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ON A PROBLEM OF TURÂN 
ABOUT POLYNOMIALS II 

R. PIERRE AND Q. I. RAHMAN 

1. It was proved by A. A. Markov [3] that if pn(x) = J^?=o avx
v is a 

polynomial of degree at most n and |£n(#)l = 1 m the interval — 1 gj 
x S If then in the same interval 

(1) \pn'{x)\ g n\ 

The problem was proposed by the chemist Mendeleev who knew the 
answer for polynomials of degree 2. For a historical background of the 
problem see [1]. 

A. A. Markov's younger brother W. A. Markov considered the problem 
of determining exact bounds for the j - th derivative of pn(x) at a given 
point Xo in [ — 1, 1]. His results appeared in a Russian journal in the year 
1892; a German version of his remarkable paper was later published in 
[4]. Amongst other things he proved the following two theorems. 

THEOREM A. / / pn(x) = J^Lo avx
v is a polynomial of degree at most n 

such that \pn{%)\ ^ 1 for —T ^ x S 1, then 

(2) _%%lft.,wi s ^ - i W - t t ^ - » - . ) • ) , 

i = 1,2, „ . , » , 

where equality holds for the n-th Chebyshev polynomial of the first kind 

n 

(3) Tn(x) = cos (warecosx) = 2n~1 Yl lx ~ c o s ((v ~~ h)T/n)}-

THEOREM B. Let ]QLo tmtfJLx^ = : Tm(x) denote the m-th Chebyshev poly
nomial of the first kind. If pn(x) = X^=o avx

v satisfies the condition of 
Theorem A, then 

(4) la -I < i '/n,i' ifn~J is even 

jl = \j*»_u| if n - j is odd. 

W. A. Markov started out by taking a very general point of view: If 
«o, ai, . . . , <xn are given constants and pn(x) = ]>^Lo avx

v satisfies the 
condition of Theorem A, what is the precise upper bound for the linear 
form X^=o avav? By suitably choosing the constants the linear form can 
be made equal to any derivative of pn(x) at any preassigned point. 
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702 R. PIERRE AND Q. I. RAHMAN 

For polynomials with real coefficients the hypothesis \pn{x)\ ^ 1 for 
— 1 ^ x ^ 1 means that the graph of pn{x) on [ — 1, 1] lies in the square 

{(x,y) a 2 : - U x ^ l , - l ^ â 1}. 

At a conference held in Varna, Bulgaria in the year 1970 the late Pro
fessor Paul Turân asked the following question: "Given a polynomial 
Pn(%) = X^=o av ocv with real coefficients whose graph on [ — 1, 1] lies in 
the unit disk, how large can its derivative be on the same interval? More 
generally, for an arbitrary non-negative function <p{x) on [ — 1,1] let 
&{<p, n) denote the class of all polynomials pn of degree at most n such 
that \pn(x)\ ^ <p(x) for —1 ^ x ^ 1. Then, how large can \pn

(j)(xo)\ be 
at a given point x0 in [ — 1, 1] as pn varies in & {<$, n)T' Problems of this 
type first occurred in approximation theory, notably, in the work of 
Dzyadyk [2] on converse type theorems concerning approximation by 
polynomials in [ — 1 , 1]. 

The next theorem briefly summarises what is now known in this con
nection ([5], [6], [7]). 

THEOREM C. Let 

m 

Pm\%) — (1 ~~ X )Um-2\X) = 2^/ um,ixx > 

where £7m_2(x) = (1 — x2)~1/2sin {{m — 1) arc cos x\ is the Chebyshev 
polynomial of the second kind of degree m — 2. If pn(x) = T^Lo avx

v is a 
polynomial of degree at most n such that \pn{x)\ ^ (1 — x2)1/2 for — 1 ^ 
x ^ 1 {in case the coefficients are real this means that the graph of pn{x) on 
[ — 1 , 1] lies in the unit disk), then 

(5) max \pn
u\x)\ ^ \Pn

u\±l)\, j = 1,2; 

(6) k | < |!"•• '! . %«-3}s«>™ 
(|wn_i);| if n + j is odd. 

Inequality (5) leaves us wondering what happens when j ^ 3, and, in 
fact, going back to the original question of Turân, what can we say 
about \pn

(j){xo)\ if ^o is a given point in [ — 1,1]? These questions are 
answered in the present paper. Our approach to the problem is analogous 
to that of W. A. Markov [4] and gives rather complete results in the case 
of majorants of the form 

<p(x) = (1 - x)x / 2(l + xY>2 

where X, /x are non-negative integers. Consideration of such majorants 
leads to the following strengthening of inequality (4) of W. A. Markov. 

THEOREM 1. If pn{x) = y^Lo avx
v is a polynomial of degree at most n 

with real coefficients such that \pn{x)\ S 1 for — 1 S x S 1, and 
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A PROBLEM OF TURAN 703 

23ï=o tn>vx
v is the n-th Chebyshev polynomial of the first kind, then 

(7) \aj\ + |a,-_i| ^ \tKtj\ if n — j is even. 

Here a_i is supposed to be zero. 

As a matter of fact, our method gives a more precise conclusion. For 
example, it shows that a similar strengthening of (4), in case n — j is 
odd, is not possible. Indeed, if pn(x) = 2^v=o av%v satisfies the conditions 
of Theorem B and n — j is odd, then \a,j\ + e|a;_i| may not be less than 
| ^ _ i j if e is positive. Besides, it shows that the left-hand side of (7) 
cannot in general be replaced by 

\dj\ + Q\dj-l\ 

for any 0 > 1. 
In fact, we shall prove the following more general 

THEOREM V. Let 

u , v ^ v / ( l - x2)X/2Tn-X(x) if X is even 
T=o 1(1 — x ) Un-\-i(x) if\isodd. 

If pn(x) = 2 ï = o civXv is a polynomial of degree at most n with real coeffi
cients such that \pn(x)\ ^ (1 — x2)x/2 for — 1 ^ x ^ 1, then in case 
n — j is even, the inequality 

(T) \aj\ + e\a^\ ^ \ynJ\ 

holds provided 6 ^ 1. At least when X is even, this inequality does not hold 
for any 6 > 1. If n — j happens to be odd, then 

(7") |a,| g IT^. ,1 , 

but \a,j\ + e|ay_i| may not be less than | T W - I , ; | for any e > 0. 

