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ON GROUPS WITH SMALL ENGEL DEPTH

ROLF BRANDL

Every finite group G satisfies a law [x, z/J = [x, y] for

some positive integers r < s . The minimal value of r is

called the depth of G . It is well known that groups of depth

1 are abelian. In this paper we prove the following. Let G

he a finite group of depth 2 . Then G/F(G) is supersoluble,

metabelian and has abelian Sylow p-subgroups for all odd primes

p . Moreover, I (G) S I for p odd and I [G ) 5 1 .

1. Introduction

If G is a finite group, then there exist positive integers r < s

such that for all x, y € G the following holds: [a;, w] = [x, y] . If

r is chosen minimal with respect to this property, we call v the

(Engel-) depth of G . Let f be the class of all finite groups of Engel

depth less than or equal to r . Obviously, a finite nilpotent group

belongs to V if and only if it satisfies the *th Engel condition.

In [7, Theorem 3-2] it has been proved that groups in 1/ are

abelian. By contrast, the groups PSL(2, 5) and PSL(2, 8) are of depth

3 (D. Nikolova, Personal Communication).

Here we consider groups of depth 2 . It turns out that these groups

are soluble. More precisely, we shall prove

THEOREM. Let G be a finite group of depth 2 . Then
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(a) G/F(G) is supersoluble, metabelian and for all odd primes

p the Sylow p-subgroups of G/F{G) are abelian,

(b) if p is an odd prime, I (G) S I ; also £2(c2) 5 1 .

Unless otherwise stated, all groups considered in this paper are

finite.

2. The structure of groups in V~

This section is devoted to a proof of the main theorem mentioned in

the introduction. We first note a simple observation that turns out to be

very useful in the proofs.

LEMMA 1 . Let H € (/„ and let A be a nilpotent normal subgroup of

H . Then for each a € A the normal closure (a > is abelian.

Proof. Let b (. H . By assumption, we have \b, 2<af] = [b, 2+r,<2] for

some k . So \b, 2<aQ = \b, 2+^y.aJ € YT,*.,.?^) for a l l posi t ive integers

t . As A i s n i lpo ten t , we get \b, ^a\ = 1 and so [a, a ] = 1 . This

implies t ha t <• a ) i s abel ian .

We now prove tha t a l l groups in 1/ are soluble ( th i s fact has been

found independently by D. Nikolova). In order to do t h i s , we examine the

minimal simple groups (see [ H ] ) .

LEMMA 2. The Suzuki groups Sz(q) and SL(3, 3) do not belong to

Proof. Let G = Sz(q) , l e t A be a Sylow 2-subgroup of G and l e t

H = Ng(A) . Any element in H of order q - 1 acts t r a n s i t i v e l y on

[A/$(A)) and so for any a € A\$(A) we have A = < a > . But A i s non-

abel ian and so H £ M by Lemma 1. This proves G \ f2 .

The group SL(3, 3) contains a subgroup H isomorphic with

3) . The same argument yields SL(3, 3) ^ 1/ .

We now deal with the remaining minimal simple groups G = PSL(2, q) .
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The search for suitable elements proving G £ V has been eased

considerably by computer calculations performed on a TRUitO at the

Rechenzentrum der Universitat Wurzburg.

LEMMA 3. Let q > 1* be a prime power. Then PSL(2, q) f I/. .

Proof. Because of the isomorphism PSL(2, 5) SPSL(2, k) we may

assume q + 5 . Let e € GF(<?) with e f ±1 . Let

2 | 2 w 2 | - 1 ( -2 -\-3

x =

and

2/ =
0 el

A straightforward computation yields

[*, 22/] =

So for any fe > 3 , we have [x, ,J/] = P" * .
K lu I ;

As e # ±1 we have shown [x, AJ\ ± ±[x,

Hence PSL(2, <?) t ^ •

for a l l k > 3

We now prove the f i rs t part of our main theorem.

THEOREM A. Let G € \>2 . Then G/F(G) is supersoluble.

Proof. Let G be a minimal counterexample. Lemma 2, Lemma 3 and

[ H ] imply tha t G i s soluble. By [2 , 2.93 we know that G i s a s p l i t

extension of i t s unique minimal normal subgroup A? by a complement Q and

a l l proper subgroups of Q are supersoluble. From [5] we infer that Q

has a unique normal Sylow subgroup A possessing a complement B in Q .

Moreover, A/$(A) i s an i r reducible B-module and A i s noncyclic. Also

We f irs t show that A is elementary abelian. Let a € 4\4>(4) . By
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Lemma 1 we know tha t (a ) i s abelian. As B acts i rreducibly on

A/${A) , we have i4 = < a > • *(;4) = <a > and so A i s abelian. The proof

of pa r t (f) of [ 5 , Satz l ] now yields tha t A i s elementary.

