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ON GROUPS WITH SMALL ENGEL DEPTH

RoLF BrRANDL

Every finite group G satisfies a law Er, ry] = Er, sy] for

some positive integers » < s . The minimal value of r is

called the depth of (¢ . It is well known that groups of depth
1 are abelian. In this paper we prove the following. Let G
be a finite group of depth 2 . Then G/F(G) 1is supersoluble,

metabelian and has abelian Sylow p-subgroups for all odd primes

p . Moreover, Zp(G) =1 for p odd and 12(02) 1.

1. Introduction

If G 1is a finite group, then there exist positive integers r < s

such that for all x, y € C the following holds: [z, ry] = [x, sy] . If

r is chosen minimal with respect to this property, we call r the

(Engel-) depth of G . Let Vr be the class of all finite groups of Engel

depth less than or equal to r . Obviously, a finite nilpotent group
belongs to Vr if and only if it satisfies the rth Engel condition.

In [7, Theorem 3.2] it has been proved that groups in Vl are

abelian. By contrast, the groups PSL(2, 5) and PSL(2, 8) are of depth

3 (D. Nikolova, Personal Communication).

Here we consider groups of depth 2 . It turns out that these groups

are soluble. More precisely, we shall prove

THEOREM. Let G be a finite group of depth 2 . Then
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(a) G/F(G) <is supersoluble, metabelian and for all odd primes
p the Sylow p-subgroups of G/F(G) are abelian,

(b) if p is an odd prime, lp(G) <1 ; also 12(02) <1.

Unless otherwise stated, all groups considered in this paper are

finite.

2. The structure of groups in V2

This section is devoted to a proof of the main theorem mentioned in
the introduction. We first note a simple observation that turns out to be

very useful in the proofs.

LEMMA 1. Let H ¢ V2 and let A be a nilpotent normal subgroup of

H . Then for each a € A the norml closure (aH) is abelian.
Proof. Let b € H . By assumption, we have [b, ,a] = [b, 2+ka] for

some k . So [b, a] = [}, 2+kta] € th+2(A) for all positive integers
s - b1 - ;
t . As A 1is nilpotent, we get H}, a] =1 and so Ez, a ] =1 . This

H
implies that {(a ) is abelian.
We now prove that all groups in V2 are soluble (this fact has been
found independently by D. Nikolova). 1In order to do this, we examine the

minimal simple groups (see [111]).

LEMMA 2. The Suzuki groups Sz(q) and SL(3, 3) do not belong to

Proof. Let G =Sz(q) , let A be a Sylow 2-subgroup of G and let
H = NG(A) . Any element in H of order g - 1 acts transitively on

LA/é(A)]# and so for any a € A\®(4A) we have 4 = () . But 4 is non-
abelian and so H § V, by Lemma 1. This proves G : v, .

The group SL(3, 3) contains a subgroup H isomorphic with
SL(2, 3) . The same argument yields SIL(3, 3) ¢ V2 .

We now deal with the remaining minimal simple groups G = PSL(2, q)
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The search for suitable elements proving G f V2 has been eased

considerably by computer calculations performed on a TR4LO at the

Rechenzentrum der Universitat Wurzburg.

LEMMA 3. Let q = L4 be a prime power. Then PSL(2, q) ¢ v, .

Proof. Because of the isomorphism PSL(2, 5) = PSL(2, 4) we may

assume g # 5 . Let e € GF(q) with 62 # 11 . Let

<2(®n) (®a)t ()3

_62[62_1)2 e_z(e2+1)—l

A straightforward computation yields
e™® e2(e2) ‘l]

. 0 e2

[z, y] =

So for any k = 3 , we have Ex, ky] = [g I]

As e? # *¥1 we have shown [z, 2y] # *[zx, ky] for all k = 3,

Hence PSL(2, q) ¢ v, .

We now prove the first part of our main theorem.

THEOREM A, Let G ¢ V2 . Then G/F(G) 1<is supersoluble.

Proof. Let G be a minimal counterexample. Lemma 2, Lemma 3 and
[77] imply that € is soluble. By {2, 2.9] we know that G is a split
extension of its unique minimal normal subgroup N by a complement €& and
all proper subgroups of @ are supersoluble. From [5] we infer that @
has a unique normal Sylow subgroup A possessing a complement B in @ .
Moreover, A/®(4) is an irreducible B-module and A 1is noncyeclic. Also
®(4) = z(4) .

We first show that A is elementary abelian. Let a € 4A\&(4) . By
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Lemma 1 we know that (aB) is abelian. As B acts irreducibly on

A/®(A) , we have A = (aB) e d(4) = (aB) and so A 1is abelian. The proof
of part (f) of [5, Satz 1] now yields that A4 is elementary.