In addition to the Chebyshev polynomials of the first and second kinds, 
namely Tm(x), Um{x) mentioned above we need to recall the Jacobi 
polynomials [8, p. 60] 

(_i/2,+i/2)/ x = 1 -3 - • • (2m — 1) cos { | (2m + 1) arc cos x} 
m W " 2 - 4 - - - 2 m cos (± arc cos x) 

p c+i/2,-1/2)/ x = 1-3- • • (2m - 1) sin{|(2m + 1) arc cos x} 
m W 2 • 4 • • • 2m sin (è arc cos x) 

Throughout the paper, Qm(x), Rm(x) will stand for the polynomials 

-Pm
(-1/2 '+1/2)(x), 

1 2-4- • -2m „ (-1/2,+i/2)/ 
\ / 2 1-3---(2m - 1) 

1 9 . A . . . 9 ™ ... .„ . .„ 
(x) 

1 2-4- • -2m „ (+i/2,-i/2)( 

V 2 1 - 3 - - - ( 2 m - 1) 
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respectively. Besides, for given non-negative integers X, /x we will write 
v{n) to abbreviate n - ([(X + l ) /2] + [(/i + l) /2]) + 1. With these 
notations our principal result can be stated as follows. 

THEOREM 2. Let X, ju be non-negative integers, and 

(1 — x)x / 2(l + x)M/2r„(m)_i(x) if X, M are both even 

( 1 _ X ) (X + D / 2 ( 1 + X)(M + l ) / 2 ^ ( w ) - 1 ( x ) 

(8) Pm(#) = { tf X, M are & ^ odd 

(1 - x ) x / 2 ( l +x)^1)/2Qv(m)-1(x) ifXis even, nis odd 

(1 - x)^+1)/2(l + xy/2RHm)-i(x) ifXis odd, (lis even. 

If pn(%) is a polynomial of degree at most n (where n §: 3(X + /x)/2 if 
X 5* M) such that \pn(x)\ ^ (1 - x)x / 2(l + xY'2 for - 1 g a g 1, *fo« 

(9) max bn ( i )(x)| ^ m a x | max |Pw
0)(x)| , max |P^i(x)l 

X + /x . . . 

From this we will deduce, in particular, that (5) holds for j ^ 3 as well. 

2. Consider the real linear space £Pn of all polynomials 

P(x) = a0 + a-iX + . . . + anx
n 

of degree at most n with real coefficients having a zero of multiplicity at 
least [(X + l ) /2] at 1 and a zero of multiplicity at least [(M + l ) /2] at 
— 1. If for each P G ̂ n we define 

(10) | | P | | = max |(1 - x ) - x / 2 ( l + x ) " M / 2 P ( x ) | , 

&n becomes a normed linear space. Consider a general linear functional 
co on &n. There exist real numbers ao, ai, . . . , an such that 

co(P) = a0a0 + axax + . . . + anan \P(x) = ]£) a „ x j . 

We want to determine its norm: 

||o)|| = supiiPi^i |co(P)|. 

For this let a: be a real number different from zero and denote by ^n>a the 
class of all polynomials P 6 ^n for which u(P) = a. Then P* is a poly
nomial of smallest norm amongst all polynomials belonging to ^ n > a if 
and only if 

||»|| = |co(P*/!|P*||)|. 
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It is therefore of fundamental importance for us to be able to recognize 
polynomials P* £ SPn,cx whose norm is the smallest. Such polynomials 
(which always exist) will hereafter be referred to as minimal. 

Note that if P 6 SPn then there exists a polynomial P of degree at 
most n - ([(X + l) /2] + [ 0 + l)/2]) such that 

P(X) = (1 - *)[(X + 1)/2](1 + X)^+1> / 2iP(x). 

Let 

Z p (s ) = (1 ~ x)"x(l + x)-"P2(x) 

so that | |P| |2 = m a x _ i ^ i Z p ( x ) , and denote the distinct roots of the 
equation 

(11) 1|P2|| - Z P ( x ) = 0 

in [ —1, 1] by Xi < x2 < . . . < xL. Then clearly 

(12) L ^ v(n), 

where v(n) has been defined earlier. 
We shall now state three results which are obtained by suitably modi

fying the proofs of (i) the lemma on p. 215 of [4], (ii) Theorem 1 on pp. 
216-217 of [4], and (iii) Theorem 2 on pp. 219-220 of [4], respectively. 

LEMMA 1. Let P £ SPn,a and let Xi, x2, . . . , xL be defined as above. Then 
P is minimal if and only if there does not exist a polynomial g G SPn such 
that 

(i) «(g) = 0, 
(ii) ê(xi)P(x,) <0,l = l,2,...,L. 

LEMMA 2. Again for a given P in &„,a, let xi < %i < . . . < xL be the 
roots of (11) in [ - 1 , 1]. Put 

(13) F(x) = (1 - *)[(X+1)/21(1 - x)[("+1)/2! ft (* - *,) 
1=1 

and 

(14) Fl(x) = F{x)/{x - x , ) , / = 1,2, ...,L. 

Then P is minimal if and only if (i) the numbers 

(15) a(F1)(-l)P(xl), o(Fs)(-l)*P(xs) o>(FL){-l)LP(xL) 

are all of the same sign and (ii) in case L < v(n), we have 

(16) a(Ff) = 0 

for all polynomials \f/ of degree at most v{n) — L — 1. 

LEMMA 3. If the minimal polynomial is not unique, then there always 
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exists one for which the corresponding equation (11) has at most \{v{n) — 1)/ 
2] roots in [ — 1 , 1] if X, n are both odd, at most [(v(n) + l ) /2] roots in 
[ —1, 1] if X, jit are &o/fe even, and at most [(v(n))/2] roots in [ — 1 , 1] if X, /* 
are not of the same parity. 

