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A DESCENT THEOREM FOR HERMITIAN ^-THEORY 

VICTOR SNAITH 

1. Let KO and KU respectively denote the real and complex periodic 
K-theory spectra [1, Part III]. Let KSC denote the spectrum representing 
self-conjugate AT-theory [2, G]. Thus we have a fibring 

1 T 
-KU (1.1) KSC-^KU-

where T is induced by complex conjugation on the unitary group. 
The following result is due to R. Wood [1, p. 206] and, I believe, to 

D. W. Anderson. 

1.2. PROPOSITION. Let T) G IT^(S°) ^ Z/2 generate the stable one-stem. 
Then there are weak equivalences of spectra 

KU a) KO A (s° U e2 ) ~ 

[note 2 2 ( s ° U e2) ~ CP2) and 

b) KO A Is0 L) e3) ~ KSC. 

Proof. The reduced Hopf bundle on CP gives 

h:S° U e2 -> AT/. 

Let c.KO —> AT£/ denote complexification and form 

( n , \ C A / J mult 
S° U e2 I +»KU A #£/ • # £ / . 

The following diagram homotopy commutes. 

. 0 C KO ~ KO A Su 

(1.2) 

—#£/ 

1 

KO A 2~ 2 CP 2 -
O 

*KU 
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836 VICTOR SNAITH 

Applied to X, the cofibration sequence of c takes the form [3, (3.4) ] 

(1.3) . . . . - > KOm(X) (7? ~lKOm~l(X) -^ A T / " 1 " ^ - > . . . . 

By (1.2), $ clearly induces an isomorphism from (1.3) to the cofibration 
sequence of a, which proves (a). 

The proof of (b) is similar, replacing (1.3) by the sequence of [3, (3.6) ] 
which relates KO*(X) and KSC*(X). 

2. Now we turn to algebraic K- and L-theory. For the latter, the reader 
is referred to [12 and 13]. For the former, [4, 19, 8, 21, 22, 29, 30] are 
suitable references. 

2.1. a) Throughout the remainder of this note, / will be a prime, S a 
separately closed field or, more generally, a strictly Henselian local ring in 
which 2/ is invertible. Let A denote a commutative S-algebra with an 
anti-involution, x f—» 3c, such that 'sx = s(3c) (x e A, s e S). 

b) In our proofs, we will use [29, Theorem 4.1] which requires that A 
satisfy certain (very commonplace) cohomological conditions, as follows: 
Suppose that A (or Spec(^4 ) ) is separated, noetherian and regular of finite 
Krull dimension and that there is a uniform bound on the /-torsion étale 
cohomological dimension of all residue fields of A (even at non-closed 
points). 

2.2. We briefly recall a construction of [29, Part 1.33 et seq.] (see also 
[22, IV, Part 1] ). Let F be a presheaf of fibrant spectra on the étale site of 
a scheme, X. For example, F might be an CL- or AT-theory spectrum, 
possibly with coefficients mod lv. 

There exists a spectrum Het(X; i7), an augmentation map 

V:F(X) -> Het(X; F) 

and a spectral sequence of cohomological type 

(2.3) Esi< = Hs
el(X; vt(F) ) =* «t_J&,(X; F) ). 

When X = Spec A, this spectral sequence converges strongly under the 
conditions of Parts 2.1 (a)/(b). 

Het(X; F) commutes with direct limits in F and preserves fibrations of 
spectra. It is the analogue, in the homotopy category of spectra, of the 
more familiar hypercohomology constructions in algebraic abelian catego­
ries [18]. 

Let K/lv(A ) denote the spectrum of the algebraic i^-theory (mod lv) of A 
in Part 2.1 (a). By [27, 28], 

ir*(K/l\S) ) = K*(S; Z/T) 

is the graded polynomial ring on one generator, /?, in dimension two. 
K/l\A) is a module spectrum over K/l\A) so (following [21, IV, p. 134] ) 
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we may invert /? to form the spectrum K/lv(A)[\/fS]\ "Bott periodic" 
algebraic AT-theory (see [23] ). Similarly, let K/lv[\/ft] denote the presheaf 
of fibrant spectra given by mod /" "Bott periodic" algebraic K-theory on 
the étale site of X = Spec(v4). 

