
if and only if M = JV = 0 so that we may assume M = {a} and N = {b} with
a,beX. (UP) will be established by showing a = b. Suppose a # ft and let
a e T such that a e Xx. Since £„ g 21 there exists

Thus there exists a jSeT such that b,deX$. Surely p # a, since )S = a would
imply

a contradiction to the definition of K(N). Since Bp g 22 there exists an
ceZp\{&,d}. Now e$Xx for otherwise {d,e} £ X. n A"p which violates (2)
of 3.1. But

implies the existence of a y e F such that e,a e Xr Clearly y ¥= a for y = a would
again imply {d, e} ^ Xa n Zp. Also y # )? since 7 = /? would imply a,beXp
violating K(M) = X(JV). Hence a, 0, y are all distinct with deXa n Xp, eeXp O XY,
and a e Za n Xr so that {Ba, Bp, BY} is an atomistic loop, a contradiction to (1)
of 3.2. Thus a = 6 and (UP) holds.

From 2.4, 3.3, and 3.4 we have the following theorem.

THEOREM 3.5. If P, {Xx}aer, and X are as in 3.2, then (®{X),p,*,') is a
partial Baer *-semigroup.

The fact that &(X) of Theorem 3.5 is just a partial Baer *-semigroup is not
satisfactory. We wish in addition to show that it coordinatizes P. This is done by
proving a sequence of lemmas. In the se lemmas and their proofs we retain the no-
tation of 3.1 and 3.2 and in addition for xeP let Ax = {a\a ^ Px and aeX},
that is, Ax denotes all the atoms in P under x.

We first summarize some needed facts.

LEMMA

(i)

(ii)

Let

(a)
(b)
(c)
(d)

(a)

3.6.
xeP

r(Ax

Ax#
(Axy
{AX4

with r(Ax)

#) = {«},
= Xa\Ax,
= Axn(A

Oc = A* n

= {«}.

U# x
(A, X

a e F. T/zen

4,#) = [(' and

(b) Ao = 0,
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(c) 0C = [Ax n ( 0 x 0 ) ] ' = Ax O (At x At), and
(d) [0 C ] ' = Ax n ( 0 x 0 ) = Ax n (Ao x ^ 0 ) .

(iii) Let >> be an atom o/P. 77ien
(a) A, = {y},
(b) A,# = U«.r<r,i>(*.\M),
(c) A / = Ax n 04y# x 4 , # ) = [Ax n (4, x A,)]', and
(d) [A/ ] ' = Ax n (X, x ,4,).

PROOF. All parts of lemma are immediate upon recollection

r(ranS)c for
that S' = -I and

I A* n (M x M) for S = Mce®2{X)

restrictions imposed on {Xa}aer in 3.1 and 3.2.

LEMMA 3.7. Let xeP. Then Ax n (Ax x y4x) e P'(#(X)), that is, is a
closed projection of 0t(X).

PROOF. Recall that SeP'(@(X)) if and only if S = 7" for some Te$t(X).
First the result is immediate by 3.6 (i) and (ii) for x = 0,1 or when | r(^4x)| = 1.
Therefore we assume that x ^ 0,1 and that either Ax $ Xa for all a e T or
| r(Ax) | > 1. But by (2) of 3.1 this implies that x is either an atom or coatom of P.
By 3.6 (iii) we again obtain

Axn(Ax x

and the proof is complete.

Having established 3.7 we now define a map / : P-+P'($(3Q) by the pre-
scription

xf = Axr\(Ax x Ax), xeP.

We will in fact show that / is an order isomorphism onto {P'(J%(X)), g , ')
preserving orthocomplementation, i.e., that @(X) coordinatizes P.

LEMMA 3.8. / maps onto P'{St{X)).

PROOF. By the proof of 2.3 P\0t{X)) = st U % where

st = {(raniy| r e ^ ( I ) } and <<f = {Ax n (M x M)|Mce^2(-X:)}.

Let SeP'(^(X)). If Se'g', then there exists an a e T and an M £ X* such that
S = Ax n (M x M) with | T(M) | > 1. Thus by (2) of 3.1 M = 0 or M = {a},
a e Z . But 0/ = A x n ( 0 x 0 ) and af = AX n ({a} x {a}), aeX, so that
%> is contained in the range of /. We thus assume that there exists a T e S , ( X )
such that S = (ranT)c, i.e., that Sesf. TeM^X) implies that there exists
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yeT such that (ranT) £ Xr Hence, since by 3.1 (1) By is complete, V Bv(ranT)
exists. We claim that (x*)f = (ranT)c = S where x = Vu,,(ranT). Now this
claim is immediate if (ran T) — 0, Xy, or Xy \ {a}, a e Xr Also if (ran T) = {a},
a e Xv then x — a and by 3.6 (iii)

(x*)/ = Ax n {Ax* x 4 , , ) = . 4 / = (ran T)c.

But if (ranT) ¥= 0,Xy,Xy\{a},{a} for a e Z r it follows from (2) of 3.1 that
ran T = Ax and T(ranT) = {7}.Under these conditions 3.6 (i) implies

(x*)f = Ax n (i4,# x A,*) = i4,c = (ran T)c

and the claim holds.

LEMMA 3.9. / is a one-to-one map with f and f'1 preserving order on P
and P'(@(X)) respectively.