Now for a given / £ R we consider the functional 

>(p) = pu)(t) = £j[p(x)] P 6 

where (i) 0 < j < wif / G R \ { - 1 , 1 } , (ii) if* = 1, then [(X + l ) /2] <j<n 
or [(X + l ) /2] ^ j < n according as X = 0 or X > 0 respectively, (iii) 
if t = - 1 , then [(/* + l ) /2] < j < « or [(/x + l ) /2] S j < n according 
as M = 0 or jit > 0 respectively, (iv) j = 0 if / (? [ — 1 , 1], (v) j = w. 

In the first three cases L §: i/(w) — 1. If not, (16), which takes the 
form 

(i) (17) Fl" (*)*(') + ^jF('-«(0^(0 + • • • + ^0)^(0 = 0 

would be valid for all polynomials \f/(x) of degree v(n) — L — 1 or less. 
Since the numbers \p(t), \p'(t), . . . , \p^v^-L-^(t) may be chosen arbi
trarily, it would follow that 

FW(t) = FV-»(t) = . . . = F(j) = 0 if j ^ v{n) - L - 1, 

whereas 

/W)(/) = F<j-»(t) = . . . = J W - . W + M - I ) ^ ) = 0 

if j > v(n) — L — 1. 

Thus if L were less than ?(«) — 1 then FU)(t), F^-Vty) would both vanish 
which is clearly impossible. Hence L ^ v(n) — 1 and by Lemma 3, the 
minimal polynomial is unique. 

It is similarly seen that in the cases (iv), (v), L is equal to v{n) and 
the minimal polynomial is unique. 

For the determination of the minimal polynomial we will need some 
further lemmas, namely Lemmas 5, 6, 7. They concern polynomials 
whose zeros are all real. 

We mention that between two consecutive zeros of a polynomial f(x) 
having only real zeros there is one and only one zero of f (x). 

The proof of Lemma 5 depends on the following simple fact which we 
state without proof. 

LEMMA 4. If the roots of the equation 

(18) g(x) = xn + Cn-i**-1 + cn-2x
n-2 + . . . + ax + Co = 0 

are all real, then for real t 
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where the sign of equality holds if and only if t is a root of (18) of multi
plicity greater than j . 

LEMMA 5. Let be real and let 

n 

g(x) = I I (* - *«0» gi(x) = g(x)/(x - xi) (/ = 1, 2, . . . , »). 

If t is a root of the equation gU) (x) = 0 where j < n, then 
(19) gl«)(t),g2{S)(t),...,gnaHt),gU+1)(t) 
are all of the same sign. Further, if any one of the numbers (19) is zero, then 
t must be a zero of g(x) of multiplicity greater than j . 

Proof. Clearly 

(20) gW(x) = (x - xl)gl^(x) + tngl<
m-»(x) 

so that 

t — Xi 

Hence by the preceding lemma we obtain for / F^ xt 

{glo>(0}* _ { _ « ~ ^»)g»(i)(0l[-(i + Dgi(J)(0 +gw l )(0l ^ 0> 

i.e., 

(21) £,<'>(0£ ( m )(0 ^ lgiU)(t)}*^0. 

Further, equality holds if and only if t is a zero of giU)(x) and so of g(x) 
of multiplicity greater than j . 

lit = xh then from (20) we see that ga+1)(t) is equal to (j + l)gia)(t) 
and so (21) is satisfied in this case as well. It is clear that equality can 
hold only if gi(i)(t) or g(j+1)(t) is zero. But g{i)(t) is zero and as is seen 
from (20), gz o - 1 ) (0 is zero too. Hence, again equality holds in (21) if 
and only if t is a zero of g(x) of multiplicity greater than j . 

LEMMA 6. Let A, B be two positive numbers, and a\, a<i, . . . , as, ui, U2, 
. . . , bs real numbers such that 

(22) 6i ^ <n ^ b2 ^ a2 ^ . . . ^ bs ^ as. 

U 
s s 

g(x) = A n (x - ai)> h(x) = B n (x- bt) 
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and x0 is a root of the equation g{i)(x) = 0, then ha)(xo), ga+1)(x0) are of 
the same sign. 

Proof. Case (i) : gu+1) (XQ) = 0. In this case x0 must be a zero of g(x) of 
multiplicity at least j + 2, and so, in view of (22), it must be a zero of 
h(x) of multiplicity at least j + 1, i.e., h(j)(x0) = 0. 

Case (ii): g{j+1)(xo) ^ 0. In this case we shall show that 

[h^(xo)}/{g^+1)M} ^ 0. 

If not, 

{h<»(xo)}/[gV+1)(xo)} = -d<0. 

It is easily seen that the a / s and b/s can be slightly modified so that g(x) 
becomes 

G(x) =AU ( * - a , * ) f 

h{x) becomes 
w 

H{x) = B f i (* - 6 , * ) 

with &!* < ai* < Ô2* < a2* < . . . < 65* < as* while G<'>(*<>) is still 
zero and 

(23) H<»(xo)/G<j+»(xo) ^ - Ô/2 < 0. 

If Gi(x) = G(x)/(x — Xi), then by the Lagrange interpolation formula 

H(x)= É MH£G,(X)+CG(PC), 
1=1 Cr {a i ) 

where c is a constant. Consequently, 

I=I u \ai ) 

But the sign of H (a?) is that of ( — l)s~l and also the sign of Gf (af) is 
that of (-l)s~\ i.e., Hia^/G'laf), H(a2*)/G'(a2*), . . . , H(a*)/ 
G'(as*) are all positive. Since, by Lemma 5, Gi(J°(xo), G2

(j)(x0), . . . , 
Gs

(j)(x0) are all of the same sign as G ( m ) ( x 0 ) , it follows that H(3)(x0) 
and G ( m ) ( x 0 ) are of the same sign. This contradicts (23) and hence 
/ ^ ( x 0 ) / g ( m ) ( * o ) must be ^ 0 . 

We can similarly prove: 

LEMMA 6'. If g(x), h(x) are as in Lemma 6, but 

(22') ax S h ^ a2 ^ b2 S . . . ^ a, ^ bs 

then hU)(x)gu+1)(x) S 0 at all the roots of the equation gU)(x) = 0. 
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LEMMA 7. Let 

- 1 ^ xo < xi < . . . < xs ^ 1, 

and consider the polynomial 

H{x) = (x - l)p(x + l)Q I I (x - xr). 