Let 1 t a € A and l e t n € N and b d B be a rb i t ra ry . Then

[b, na] = [b, a][b, nf and so

0 , 2na] = lib, a][b, nf, na]

= [b, a, na][h'n]a\[b, nf, na]

= {[b, a, a][b, a, n f) [b>n]°\[b, nf, a]

= [b, a, nf[b, n, af

as [b, a, a] = 1 .

From \t>, r/ia} € N we obtain by a straightforward computation

0,

As G € Cp , there ex is t s some fc with

[b, a, n] • [b, n, a] = \b, a, n, ka]\b, n, a, fca] .

In particular, we get

[b, a, n][b, n, a] € [N, a]

and so

[2>, a, n] € [N, a] .

Hence \n, [b, a]J = \n, a~ba] € [N, a] and f ina l ly [n, a~b] € [N, a] .

As n i. N has been chosen arbitrarily, we get [N, a ] J [If, a] .

-b -b

The l a t t e r holds for any b € 5 and so [iV, a . . . a ] 5 [tf, a] for

a l l choices b. € B . As B acts irreducibly on 4 , we have /5 = < a )

and so we arrive at N = [tf, /5] S [ff, a] . This implies CJa) = 1 .

Hence every nonidentity element of 4 acts fixed point freely on N and

so A is cyclic. This, however, contradicts the structure of A .
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Using Theorem A, we can now prove

THEOREM B. Let G f V2 . Then for all odd primes p , the quotient

G/F(G) has abelian Sylow p-subgroups.

Proof. Let p be an odd prime and l e t G be a counterexample of

leas t possible order. From [2, 2.9] we infer that G i s a s p l i t extension

of a uniquely determined minimal normal subgroup N = F(G) by a complement

Q . Moreover, a l l proper subgroups of Q have abelian Sylow p-subgroups.

This implies tha t § i s a nonabelian p-group a l l of whose proper sub-

groups are abelian. So Q i s ni lpotent of class two by a r e su l t of Redei

[S, p . 309]. Also, » i s a p ' -group.

We claim that every nonidentity element of Q acts fixed point freely

on N . Indeed, l e t 1 t b d Q with CJb) * 1 be given. As Q acts

fa i thful ly and irreducibly on N , we have b $ Z(§) . So there ex is t s

a € Q with s = [a, b] # 1 . Moreover, z € Z(Q) .

Let n € ^.Jk) . We now compute {a, j^b] . F i r s t

[a, nb] = zn for some n (. N .

As Q i s ni lpotent of class two, we have [a, ,«£>] € N for a l l k £ 2 .

As G € V there exis ts some posi t ive integer d such that

[a, 2rib\ = [a, 2 + £ ^ ] • Let «2 = [a, 1 + ( / * ] • Then

[srt^ nfo] = [n2, ?i£>] . Hence zn-^n~^ i

As nb = bn and the orders of n and £> are coprime, we have

n € <n&> . So zn-Jl2 centra l izes n . From t h i s we f inal ly get

n € CAz) . This implies CJb) 5 C (s) = 1 which contradicts the choice

of b .

From [6 , Theorem 1 0 . 3 . 1 , p . 339] we conclude tha t Q i s cyc l ic . This

contradicts the s t ructure of Q .

COROLLARY. Let G d \>2 . Then G/F{G) is mtabelian.

Proof. Theorem A implies tha t Q = G/F{G) i s supersoluble, and so

Q' i s n i lpo ten t . By Theorem B, a l l Sylow subgroups of odd order of Q'
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are abelian. Let S be a Sylow 2-subgroup of Q . As G € V , S

sat is f ies the second Engel condition and so is nilpotent of class two.
Hence 5 ' is abelian. As Q is 2-nilpotent, S' is a Sylow 2-subgroup
of Q' . So Q' is abelian and the result follows.

From this we can deduce a property of infinite soluble groups of depth
two.

COROLLARY. Let G be poly- (abelian or finite). Assume that for any
x, y € G there exists some positive integer s = sN(x, y) > 2 such, that
[x, 2if] = \p> J/] • Then G is (2-Engel)-by-metabelian.

Proof. Let U be a finitely generated subgroup of G . From [4,
Theorem B] we infer that U is finite-by-nilpotent, and so U is
residually f ini te . Every finite quotient of U belongs to the variety .V
of a l l (2-Engel)-by-metabelian groups. This implies U € V. and so
G € V .

The remainder of our main theorem now follows from

THEOREM C. Let G € l/g . Then

(a) I (G) S I for all odd primes p ,

(b) I [G2] S 1 .