Thomason's main result is the following: 

2.3. THEOREM [29, Part 4.1]. Let A be an S-algebra as in Parts 2.1 
(a)/(b). Then {assuming v ^ 2 if I = 2), 

i):K/l\A)[\/p\ -> l4(Spec04); R/l^VR ) 

is a weak equivalence. Also, the spectral sequence of (2.3) is strongly 
convergent and takes the form 

^ = I^Spec^); *<0 ) , j =Ji J^ ^ ^ / r ( „ ) [ 1 / / ? ] } . 
Note that, for some integer N, E^ = 0 when s ^ N. Here /A/KO is the 

/-th Tate twist of the sheaf of lv-ih roots of unity. 

2.4. From [27, 28] we have an isomorphism 

K*(S; Z/lv) = TT*(BU- Z/lv) = Z/lv[/3], 

As a corollary, one has its Hermitian and self-conjugate analogues 
[10, 11, 13, 14] which state that, in positive dimensions, 

XL*(S; Z/lv) = 77*(£6>; Zllv\ 

- ,L*(S; Z/lv) = **{BSp\ Z/lv) ^ 77*_4(£<9; Z//"), 

and 

ATSC*(S; Z / f ) = **(BSC\ Z/lv) 

where BO and BSC are the usual classifying spaces for real and 
self-conjugate A^-theory [1, 2, 3, 9]. In fact, the (co-)fibrations of spectra 
[12] 

F 
xV/l\S) -> xL/l\S) -> A7/%S) 

and 

-XU/l\S) -» K/l\S) -> -XL/l\S) 

may be identified with the (co-)fibrations obtained by smashing 

tt~]BO-^ BO-^ BU and 

£2~2£<9 *ti~2BU -> Œ~45<9 

respectively, with the mod /" Moore spectrum. Consequently, there exists 
generators 
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B G XL%(S\ Z/lv) and b e KSC4(S; Z/lv) 

whose images under the forgetful map to K*(S; Z/T) are /J4 and (f 
respectively. 

In a manner similar to Part 2.2, we may form the spectra 

(2.5) €L/lv(A)[l/B] and KSC/l\A)[\/b]. 

These spectra are the localizations of the spectra representing respectively 
the e-Hermitian and the self-conjugate algebraic K-theories (mod /") of A 
[12, 13]. 

2.6. THEOREM. Let I be a prime and v an integer (v ^ 2 if I = 2). Let A be 
a commutative S-algebra {where 2/ is invert ible in S) satisfying the conditions 
of Parts 2.1 (a)/(b). Then 

a) ri:KSC/l\A)[l/b] -> H^(Spec A; KSC/lv[\/b] ) 

is a weak equivalence; 
b) ife = ± 1 , 

T]l:(Ulv(A)[\/B]-*Yiet(SpQcA; tL/lv[\/B\) 

is a weak equivalence. 
c) consequently there are strongly convergent spectral sequences (x — 1, 

2, 3), 

E? = Hs
et(A; ¥(x\) =* 77,_,(F(x)), 

^(1) = ^SC/ /%4) [1 /H F(2) = j L / / ^ ) [ l / , B ] 

F(3) = _xL/l\A)[\/B). 

In these cases, the sheaf F(x)t is given by the following table. 

TABLE 1 

t m o d 8 F( 1 ),, / odd F( 1 ),, v ^ 2, / = 2 F(.v)„ A- = 2, 3; / o J J F ( 2 ) r v ^ 2, / = 2 F<3),, v ^ 2, / = 2 

SA ^ ( 4 A ) M2„(4A ) M/V(4A ) M2,(4A ) M2„(4A) 

SA 4- 1 0 ixlv(4k + 1) ® Z/2 0 /x?„(4A) ® Z / 2 0 

HA 4- 2 0 jM4A + 2) 0 (jLi2r(4A)® Z / 2 ) 2 0 

SA 4 3 ^ ( 4 A 4- 2) M2,(4A- + 2) 0 JLL,„(4A-) ® Z / 2 0 

SA 4- 4 /V<4* + 2) M2,(4A + 2) IV(4A + 2) M2„(4A + 2) M2„(4A + 2) 

SA 4- 5 0 jiS„(4A + 3) ® Z / 2 0 0 H1P(4k 4- 2) ® Z / 2 

SA 4 6 0 M 4 A + 3) 0 0 (/^„(4A + 2) ® Z / 2 ) 2 

SA 4 7 M/V(4A + 4) /t,„(4A- + 4) 0 0 ju^(4A + 2) ® Z / 2 
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2.7. Remark. Aside from Tate twists, the coefficients in Table 1 are 
given by 

F(l), = 7Tt(BSC; Z/lv\ F(2), = <nt(BO\ Z/lv) 

and 

F(3), = wt(BSp\ Z/lv). 