HT(x) = H(x)/(x - xr), r = 0, 1, 2, . . . , s, 

then HQ(j)(t), HiU)(t)> . . . , Hs
U)(t) are all of the same sign if and only if 

HoU)(t)Hs(»(t) ^ 0. 

Proof. Set n = p + q + s + l. Denote by £/ ^ £2' ^ . . . Û & - w 
the roots of the equation 

(24) #,<»(*) = 0 , 

and by rji ^ t\î ^ . . . ^ ^ - I - ; the roots of 

(25) /?<,<'> (*) = 0. 

Further, let 

u M - H^x) - H°{x) - H(x) 

vv "—"" X j X ~~~ X T \X """"* X f j \yv ~~"* Jv g J 

(r = 0, 1, 2, . . . . s - 1) 

and denote by f i, ft fB-2-i the roots of 

(26) tfo./'H*) = 0. 

Using the trivial fact i? 5
a )(f t ) = jiJofr^CfO it can be easily shown 

that the roots of (24), (26) separate each other, i.e., 

(27) &' g ft g . . . ^ f,' ^ r« g . . . g r*-w g &-w . 

When applied to H(—x) this implies that also 

(28) W é ft é . . . ;S *»' g fi ^ . . . ^ r^-t-i ^ >?n-w. 

Keeping these facts in mind and using 

HS»(t,t') = ( * , - * o ) ^ o . . w ( u , ' ) . 

#<.<'> (É/) = (*o - *,)Ho..W)(«,') 

in conjunction with Lemma 5 we can show that £/ ^ 77/ ^ . . . ^ £/ ^ 
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rj/ ^ . . . ^ &_!_, ^ 9fo_w, i.e., we have 

(29) tf ^ Vl' ^ fx g . . . £ *,' £ 71/ £ f, £ • . . ^ fn-2-i ^ 

It is clear that H0^(t)Hs^(t) ^ 0 if and only if * lies in one of the 
intervals 

(30) (-oo, £/], [V1', £ / ] , . . . , h;_2_„ ?;_!_,], b ; _ w , oo). 
No doubt, some of these intervals may just be points — 1 , + 1 . The lemma 
will be proved if we show that Hiij)(t), . . . , Hs

{j)(t) are all of the same 
sign if / lies in any one of the intervals (30). We have 

#r ( j )ftl ' ) =£j{(!*-Xt)Hrtt{x)} =* (xr-X,)Hr,™(l;/). 
dx3 

Hence if — 1 < £/ < rj/ < 1, then by Lemma 5, HTtS
U)(%/) and 

Hs
u+l)(£i) have the same sign, i.e., that of ( - l ) n - 1 - * - 1 . Thus # / ' > ( £ / ) 

is of the same sign as ( — \)n-i-\ By a similar reasoning we see that 
Hr

U){r]/) is of the same sign as ( — l)w-^*+i. Consequently, 

(31) Hr<»(pc) = 0 (1 ^ r ^ 5 - 1) 

must have a root in the interval (£/, 77/). If —1 is a root of multiplicity 
Wi of (24) then (31) as well has a root of multiplicity mi at — 1. Besides, 
if 1 is a root of multiplicity m2 of (24), then (31) has a root of multi
plicity ra2 + 1 or m2 at 1 according as xs = 1 or xs < 1. Further, note 
that if xs < 1, then 

Çn— 1— y—ra2 ^ Vn—l—j—m2 "^ -̂  > 

and so (31) has a root in (^_i_;_m2, ^_i_y_m 2) . Thus all the roots of (31) 
lie in [£/, rçn-i-*] and precisely one lies in (£/, ??/) if — 1 < £/ < r\{ < 1. 
Now it is readily seen that H^j)(t), . . . , HS

U)(t) are all of the same sign 
if t lies in any one of the intervals (30). 

3. Now let us return to the study of the functional co(P) = Pa)(t) 
for the values of t and j specified earlier. We know that in all the five 
cases L ^ v(n) — 1. Hence there are only two possibilities to be con
sidered, namely, L — v(n) or L = v(n) — 1. 

Consider first L = v{n). If and when this happens, the minimal poly
nomial must satisfy the differential equation 

(32) | | P | | 2 - ZP(x) = c-\ZP'{x)f^^ , 

where 
(2(1/(n) — 1) if X, M are both even 

(33) an = \2v{n) if X, /x are both odd 
\2v\n) - 1 if X ̂  M mod 2. 
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Solving the differential equation by separation of variables, we obtain 

ZP(x) = -™-- {1 — cos (<rn arc cos x + D)}, 

where D is a constant. If X is even, then L can be equal to v(n) only if + 1 
is a root of (11), i.e., ZP(l) = ||P| |2 and so D = (2k + l)7r where & is an 
integer. On the other hand if X is odd, then D = 2kw since in that case 
Zp(\) = 0. Thus, the minimal polynomial P* must be a constant mul
tiple of 

' (1 - x)x / 2(l + *)"/2r„(n)-i(tf) if X, M are both even 

1(1 -x ) ( x + 1 ) / 2 ( l +*) ( '+1) /2£/Kn)-i(*)if X,/x are both odd 
(34) P (x) = { 

|(1 - x)x / 2(l + x)^+1)/2Qv(n)-i(x) if X is even, /x is odd 

(1 - *)<X+1>/2(1 + xy,2RpM^(x) if X is odd, M is even. 

Now, let us recall that 

» ( p * ) = ! > ( * ) = a, 

and so the minimal polynomial is 

a (35) P*(x)=yyr(î)-Pn(x) 

where Pn(pc) is given in (34). According to Lemma 2, the polynomial (35) 
will be minimal for a given / if and only if the corresponding numbers 

{-l)P*{x^{F{}, (-l)lP*(x2)<o(F2) 

are of the same sign. But clearly 

(-l)P*(Xl), ( - l ) lP*(x 2 ) ( - 1 ) " « P * ( ^ , ) 

are of the same sign. Hence we only have to look at the signs of co(Fi), 
co(7?