Let 1#a €4 and let n € N and b € B be arbitrary. Then
(b, nal = [b, allb, #n]* and so

b, ,na] = [Ib, allb, n]%, nd]

b, a, nal®" [, 119, nal

(b, a, allb, a, 1121 [, n12, ]

b, a, n1%b, n, al®

as [b, a, al =1 .

From (b, na] € N we obtain by a straightforward computation
2

[, 2+kna:] = [b, a, n, ka]a[b, n, a, ka]a .
As G € V2 , there exists some k with
(6, a, n} + [b, n, a) = [b, a, n, (a][b, n, a, ,a] .

In particular, we get
b, a, nllb, n, al] € [N, a]
and so

(b, a, n] € [N, a] .

Hence [n, [b, al] = [, a_ba] ¢ [N, al and finally [n, a—b] € [N, al .

As n € N has been chosen arbitrarily, we get [IV, a_b] < [N, a] .
b -b
1...a Y=, al for

B

The latter holds for any b € B and so [N, a
all choices bi € B . As B acts irreducibly on A , we have A ={a
and so we arrive at N = [N, 4] = [N, a] . This implies CN(a) =1 .

Hence every nonidentity element of A acts fixed point freely on N and

so A 1s cyclic. This, however, contradicts the structure of 4 .
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Using Theorem A, we can now prove
THEOREM B. Let G €V, . Then for all odd primes p , the quotient
G/F(G) has abelian Sylow p-subgroups.

Proof. Let p be an 0dd prime and let G be a counterexample of

least possible order. From [2, 2.9] we infer that G is a split extension

of a uniquely determined minimal normal subgroup N = F(G) by a complement

€ . Moreover, all proper subgroups of € have abelian Sylow p-subgroups.
This implies that & 1is a nonabelian p-group all of whose proper sub-
groups are abelian. So @ 1is nilpotent of class two by a result of Redei

[&, p. 309). Also, N is a p'-group.

We claim that every nonidentity element of & acts fixed point freely
on N . Indeed, let 1 #Db €@ with CN(b) #1 be given. As @ acts

faithfully and irreducibly on ¥ , we have b § Z(Q) . So there exists
a €Q with z =1[a, b #1 . Moreover, 2 € Z(Q)

Let n € CN(b) . We now compute EZ, knb] . First

[a, nb] = zn) for some n €N .

As @ is nilpotent of class two, we have [a, knb] €N for all k=2 .
As G € V2 , there exists some positive integer d such that

[a, 2rzb] = [a, 2+d*1b] . Let n, = [a, l+dnb] . Then

[:znl, nb] = [__ng, nb] . Hence znlngl € CG(nb) .

As nb = bn and the orders of n and b are coprime, we have

n €{nb) . So =z centralizes n . From this we finally get

nont

12
n € CN(z) . This implies Cw(b) = CN(z) = 1 which contradicts the choice
of b .

From [6, Theorem 10.3.1, p. 339) we conclude that @ 1is cyclie. This

contradicts the structure of @ .

COROLLARY. Iet G ¢ U2 . Then G/F(G) 1is metabelian.

Proof. Theorem A implies that @ = G/F(G) is supersoluble, and so
@' 1is nilpotent. By Theorem B, all Sylow subgroups of odd order of @'
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are abelian. Let S be a Sylow 2-subgroup of € . As G € V2 > S

satisfies the second Engel condition and so is nilpotent of class two.
Hence S' is abelian. As @ 1is 2-nilpotent, S' is a Sylow 2-subgroup
of @' . So Q' 1is abelian and the result follows.

From this we can deduce a property of infinite soluble groups of depth

two.

COROLLARY. [Let G be poly- (abelian or finite). Assume that for any
x, y € G there exists some positive integer s = s{xz, y) > 2 such that
ER 2y] = [=, Sy] . Then G 1is (2-Engel)-by-metabelian.

Proof. Let U be a finitely generated subgroup of G . From [4,
Theorem Bl we infer that U is finite-by-nilpotent, and so U is
residually finite. Every finite quotient of U belongs to the variety V¥V
of all (2-Engel)-by-metabelian groups. This implies U € Y and so
G €V .