These coefficients have the usual 

,L*(S; Z/lv) = TT*(BO; Z/lv) 

module structure; that is, the one from topological K-theory. For example, 
when / = 2, v ê 2, let TJ generate \LX(S\ Z/2V) and let {TJ2, g} generate 

XL2(S\ Z/2V) = Z/2 0 Z/2 

(as p ^ 2). If ik generates F(2)8A, then 

F(2)8, + 1 = (vk) 

F ( 2>8£ + 2 = (v\> £**>> 

F ( 2 W s = (Wk) 

a n d 7} ik = 0. 

2.8. Proof of theorem 2.6. Firstly, we appeal to the rigidity theorems of 
[27, 6, 7, 11] which show that the sheaves F(x)* are constant on the étale 
site and isomorphic in positive dimensions to 

KSC*(S; Z/lv) = <TT*(BSC- Zlv\ 

,L*(S; Z/lv) = TT*(BO; Z/lv) 

or 

-XL*{S\ Z/lv) ~ 7T*(BSp; Zll\ 

These yield the groups, with the appropriate Tate twists, which are 
recorded in Table I. This proves (c), as explained in Part 2.2. 

Part (a) is an immediate corollary of Thomason's theorem (Part 2.3), the 
fibration sequence of 

1 - T 
KSC/l\~)[\/b] -> K/l\-)[\/p\ *»K/lp(-)[l/p] 

and the five lemma. Here we have used the fact, mentioned in Part 2.2, 
that Hee(Spec A; — ) preserves fibrations of presheaves of fibrant 
spectra. 

When e = ± 1 , consider the commutative diagram of fibrations of 
spectra [13, Part 4.10]. 
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Q2
€L/lv(Ay -&€L/l\A) 

(2.9)£ eL//%4)- »K/lv(A) 

1 

tU/l\A) 

KSC/lv(A) 
1 - T 

-*»K/l\A)- ~K/l\A) 

Firstly, we claim that ey is induced by multiplication by an element, also 
denoted by ey, in _]L_2(Z[\/2]). For all the maps in (2.9)e are 
"L*-module" maps; in the sense of [12, 13]. Generalising [12, 13] 
marginally one can construct categorical models realising the sum of 
(2.9)_j and (2.9)t in such a way that the resulting map 

Sl\_xL/l\A) v xL/l\A)) 
1° - l Y ) 

»(_xL/l\A)v xL/l\A)) 

is seen to be an "(__i^* jL*)-module" map. Hence, it must be 
multiplication by a matrix of elements 

V,Y 0 ) 

as required. 
Set 

EL/f(/*)[l/fl], K' = /CSC/Z^Ml/è] 

with associated presheaves of spectra eL', K'. For e = ± 1 , we have a 
diagram of exact sequences of the following form: 

(2.10)€ 

»irm + 2(-(L') • % ( ( n . 

i ":1 7I + 1(H,,</1: K') ZL_^r„, + 2(He,(/*; -tL'))+yrm(Hel(A; €L') , • 77m(H;,(/(; K ' ) ) _ 

The isomorphism comes from part (a). 
Next we observe that _]YiY is zero because ey multiplies through its 

image in 

_!L_ 2 (^ ; Z/lv)[\/B] = 7T6(BSp; Z/l") 

~ [ Z / 2 9 Z / 2 if / = 2, v ^ 2, 
1 0 if / is odd. 

Furthermore, „ , Y and jY are integral classes so that their product in 
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XL_4(S; Z/2V)[\/B] = <irn(BO; Z/2V) 

is zero, from the known ring product structure in topological AT-theory. 
Thus, if i e irm(€L

f) and rje(.x) = 0, then 

H(x) = 0 and x = _€yy9 (y e 7rw+2(_£L') ). 

Therefore, 

so that 

TJ_ € (J — 7r(z)) = 0 and 

y - 77(Z) = jw (w <= 7rm+4(€L')) 

which implies 

x = -eyy = -My ~ <z)) 

= - € Y € YW = 0 , 

so that 7]€ is one-one. 
We conclude by showing that rje is onto. If 

x G vm(Het(A, €L0 ), 

then / / (x) = T](y) îor y e irm(K') and, because TJ_€ is one-one, 

^ = H(z) (z e ^W( (L') ). 

Therefore, 

* - T?€(Z) = _€YW (w G 77m+2(H^(^, - € L r ) ) ) . 