2), . . • , o)(FV(n)). It is easily seen that if 0 ^ j < n, then according as 
(a) X, \x are both even, (b) X, \i are both odd, (c) X is even, \i is odd, (d) 
X is odd, /x is even, u(Fi) is 

A 
dx 

d_ 
dx 

A 
dx 

A 
dx 

j /q-^)x /
(
2

n(i_+xr / 2 (x2 - i)uHn)Mx)\ I 
£ I 2J x x i ) \ x=t 

L. / q - * ) ( X + 1 ) / 2 ( i + * y + 1 ) / 2 T,M(X)\ I 
c'X 2"nJ=i x - x J U ' 

' {^-xf'\\ + x)("+1"2(x-l)iW1(*)ll 
?\ 2 ' ( n T = T / 2 x-xt / L ' 
1 j ( l - x)(X+1)/2(l + x V / 2 (x + l)Q, ( . ) - i (*) l | 
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respectively, where (d°/dx°)f(x)\x=t means/( /) . Finally, if j = n, then 

« ( F , ) = ( - l ) [<*+i> '«n! . 

Thus, condition (i) of Lemma 2 is satisfied for j = 0, / 2 [ — 1, 1] as well 
as for j = n, and so (35) must be minimal, since in these two cases 
L = v(n). Further, it follows from Lemma 7 that if 0 < j < n then (35) 
is minimal for a given / if and only if 

(36) Fx^ toF&CO £ 0 . 

So if £i ^ & g . . . S în-i» *7i ^ 12 ^ • • • ^ i?n-i are the roots of 

(37) F#)(*) = 0 , 

(38) Fi<'>(*) = 0 

respectively, then (35) is minimal if and only if t lies in one of the inter
vals 

(30*) ( - 0 0 , $i] , [Vl, £2], . . . , [77n_,_i, £„_,] , [i;n_„ 00 ) . 

Suppose now that L = v(n) — 1. Again using Lemma 2 we see that a 
polynomial P(x) will be minimal if and only if 

(39) FU)(t) - ^ { d - *)t(X+1)/2)(l + *) [ (>+ 1 > / 2 1tf (x - * , ) } = 0 

and 

(-DJpfoW'KO, (-D2P(x2)F2^(t), • • •, 

are of the same sign. But by Lemma 5, the numbers FiU)(t), F2
U)(t), . . . , 

^(n)-i(O are all of the same sign as Fu+1)(t) and so it is enough to check 
the signs of 

(40) ( - l )POci ) , ( - l ) t f (*,), • • • - ( - l J ' W - ^ ^ w - i ) . 

Now we distinguish four different cases: 
Case I: The degree of P{x) is n — 1. If this happens the polynomial 

P{x) must satisfy the differential equation (32) with <jn replaced by 
(Tn_i. The minimal polynomial is then given by (35) with n — 1 in place 
of n. Since (40) is obviously satisfied the values of / for which such a 
polynomial will be minimal are precisely the roots 

(41) pi , p2 , . . . , pn-j 

of the corresponding equation (39). 
It can be shown that 

(42) { ,£ p, â m (l = 1,2, . . . , * - j). 
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Let us verify it in the case when X, /x are both even. Setting 

„M (1 ~ *)X/2(1 + xf'2 (*2 ~ D^M-»(«) 
«(*) = ^ 7 = 2 ^ZTi 

and 

kM (I - x)x/\l + xY/2 , 

we see that the conditions of Lemma 6' are satisfied. Hence at the points 
£i which are the roots of g(j) (x) = 0 we have 

hW(x)gV+»(x) ^ 0 

and therefore 

This implies that between two consecutive £/s there is a root oîh(j) (x) = 
0 and so in fact 

£l ^ Pi ^ É2 ^ P2 ^ . . . S tn-i S Pn-j-

Since the minimal polynomial is of precise degree n when t lies in one of 
the intervals (30*) it follows that 

— 00 < £i 2* Pi ^ 1U â É2 ^ P2 ^ 1?2 ^ $8 =£ P8 ^ • • • 

^ É»-i â P»-i ^ 1?n-i < °° • 

Case II: The degree of P{x) is n, X is even but 1 is not a root of (11). 
Now according as M is odd or even the equation (11) has either 

v(n) — 1 double roots or v(n) — 2 double roots and one simple root at 
— 1. This implies that the minimal polynomial must satisfy the differen
tial equation 

| |p | |2 y /vx _ - * / « //V\\2 (1 + *Q (C - s ) 
ll^ll - ZP(x) = rn (Zp (x)) ^ , . 

where 

/ 2 ( K » ) - 1 ) if M 
r* \2v(n) - 1 if M 

is even 
is odd. 

In view of this if 

2v(n) - 1 
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and for c 6 (1, w), 

(43) P„„(x) = 
(1 - x)x'\l + xY''T^^x^-c) if „ i is even 

(1 -*)*"(!+*) (M+D/2, 
Q,(n)-1^ ^^ 4. 1 / if » iS °dd» 

then, the minimal polynomial must be of the form (a/PntC
U)(t))PniC(x). 

For a given c the values of t for which (a/PniC
U)(t))Pn<c(x) is minimal 

are the roots e^c), 62(c), ... , tn-j(c) of the equation (39) where 

c+1 
%i = %i(c) = < 

c + 1 

/ ( K » ) - / ) i r \ 
\ v(n) - 1 / 

(2(v(n)-l)A 
\ 2v(n) - 1 / + 

c - 1 
2 

c - 1 

if /x is even 

if fx is odd 

for / = 1, 2, . . . , v(n) — 1. Now we wish to show that for each k, ek(c) 
is an increasing function of c in the range (1, u). For this we observe 
that ek is defined implicitly by (39). Hence if ek 7e ± 1 , then 

dc fe) + dF 0') 

But 

dF -(i) 

dc 

dc 

Kn)-1 

ac 

= 0. 