Proof. (a) Let G be a counterexample of least possible order. By
[8, p . 693]> £ is a sp l i t extension of i t s unique minimal normal subgroup
N = F\G) , which is a p-group, by a complement Q . By the Hall-Higman
reduction (see [ I , p. 258]), § is a spl i t extension of a normal Sylow
q-subgroup A of Q by a p-group B acting irreducibly on A/4>(/3) .
From Theorem A we infer that Q is supersoluble and hence A is cyclic.
As a l l nilpotent subgroups of G satisfy the second Engel condition, every
p-element of Q acts as a linear map on N with minimal polynomial

o
dividing (-1+*) . The result now follows from [6, Theorem 11.1.1,

P- 359] as G has abelian Sylow r-subgroups for a l l primes r t p .

(b) Let F be the class of all extensions of groups having 2-length
one by elementary abelian 2-groups. As the product of a subgroup closed
saturated formation containing a l l nilpotent groups with any formation is
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saturated, we see that F is saturated.

Let G be a minimal counterexample. Again G is a split extension

of a minimal normal subgroup N = F(G) by a complement Q acting

faithfully on N . Clearly it is an elementary abelian 2-group. From

Theorem A we infer that Q is supersoluble so that, in particular, Q is

2-nilpotent. Let x (. Q be a 2-element. Then < N, x) is a second Engel

group and so a straightforward computation shows that x is an involution.

This proves lAcf) = 1 contradicting our choice of G .

3. Some groups o f small depth

In the sequel a collection of examples may be found which i l lustrate

that some stronger versions of the above theorems cease to be true. For

example, the class fp does not contain all metabelian groups as there are

metabelian p-groups of arbitrary Engel length. However

PROPOSITION 1 ( [ 9 ] ) . Let G be an extension of an abelian normal

subgroup N by an abelian group Q . If the orders of N and Q are

eoprime, then G i \)^ .

Proof. Let x, y € G . Then N = C Ay) * [N, y] = N * #2 . We have

[x, y] = n^n2 for some rK € N^ . So [x, ^] = [n2> y] € i\?2 . As y

acts fixed point freely on tf? , we infer from [ 3 , Lemma U] tha t there

exis ts some posi t ive integer d = <2(x, y) with n = [n , if\ . Hence

[x, JJY = [x, ~ jf\ • Let D be the l ea s t common multiple of a l l

d{x, y) . Then [x, ^] = [x, 2 + J y ] for a l l x, y € G .

An obvious generalization of Proposition 1 to groups of higher derived

length does not seem to be at hand as i s shown by the following example

which has been computed on a TR kkO a t the Rechenzentrum der Universitat

Wurzburg.

EXAMPLE. Let G be generated by elements n , . . . , n ,

a , .•., a^ , b subject t o the following defining r e l a t i o n s :
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= [ V n.] = [^ a^ = [J^, a.] = 1 for all

o ;
a' - l

n.° = n. for all i t j ;

4 = ai+± - 4 = ni+i f o r

Let x = i> and J/ = n a £> . Then [x, _i/] = [x, y] but

|}c, ^y] t [x, ,J/] for a l l k > k . So the depth of G i s at l eas t 5 ,

but G has derived length 3 -

Another s e r i e s of groups of depth 2 may be found among Frobenius

groups.

PROPOSITION 2. Let G be a Frobenius group with kernel N and

complement Q . If N is abelian and Q is metaayolio then G € V

Proof. This follows from [ 3 , Lemma W].

A similar sor t of argument proves that any extension of an elementary

abel ian 2-group by the dihedral group of order 2p , where p i s any odd

prime, has depth 2 . So groups in V^ need not be metanilpotent.

We end with some speculations concerning the general s i t ua t i on . In

view of the f i r s t corol lary to Theorem B one might ask whether there i s a

bound f{r) depending on r such that for any soluble group in 1/ the

quot ient G/F(G) has derived length l ess than or equal to f{r) . Or, in

view of Theorem A, are the ranks of the chief factors of G/F(G) bounded

by some function of r ? The answer to both quest ions, however, i s

negat ive in general .

EXAMPLE. Let n be any posi t ive in teger . By [10] there exist f i n i t e

groups of exponent 4̂ and derived length n . Let Q be such a group of

l e a s t possible order . Then Z(Q) is cyclic and so there exis ts a fa i thful

and i r r educ ib le GF(p) ^-module N (p denotes any odd prime). Let G
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be the spli t extension of N by Q . Now [72] implies that Q satisfies

the Vth Engel condition and so an argument similar to that one used in

the proof of Proposition 1 shows G € V .

By an analogous construction using a spl i t extension of some faithful

and irreducible GF(q) G-module M by G i t is possible to disprove the

second statement.

Presumably i t is essential in this example that the groups under

consideration are not generated by two elements. A positive answer to any

of these questions for two-generator groups would establish the following

CONJECTURE. There exists a function F such that every soluble group

in V has Fitting length at most F{r) .
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