Similarly 

w = T ? - X P ) + -£Y€Y<7 

= *?-<(/?) 

so that x = i7€(z) + TJ€(_CY/?) as required. 

2.12. Remark. In the proof of Theorem 2.6 (b), we used the fact that 

_ l Y l Y G 1L_4(S; Z/lv)[\/B] 

is zero. However, _1y1y is not generally nilpotent. For example, if we were 
to replace the strictly Hensel local ring, S, by Z[l /2] , from [12], the 
fundamental theorem of [13], the fact that 

Km(Z[\/2]) = 0 form < 0 

and the fact that 

_1L0(Z[l /2]) = Z 0 Z / 2 , 
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one finds 

_!L_ 2(Z[l /2] ) = Z 0 Z/2 0 Z/2. 

In this group, ± 1 y is not a torsion element. Furthermore, no power, 
(_iY,y)w, is zero for in large negative dimensions it yields an isomor­
phism 

_,L„(Z[ l /2]) = „ ,L„_ 4 m (Z[ l /2]) . 

3. The analogue of Wood's theorem. 

3.1. By [27, 28, 14, 15, 10, 11] we have isomorphisms 

[2~2CP2 , K/lv(S)] = \s° U e2, K/lp(S)\ 

= KU^^S0 U e2; Z / / " ) 

and 

[ s ° U e\ KSC/l\S) I = K S C ° ( s ° LJ e3; Z / / " j . 

Consequently, we have maps 

h:S° U e2 -> # / / ' ( $ ) and / ^ S 0 u e2 -> KSC/lv(S\ 
7] if 

corresponding to the topological maps of Part 1.2. 
We may form maps, analogous to those of Section 1, 

$>:(eL/lv(A)) A (s° U e2) *»K/l\A) A K/l\S) 

mult 
*K/l\A) 

and 

*:(€L/lv(A)) A ( s ° U2 e3) leL/l\A) A KSC/l\S) 

mult 
KSC/l\A) 

for € = zbl. Here F is the forgetful map. These maps are "L*-module" 
maps in the sense of [12, 13] so that they induce maps 

(3.2) <S>:€L/lv{A)[\/B] A (s° U e2) -> K/lv(A)[\ 'P] 
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and 

*:€L/lv(A)[l/B] A (s° U e3) -> KSC/l\A)[\/b}. 

3.3. THEOREM. Let I be a prime and let v be an integer (if I = 2, v ^ 2). 
Let S be a separately closed field or a strictly Hensel local ring in which 2/ is 
invertible. Let A be a commutative Hermitian ring which is an S-algebra 
satisfying the conditions of Parts 2.1 (a)/(b). Then O and SF are weak 
equivalences in (3.2) when e = dzl. 

Proof. We will prove that $ is a weak equivalence, the case of ^ being 
entirely similar. 

The map, O, is natural in A. Therefore it induces a map of spectral 
sequences (2.3) and Part 2.6 for 

F = €L/lv[l/B] A (2"2CP2) 

and for 

F = K/lv[\/p\. 

The assumptions of Part 2.1 (b) ensure that these spectral sequences 
converge strongly to the homotopy of the range and domain of O. Hence, 
we have only to verify the result on stalks; that is, when A itself is a strictly 
Hensel local ring. However, this case, by [27, 28, 14, 15, 10, 11], may be 
identified with the topological result (Part 1.2) with mod /" coefficients, 
which completes the proof. 

4. An application to Stiefel-Whitney classes of symmetric bilinear 
forms. 

4.1. Let K be a field of characteristic not equal to two. Suppose that 
4>: V X V —> K is a non-singular, symmetric bilinear form, of rank m, over 
K. To (V, <£) one may attach Stiefel-Whitney classes [5] 

(4.2) wt(V, <J>) e H\K\Z/2) 

where H\K\ Z/2) is the z'-th Galois cohomology group of K (see [18] ). To 
define wt(V, <j>), one diagonalises (F, <J>) to the form 

L 'am J 
Set wt(V, $) equal to the z'-th elementary symmetric function in 
/(a,), . . . , l(am) 

Wi(V,4>) = 2 K«j) • • • Koj) 
J\<J2<---<Ji 
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where 1(a) <= Hl(K; Z/2) is represented by the function Gz\(K/K) -> Z/2 
given by 

l(a)(g) = g(VS)/V5 e {±1} = 2/2. 