FiU)(ek) 

and so 

de H de F1^7^) ' 

Now note that dxt/dc > 0 except when / = 1 and /x is even, in which case 
it is equal to zero. Thus using Lemma 5 we conclude that dek/dc > 0, 
i.e., ek is an increasing function of c in (1, u). Moreover, calculating 
limc_>i+ Xi(c) we easily see that 

lim^i-H €i(c) = £j 

where ^ is a root of (37). Now, if A* = limc_^M_ ei(c), then from the above 
discussion it follows that for each / in (£ h \t) there is one and only one 
c in (1, u) for which (a/PntC

(j)(t))Pn>c(x) is minimal. 
For / = \ h the minimal polynomial is (a/PntU

a)(t))PntU(x), where 

Pn.uM = 
(i - *)x/2a + xrT,^(2x++~--), if M i is even 

(1 - Xfa+X)™^.^2*^ ~ M),ifMiS0dd. 
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Finally, we remark that \ t < pt or else we would have two minimal 
polynomials for t = plm 

Case 111 : The degree of P (x) is n, p is even but — 1 is not a root of (11). 
Set 

2v(n) - 1 

and for — v ^ d < — 1 let 

(1 _ *)X/2(1 + xy^Tv((^L^A\ if x i s e v e n 

(44) PnAx)={ 

(1 _ *)<M-I>/«(1 + x y / V i ^ " , 1 ^ ) ifxisodd. 

By a reasoning similar to the one used in Case II we can show that if 
Mi, M2, • • • , pn-j are the roots of the equation 

where 

f » + 1 (c(«) — /)ir I» — 1 ., . . 
V —-— cos — T \ ; —^— it A is even 

x,=\ v(n)-l 2 
/ » + 1 (2 (P(» ) - 0 + l )x i > - 1 . , . . , , 
' " T - 0 0 8 2(v(n) - 1) 2 ~ l f X l S 0 d d ' 

(/ = 2,3 v(»)), 

then for each 2 in [ph rji) there is one and only one d in the interval 
[ — v, —1) for which (a/Pn)d

{i) (t))Pn<d(x) is minimal. Here pi must be 
greater than pt. 

Summarizing, we may say that we now know the minimal polynomial 
when t lies in the shaded intervals indicated in Figures 1, 2, 3 and 4. 

To simplify the subsequent discussion we set \ t = £t if X is odd and 
p. i — rj i if p is odd. 

Case IV: Here we consider the possibilities not covered previously. 
For this we wish to investigate how the minimal polynomial varies as t 
grows in the interval (\h pt), I = 1, 2, . . . , n — j . In order to facilitate 
the study let us exhibit the parameter t explicitly; for example write the 
minimal polynomial corresponding to a given value t as 

P*(x,t) = £ a*(t)x\ 

Further, we use the notation fjtk(x> t) for (di+k/dxjdtk)f(x, t). 
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Xi Pi w+i 
— i • 

b pi 

—H • I 

Pi 

P/ 7̂ / £z+i Pi+i 

F I G . 1. (X, /i both even) 

• 1 — * — — 

Pn-j Vn-

Vl 

Pi 

É/+1 
- H • I 

P/ + 1 

Vn-j 

Pn-j 

1 i • 

£l Pi 

Ç1 
- 1 • 

Pi 

F I G . 2. (X, n both odd) 

— 1 • 1 1 — 1 • » — 

Pi £*-H Pi+] 

F I G . 3. (X even, M odd) 

Pi £z+i 
— 1 • 1 — 1 1 • « — 

P/ Vi P1+1 

F I G . 4. (X odd, ju even) 

^ - ; 
P«-; 

Pn-j 
t •-+• • 

p „ _ ; rjn-j 

Now let Xi(/), x2(t), . . . , #v(n)-i(0 be the roots of the corresponding 
equation (11). The fact that the quantities (40) have to be of the same 
sign implies that there exists one and only one root y t(t) of ZP*(x, t) = 0 
in (xi(f)t xî+i(t)), I = 1 , 2 , . . . , v{n) — 2. Hence if 

W(x,t) = \\P*\\-2ZP*(x,t) 

where N is the degree of W, then the form of ZP* shows that W(xf t) 
must have one further double root b(t) which must necessarily be outside 
the interval [xi, x„(n)_i]. Consequently, Wi,o(x,t) vanishes at all the 
double roots of (11), as well as at the points yi(t), y^tt), • • • » 3^00-2(0» 
5(0- In addition it must have one more real root fi{t). Depending on the 
parity of X, /x we will have four different possibilities. Let us examine them 
in the case /?(/) > x„(n)_i; the case (3(t) < Xi being symmetrical. 

a) Suppose that X, JU are both even: 
Under this hypothesis equation (11) has v(n) — 3 double roots in 

( — 1, 1) along with a simple root at each of the points — 1 , + 1 . This 
situation is illustrated in Fig. 5. 

W = W(x, t) 
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b) Suppose that X, /x are both odd: 
Under this hypothesis equation (11) has v(n) — 1 double roots in 

( — 1 , 1). The following three diagrams illustrate how W(x} t) may pos
sibly look: 

FIG. 6.1 

m = m 

FIG. 0.2 

FIG. 6.3 

c) Assume now that X is even, /x odd: 
Under this hypothesis equation (11) has v(n) — 2 double roots in 

( — 1 , +1 ) along with a simple root at + 1 (see Fig. 7). 
d) Finally, suppose that X is odd, M even: 
Under this hypothesis equation (11) has v(n) — 2 double roots in 

( — 1 , +1 ) and a simple root at —1 (see Figures 8.1, 8.2, 8.3). 
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FIG. 7 

- 1 

F I G . 8.1 

U V7 yi _=*(') = m 

FIG. 8.2 

F I G . 8.3 
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We will now study possibility d) in detail. The other three can be 
dealt with similarly. The possibility d) can be analytically described as 
follows: 

The degree N of W(xy t) is 2v(n) — 1, and the 4:v(n) — 2 quantities 
Co(t), Ci(t), . . . , C2v(n)-l(0> *2(0, #3(0, • • • , X„(w)_i(0, yi(Ot 3̂2 (0. ' ' • » 
yv{n)-<i{t), b(t),fi(t) are implicitly defined by the system of 4i>(n) — 2 
equations 

(45) 

W(l,t)=0, W(-l,t) = l 

W(x,(t), t) = 1- Wi,o(*i(0, 0 = 0 , (l = 2, 3 u(n) - 1) 

W(y,(t), t) = 0, W.AViit), 0 = 0 , (/ = 1, 2, . . . , v(n) - 2) 

W(8(0,/) = 0 , Wi.o(fi(t),t) = 0 

Wi.o08(O,O = 0 
Fjfi{t,t) = 0. 