The remainder of our main theorem now follows from

THEOREM C. Let G € V2 . Then

(a) Zp(G) =1 for all odd primes p ,

Proof. (a) Let G be a counterexample of least possible order. By
[8§, p. 693], G is a split extension of its unique minimal normal subgroup
N = F(G) , vhich is a p-group, by a complement & . By the Hall-Higman
reduction (see [1, p. 258]), @ 1is a split extension of a normal Sylow
g-subgroup A of Q by a p-group B acting irreducibly on A/P(A) .
From Theorem A we infer that @ 1is supersoluble and hence 4 1is cyclic.
As all nilpotent subgroups of (G satisfy the second Engel condition, every

p-element of @ acts as a linear map on N with minimal polynomial

dividing (—l+)()'2 . 'The result now follows from [6, Theorem 11.1.1,
pP. 359]) as (¢ has abelian Sylow r-subgroups for all primes »r # p .

(b) Let F be the class of all extensions of groups having 2-length
one by elementary abelian 2-groups. As the product of a subgroup closed

saturated formation containing all nilpotent groups with any formation is
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saturated, we see that F is saturated.

Let G be a minimal counterexample. Again ¢ 1is a split extension
of a minimal normal subgroup N = F(G) by a complement & acting
faithfully on N . Clearly N 1is an elementary abelian 2-group. From
Theorem A we infer that & is supersoluble so that, in particular, € is
2-nilpotent. Let « € @ be a 2-element. Then (N, x}? is a second Engel

group and so a straightforward computation shows that x 1is an involution.

This proves 12(02] = 1 contradicting our choice of G .

3. Some groups of small depth

In the sequel a collection of examples may be found which illustrate
that some stronger versions of the above theorems cease to be true. For

example, the class V2 does not contain all metabelian groups as there are

metabelian p-groups of arbitrary Engel length. However

PROPOSITION 1 ([9]). Let G be an extension of an abelian normal
subgroup N by an abelian group @ . If the orders of N and @ are
coprime, then G € V2 .

Proof. Let x,y € G. Then N = CN(y) x [N, y] = Nl x N, . We have

[z, y] =n for some n, € N. . So [z, y] = [, y] € N, . As y

12
acts fixed point freely on N, , we infer from (3, Lemma 4] that there
exists some positive integer d = d(z, y) with n, = [ﬁz, dy] . Hence

Er, 2y] = Er, 2+dy] . Let D be the least common multiple of all

d(z, y) . Then [z, y] = [z, 5, p] forall z,y €G.

An obvious generalization of Proposition 1 to groups of higher derived
length does not seem to be at hand as is shown by the following example
which has been computed on a TR 4L0 at the Rechenzentrum der Universitat
Wurzburg.

EXAMPLE. Let G be generated by elements Mys eees Mg,

a b subject to the following defining relations:

l, L ) as ’
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3_ 2 _ 45 - - -
n =a; =b [ni, nj] [a,b, aj] = E’zi, ai] =1 for all
t,j >

a. 1

niJ =n,” for all 7 #J ;

b b .

a; =a;,. ., ny=n. for i=1, , b

L =a

5 1°

L =n

5 17

Let z=Db and y =nab . Then [z, Sy] = [z, 5Oy] but
[, hy] # Ex, ky] for all k > 4 . So the depth of G is at least 5 ,
but G has derived length 3 .

Another series of groups of depth 2 may be found among Frobenius

groups.

PROPOSITION 2. Let G be a Frobenius group with kernel N and
complement @ . If N is abelian and @ <is metacyclic then G € V2 .

Proof. This follows from [3, Lemma L4].

A similar sort of argument proves that any extension of an elementary
abelian 2-group by the dihedral group of order 2p , where p 1is any odd

prime, has depth 2 . So groups in V2 need not be metanilpotent.

We end with some speculations concerning the general situation. In
view of the first corollary to Theorem B one might ask whether there is a

bound f(r) depending on r such that for any soluble group in VP the

quotient G/F(G) has derived length less than or equal to f(r) . Or, in
view of Theorem A, are the ranks of the chief factors of G/F(G) bounded
by some function of r ? The answer to both questions, however, is

negative in general.

EXAMPLE. Let #n be any positive integer. By [10] there exist finite
groups of exponent U4 and derived length n . Let § Dbe such a group of
least possible order. Then 2(Q) is cyclic and so there exists a faithful
and irreducible GF(p) @-module N (p denotes any odd prime). Let G
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be the split extension of N by @ . Now [I2] implies that @ satisfies
the Uth Engel condition and so an argument similar to that one used in
the proof of Proposition 1 shows G € V5 .
By an analogous construction using a split extension of some faithful
and irreducible GF(q) G-module M by G it is possible to disprove the

second statement.

Presumably it is essential in this example that the groups under
consideration are not generated by two elements. A positive answer to any

of these questions for two-generator groups would establish the following

CONJECTURE. fThere exists a function F such that every soluble group
in Vr has Fitting length at most F(r) .
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