4.2. Suppose that L/K is a finite, separable field extension and that 
\p:X X X —» L is a symmetric, non-singular bilinear form. The Scharlau 
transfer of (X, i//) is the composition 

\p trace 
X X X -*-> L *»K 

considered as a non-singular bilinear form over K, TvL/K(X, xp). 
The question arises: What is 

(4.3) wz(Tri/^X, ,/,) ) G #'"(*; Z/2)? 

This question was first studied by Serre [20], who found an elegant 
formula for the discriminant and Hasse-Witt invariants (wx and w2). See 
also [24]. The problem was taken up by B. Kahn [16]. Below, I will sketch 
an approach to defining wt(V, <J>) which uses algebraic K- and L-theory and 
with it I will answer (4.3) for fields K which have a separably closed 
subfield. In a future paper [25], I will develop this outline to give the 
solution to (4.3) (at least, whenever an eighth-root of unity lies in L). 

Recently I have learnt that B. Kahn has obtained a complete solution to 
(4.3) by methods which do not involve algebraic K-theory [17]. Neverthe­
less, I believe that the theory developed in [25] will be of independent 
interest. 

4.4. Definition. If (X, \p) is as in Part 4.2 and has rank t, let 

[X, i//]:Gal(Ar/L) -> (Z/2)' 

denote (/(£,), . . . , /(/?,) ) where 

L ""xl 
is any diagonalisation of (X, \p). 

If n = [L:K], we may form the induced representation 

(4.5) T r ^ Z , W.G&KK/K) -* 2„ / (Z/2)' c Ont(K\ 

where Tr denotes for "vector bundle transfer" and H j G denotes a 
wreath product. The topological Stiefel-Whitney classes restrict to 
classes 

w|op G Hl[2n j (Z/2)*', Z / 2 ) 
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(by [27, 28, 14, 15, 11], wz
op actually originates in the cohomology of 

Ont(K) ). Thus we may form 

(4.6) w^(Trv
L/K[X, *] ) e Hl(K; Z/2). 

4.7. THEOREM. Let K be a field of characteristic different from two, 
containing a separably closed subfield {or more generally the quotient field of 
a strictly Hensel local ring). Then, with the notation of Parts 4.1/4.6, for all 
i ^ 1, 

HYTi£/ACr, *) = W^TT^X, M e Hl(K; Z/2). 

Sketch proof Let 5 c AT be a separable closed field or a strictly Hensel 
local ring. In the following construction, any such K is the direct limit of 
fields satisfying the conditions of Parts 2.1 (a)/(b) (and hence of Part 3.1) 
and by taking limits we may assume that K satisfies Part 3.1. 

By [21, 22, 14, 15, 10, 11], there is an isomorphism (X+ = Xu (base 
point) ) 

(4.8) [2*Gal(£/Jr), J?,0(S) + ; Z/2"] = KO~"(B G<il(K/K); Z/2") 

(for all v), where Gal(K/K) has the profinite topology. Since Thomason's 
spectrum H(Spec K; \L/2V) of Part 2.2 is the homotopy fixed points, 

M a p G a l ( ^ ) ( £ Gz\(K/K)+, XL/2\K)), 

the natural Gal(K / K)-equivariant map of spectra (with trivial action on 
the first one) 

(2°°/2") A BxO(S) + -> XL/2\K) 

induces a map (using (4.8) and Theorem 2.6 (b) ) 

(4.9) y„ = KO~*(B Ga\(K/K); Z/2") 5 \L*(K\ Z/2V)[\/B]. 

However, (4.9) is an isomorphism. For by [26] the analogous map 

Pp:KU~*(B G2\(K/K)\ Z/2") = KJ^K; Z/2")[l/£] 

is an isomorphism. Hence (4.9) follows from the fact that 0 in (3.2) is an 
equivalence (with e = 1) and a diagram chase of the resulting diagram, 
namely (setting X = B Gsi(K/K) ) 

^KOm(X; Z/21) n » Knm+\y- Z/2") ^KUm + \X; Z/2") • _ . . 

(4.10) \y° \y' £|>> 
^L_JK; Z/2V)[\/B] ^XL-„^(K; Z/2v)[l/B] _^.K-m_x{K\ Z/2")[l/j3] ^ . . 

From (4.9) we may define wt{V, <j>) as follows: (V, <p>) defines a class in 
\L0(K) and hence one in 
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lim lim _ 
<- 1L0(/C; Z/2V)[\/B] = <- KO°(B Gal(K/K); Z/2V). 
v v 

However, the topological Stiefel-Whitney classes are defined on the 
latter group. Furthermore, one can verify, using [24, Part 3.2], and the 
behaviour under transfer of the above isomorphisms, that the class of 
w^TrfjxiX, i//) ) by this construction is wfv{Txv

L/1^X, ^] ). 