Observe that xt(t) cannot be equal to ji{t). Also, X; = £( so that the 
system (45) is satisfied for t = A( except that the last equation is to be 
replaced by 

\dx 

Further 

j r,w{x, Ai) Ï = 0. 
x=\\, 

(46) - 1 = *i(X,) < yi(X,) < . . . < 3cK»)-i(Xj) 

< ?,(«)-! (X,) = «(Xi) < 0(X,) = *,(*)(*l) < 1-

So if we show that xx(t), 2 ^ / ^ y(n) - 1 and y,(/)f 1 ^ / ^ i/(«) - 2 
are increasing functions of / in (\h pz), then we would have 

(47) - 1 = xx(t) < yi(t) < x2(t) < . . . < xv(n)^(t) < + 1 

for all t in (\h pt). Differentiating the system (45) with respect to t we 
obtain 

(48) 

(49) 

Wo.i(-l,t) = Wo.i(U) = 0 

Wo.i(*i(0.0 + * i ' ( W , o ( * i ( 0 , ' ) = 0,(/ = 2,3 *(«) - 1) 

Wo.iCy.W, 0 + y, ' (0 Wi.oCViW, 0 = 0, (/ = 1, 2 , . . . ,„(n) - 2) 

wVi(*M,0 + *'(W.o(a(0.0 = o, 

Wi.i(*i(*). 0 + x,'(t)Wt,o(x,(t), t) = 0, (l = 2, 3 , . . .,i»(») - 1) 

W1A(yi(t),t) +yi'(t)W,.*(y,(t),t) = 0 , ( / = 1 , 2 „(n)-2) 

Wi.i(«(0,0+«'(0^».o(8(0,0 = 0 
^ i , i ( / 3 (0 ,0+ /3 ' (0^2 .o ( /3 (0 ,0 = 0 , 
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and 
v(n)-l I ~j \ 

(50) F m , 0 ( / , 0 - Z **'(0tofib(*,0f| =0. 
fc-2 \OX 1 I x= I 

Using (45) we deduce from (48) that 

WoA-1,1) = WoAi,t) = w»,i(x,(t),t) = WoAym(t),t) 
= Wo.i(ô(t),t) = 0 

for / = 2, 3, . . . , v(n) — 1 and m = 1, 2, . . . , v(n) — 2. Therefore 

(51) W0,i(x,t) = c0'(t)-(x - ô(t))(x2 - 1) 

»(»)-l Kn)-2 

x n (* - *iO) n (* - y»(o). 
£=2 ra=l Now set 

y(n) —1 y(w) — 2 

/(*, t) = H (* - *i(0). <z(*. 0 = (* - Ht)) I l (* - y«(t))-
1—2 m=l 

Then clearly 

Wi,i(x,t) = c0'(<) • (x2 - i){/(*,Oai,o(*,0 + h,o(x,t)q(x,t)} 

+ 2co'(t)xf(x, t)q(x, t). 

Now substituting for W\t\ in (49) we get 

C x/(t) = -co'(0(*i'(0 - I ) / I . O ( * I ( 0 , O S ( * I ( 0 . 0 / ^ Î . O ( * I ( 0 . 0 . 

(* = 2,3 v{n) - 1) 

?/(*) = -co'(0(yi !(0 - i) /(yiW,02i.o(yi(0.0/^.o(yi(0.0, 
(52) -{ (/ = 1, 2 „(») - 2) 

«'(0 = -co'(0(**(0 - i)/(«(0.02i.o(«W,0/w*.o(«(0,0 

But 

and so 

0'(t) = -c, '(0-^{/(x,/)«(*, 0(*2 - l)}U>«>{l/W\o(0(O.O}. 

Ifi,o(x, 0 = Nc0(t)f(x, t)qix, t)(x - j3(t)), 

W2,o(x, /) = 7Vc0(0{/i.o(x, 0g(*. 0(* - &(!)) 
+ f(x,t)qi,0(x,t)(x - /3(0) + /(*,*)2 (*,/)}• 
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Hence 

*<'<<> = - f l ^ ^ S r ( ' - " <">-" 

<5« < "<» - ~ Éf^W-W) • «- '<2 w "2) 

.,M = Co'(t) 52(t) - 1 
V ; i\fco(0 5«) _ #(,) ' 

In order to determine the sign of ca'(t)/co(t) we subst i tute the value of 
xk'(t) in (50) to obtain 

Keeping in mind the fact tha t Fjto(t, t) = 0, we may apply Lemma 5 to 
conclude tha t 

Fj+i,0(t,t) and \-j$Fk(*>0 , (k = 2 f 3 , . . . , K » ) - 1) 

are all of the same sign. Hence — c</(OAo(0 = 0. From this it follows 
t ha t *, ' (*) , (/ = 2, 3, . . . , v(n) - 1), ? / (* ) , (/ = 1, 2, . . . , v{n) - 2) , 
and ô'(£) are all positive. Now we wish to show tha t the same is t rue 
about £ ' ( / ) . In fact 

^--1ëè{i(fix't)q(x't)ix2-l))} Nco(t) 
Hi>Wt,o(0(t),t)' o(0 

and so it is enough to apply Lemma 6 to the polynomials 

g(x): = W(x,t)/Nc0(t),h(x): = f(x, t)q(x, t)(x2 - 1) 

a t the point x = &{t) to obtain £'(/) ^ 0. 
If fi(t) were bounded in [\h pi), then a t the point / = pi we would have 

two minimal polynomials, one of degree n — 1 and another of degree n. 
So for each / where / = 1, 2, . . . , n — j there exists a point T x in (X*, p j 
such tha t if t £ [Xz, TJ) then the minimal polynomial is a solution of the 
system (45) for which (47) holds while 

l i m ^ r , _ 0 ( / ) = +œ, 

and, a fortiori, 

l i m ^ T | _ « ( 0 = + o o . 