PROOF. Recall that for S, T e P'{0t (X)), S g P'(^(y))T if and only if (S, T)ep
and S = ST. Let x g P ) \ x,yeP. Since

x / = A* n ( ^ x ^ J and y / = Ax n (^,, x 4 ) ,

it is straightforward to check that (xf,yf)ep. Thus since /l^ £ Ay we have tha
x / = (x/) (y/ and / preserves order.

Next let S = A j n ( M x M ) , T = Ax O (g x 0 e P ' ( ^ W ) with
(S,T)ep and S = ST. Thus M £ Q and by 3.8 both Sf-1 and T / - 1 are non-
empty. Let x e Sf'1 and yeTf'1 and observe that

M = {a I a ^Px, aeX} and 6 = {a\a ^Py, aeX}.

If x e M £ Q then clearly x rg^y so that we may assume x^M. Letting
with x e Bp and D = {a | a e Af n 5p} we obtain from the completeness of 2?p

that x = V BpD- Since x^M, there exists and at ^ a2 in D. We claim that this
implies that y e Bp from which

x =

To see this claim first observe, since a1,a2eD £ M £ Q, that (4) of 3.1 implies
the existence of y, S e T such that ax ^ By y and a2 g Biy. But if j e Bp then /?, y, d
are distinct with y a coatom of both Br and 5rf so that {Bp,Br,B3} forms an
atomistic loop of order three, a contradiction. Hence yeBp and we have x ^Py.

Notice that the argument of the last paragraph gives in particular that / is
one-to-one. Thus since / is onto, j ~ l exists on P'{M{X)). Hence both / and
f-1 are one-to-one with x Spy if and only if xf g /

LEMMA 3.10. / preserves orthocomplementation.

PROOF. Let x e P. If IIX4,) | = 1 then by 3.6 (i)
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(x*)f = Ax O {Ax* x Ax*) = [_{Ax*yy = [AXO (X, x Aj]' = [x / ] ' .

We may thus assume | F ^ , ) | > 1 or Ax $ Xa for a e F, which says by (2) of 3.1
that xe {0,1,a,a*} where aeX. But for xe {0,1,a,a*}, 3.6 (ii) and (iii) give

(x*)f = A*n {Ax* x Ax*) = [Ax O ( ^ x XJ] ' = (x/)'.

Hence in all cases (x # ) / = [x / ] ' .

We summarize the results of Lemmas 3.8 through 3.10 in the next theorem.

THEOREM 3.11. Let (P, s£P, # ) , {Xa}aer, and X fee as defined in Conven-
tion 3.2. Then the partial Baer *-semigroup {38.(X),/?,*,') coordinatizes

4. Examples

The results of the previous section give a constructive method of obtaining
non-trivial partial Baer *-semigroups which coordinatize many of the well known
orthomodular posets. They are non-trivial in the sense that they are not the
"minimal" ones discussed in Gudder and Schelp (1970). We look at several
examples.

EXAMPLE 4.1. Let X^ = {a,b,c}, X2 = {c,d,e}, and X3 = {e,f,g}. For
the collection {X,}; = 1 , 2 , 3 , @(X) coordinatizes D16, the 16-element lattice of
Dilworth (1940).

EXAMPLE 4.2. Let ^ = (a, b, c}, X2 = {c, d, e}, X3 = {e,f, g), and

•̂ 4 = {g,h,a}. For this collection of sets M(X) coordinatizes Ji8, the first known
finite orthomodular poset which is not a lattice, see Janowitz (1963).

EXAMPLE 4.3. Let X, = {a, b, c}, X2 = {c, d, e}, Xi = {e, f, g)

XA = {g,h,i}, X5 = {i,j,k}, X6 = {k,q,a}, X1 = {b,m,h}, X8 = {d,n,j},
X9 - {f,P,<l}, -X"io = {m,n,p}. For this collection of sets 01{X) coordinatizes
G32, see [5], Greechie's 32-element orthomodular lattice. Greechie (1971).

EXAMPLE 4.4. Let {Xa}asT be a disjoint collection of nonempty sets such
that the cardinality of Xa ^ 1 or 2 for all a e T. Then 0t(X) coordinatizes the
horizontal sum of the Boolean lattices 0> (Xa), a e F. The restriction that the
cardinality of Xa # 1 or 2, a e F, is only included so that 3.2 is satisfied. As far
as this example is concerned the cardinality restriction can be removed.

Some final comments are in order. In Gudder and Schelp (1970), orthomod-
ular posets are coordinatized by OM-partial Baer *-semigroups so that it is
only natural to wonder if and when 0t(X), {XOL}aer as in 2.1, satisfies condition
OM. The "if" is settled by Example 4.2, since that M(X) is not OM even though
P'(3l(C)) is orthomodular. Also P'(&(X)) may very well be a non-orthomodular
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orthocomplemented poset for such a family {Xx}a E r. Thus it would be interesting
to know necessary and sufficient conditions of the family { I , } t E r satisfying 2.1
such that &(X) is an OM-partial Baer *-semigroup and also conditions such thats
P'(@(X)) is orthomodular. Finally since the coordinatization in 3.11 is for the
somewhat restricted orthomodular posets satisfying Convention 3.1, it would be
nice to determine the most general setting in which this theorem holds.
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