R E F E R E N C E S 

1. J. F . Adams , Stable homotopy and generalised homology, Chicago Lecture Notes in 

Mathemat ics , (1974). 

2. D. W. Anderson , The real K-theory of classifying spaces, Proc. Na t . Acad. Sci. 57 (1964), 

634-636. 

3. M. F. Atiyah, K-theory and reality, Quart . J. Math . , Oxford (2), 17 (1966), 367-386. 

4. W. Browder, Algebraic K-theory with coefficients Zip, Springer Verlag Lecture No tes in 

Mathemat ics 654 (1978), 40-84. 

5. M. A. Delzant , Definition des classes de Stiefel- Whitney d'un module quadratique sur un 

corps de charactéristique différente de 2, C.R. Acad. Sci., Paris 255 (1962), 

1366-1368. 

6. O. Gabber , Lecture at F rance — U.S.A. /C-theory conference, Luminy (1983). 

7. H. Gillet and R. W. Thomason , The K-theory of strict Hensel local rings and a theorem of 

Suslin, J P A A 34 (1984), 241-251. 

8. D. Grayson (after D . G. Quillen), Higher algebraic K-theory II , Springer-Verlag Lecture 

Notes in Mathemat ics 551, 217-240. 

9. P. S. Green, A cohomology theory based upon selfconjugacies of complex vector bundles. 

Bull. A.M. Soc. (1964), 522-524. 

10. J. F . Jardine , Simplicial objects in a Grothendieck topos, p repr in t (1983). 

11. A rigidity theorem for L-theory, prepr int (1983). 

12. M. Karoubi , Théorie de Quillen et homologie du groupe orthogonal, Ann . Math . 112 (1980), 

206-257. 

13. Le théorème fondamental de la K-theorie hermitienne, Ann . Math . 112 (1980), 

259-282. 

14. Homology of the infinite orthogonal and symplectic groups over algebraically closed 

fields, Invent iones Math . 73 (1983), 247-250. 

15. Relations between algebraic K-theory and Hermitian K-theory, p repr in t (1984). 

16. B. Kahn , La deuxième classe de Stiefel- Whitney d'une représentation régulière, I & II, C.R. 

Acad. Sci., Paris 297 (1983), 313-316 and 573-576. 

17. Classes de Stiefel-Whitney de formes quadratiques et de représentations Galoi-

siennes réelles, Invent iones Math . 78 (1984), 223-256. 

18. J. S. Milne, Étale cohomology, Pr inceton Math . Series 33 (1980). 

19. D. G. Quillen, Higher algebraic K-theory 1, Springer-Verlag Lecture No te s in Mathemat ­

ics 341 (1973), 85-147. 

20. J-P. Serre, Sur \-invariant de Witt de la forme Tr(x2), Comm. Math . Helv. 59 (1984), 

651-676. 

21 . V. P. Snaith, Algebraic cobordism and K-theory, Mem. A. M. Soc. 227 (1979). 

22. Localised stable homotopy and algebraic K-theory, Mem. A. M. Soc. 280 (1983). 

23. A brief survey of Bott periodic K-theory, Can. Math , Soc. Conf. Proc. 2, Part I 
(1982). 

24. Stiefel- Whitney classes of symmetric bilinear forms — a formula of Serre, Can. Bull. 

Math . 2 ^ (1985), 218-222. 

https://doi.org/10.4153/CJM-1987-041-5 Published online by Cambridge University Press

file:///-invariant
https://doi.org/10.4153/CJM-1987-041-5


H E R M I T I A N ^ - T H E O R Y 847 

25. Algebraic K-theory and bilinear forms, in preparat ion. 

26. K-theory of the classifying spaces of Galois groups, to appear Proe. Conf., St. 

John 's , Newfoundland (1983) in A. M. Soc. Contemporary Math, series. 

27. A. A. Suslin, On the K-theory of algebraically closed fields, Inventiones Math . 73 (1983), 

241-245. 

28. On the K-theory of local fields, to appear J. Pure and Appl . Alg. 
29. R. W. Thomason , Algebraic K-theory and étale cohomology, preprint . 

30. J. B. Wagoner , Delooping the classifying spaces of algebraic K-theory, Topology 11 (1972), 

349-370. 

The University of Western Ontario, 
London, Ontario 

https://doi.org/10.4153/CJM-1987-041-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-041-5