On the other hand, when t —> r x—, (47) remains true except tha t the last 
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inequality may not be strict. This means that the coefficients of the 
polynomial 

h(x t) = EiM^lL 

v(n) — l v(ri)—2 

= n (x-x,(t)) n (x-yi(t)) 
1=2 1=1 

stay bounded as / —• r x —. But 

(54) W(x, t) = Nco(t)j (z - P(t))(z - 8(t))h(z, t)dz + W(-l,t)\ 

moreover since W(yu t) — W( — l, t) = — 1 and h(z, t) does not change 
sign on [ — 1, y\) we get 

Nc0(t) = - i J z2h(z, t)dz - (/3(0 + ô(t)) J zh(z, t)dz 

h(z,t)dzj , 

Nc0(t)(f3(t) + s(t)) = -{j(^-\r^ J^l) *'*(*, t)dz 

- J zh(zJ)dz+[m + --j J Hz,t)dzj 
i i Cv\(0 

Nc0(t)p(t)ô(t) = -\j(fij(fi J _ t zh{z,t)dz 

/ 1 1 \ f»i<«> f M« "I-1 

Thus we simultaneously have 

(55) lim^Tj_c0(/) = 0, lim^T/_co(O(0(O + 5(0) = 0, 

\imt_,Ti_Co(t)P(t)d(t) = L < co. 

Now taking the limit in (54) as / —• TX— we see that W(x, t) converges 
uniformly on [—1, 1] to a polynomial of degree N — 2, which implies 
that the polynomial P*(x, t) converges to a polynomial of degree n — 1 
for which L = v(n) — 1. But then this polynomial must be the minimal 
polynomial arising in Case I, and rx must be equal to pz. 

By symmetry, the minimal polynomial for a value / lying in (ph fjLt) 
corresponds to a solution of the system (45) for which f$(t) < Xi(t). 

Section 4. 

Proof of Theorem 1'. Let è be a small positive number. For a fixed c such 
that 1 — ô ^ c S 1 consider the normed linear space wn+itC of all poly
nomials P of degree at most n -\- 1 vanishing at — c and having a zero of 
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multiplicity at least [(X + l ) /2] at 1 and a zero of multiplicity at least 
[(X + l ) /2 ]or [(X + 3) /2]at - 1 according as c ^ 1 or c = 1, and where 

||P|| = m a x - n ^ i \(x + c)- i ( l - *2)-x / 2P(*) | . 

We wish to determine the norm of the functional co(P) = Pa)(Q)/j\ 
defined on 7rra+i>c. It is easily checked that the reasoning of Section 2 
leading to the characterisation of the extremal polynomials remains 
valid, and in particular if 

f<U'ï p <v\ = A 1 ~ x2)x/2Tn_x(x) if X is even 
^ * ; jrn\x) | ( 1 _ x2)(x+i) /2 [ / w_ x l ( : x : ) if x i s o d d 

and 

/ ( l - x2)*/2(x + c)(x2 - l )cVx- i (x) if X is even 
W " ((1 - j c 2 ) ^ 1 * ' 2 ^ + c)rn_x(tf) if X is odd 

then (x + c)Pn(x) is extremal if and only if 

/V>>(0)F#+1)(0) è O . 

Let us write F(x) = (x2 — l){x + c)G(x), where G(x) is 

(1 — x2Y,2Un-\-\{x) if X is even and 

- (1 - x2)(x"1)/27;_x(x) if X is odd. 

If we define 

F0(x) = F(x)/(x + 1) = (x — l)(x + c)G(x) and 

F»(n+D+i(x) = F(x)/(x - 1) = (x + l)(x + c)G(*) 

then by Lemma 7, 

P I ( ; ) ( 0 ) ^ + D ( 0 ) ^ 0 

if the same is t rue for F0
(i) (0)F(

vfn+1)+1(0). 
Clearly 

F0^(0)FiH+1)+1(0) 

= {-cG<»(0) - (1 - c)iG<^>(0) + i ( j - l)G^-2>(0)} 

X {cG<»(0) + (1 + c)iG<^>(0) +j(j - l)G<>-2>(0)}. 

Note that for any w the polynomial G(x) (which is of degree n — 1) is 
either even or odd. If n — j is even then n — 1 — j is odd and so 

G<'>(0) = G<>"2>(0) = 0. 

Hence 

/V«(0)/^>+ 1 ) + i(0) = - ( 1 - c«)j«(G<>-»(0))*, 

and consequently for the polynomial (x + c)Pn(x) to be extremal it is 
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sufficient that c be equal to 1. The condition c = 1 is also necessary if X 
is even since in that case 

F0(x) = Fi(x), FHn+»+i(x) = 7%(/i+i)(x). 

Now we note that if pn(x) = X]ï=o »*#" is a polynomial of degree at 
most n with real coefficients such that \pn{%)\ Ss (1 — x2)x/2 for — 1 g 
x g 1, then 

I n 

y = i 
\(x+l)pn(x)\ = 

S (x + 1)(1 - x2)x/2 on [ - 1 , 1] 

and so provided w — j is even 

|a;- + «,--il ^ |7«,i + yn.j-i\ = |7*.,* 

Similarly 

a , - a , _ i | ^ |7w > i - 7 t t , ; - i | = 17» ,;l 

Consequently (7') holds if 0 g 1. Besides, it follows from above that if 
0 > 1 then at least when X is even there exists a polynomial pn(x) = 
X)iLo avx

v of degree at most n with real coefficients such that |£n(#)| = 
(1 — x2)x/2 for —1 ^ x ^ 1 but for which 

N + 0k--il > \ynj\-

Now we wish to show that if n — j is odd, then 

N S lTn-l.il-

We know that Pw_i(x) is extremal for the functional co(P) = P ( ; ) ( 0 ) / / ! 
defined on the normed linear space ^ n if and only if FU)(0) = 0 where 

w v = / ( l - x2)x/2(x2 - l)£/n_x_i(x) if X is even 
W \ ( 1 - 3c2)<x+1>/2rn_.X-iW if X is odd. 

Note that F(x) is even or odd according as n is even or odd respectively. 
Hence n — j being odd, FU) (0) = 0. 

In order to verify the last statement of Theorem 1' we consider the 
normed linear space wn+i,c of all polynomials P of degree at most n + 1 
vanishing at — c (c real and |c| > 1) and having zeros of multiplicity 
[(X + l ) /2] at + 1 , - 1 , and where 

| |P| | = m a x . ! , , , ! \(x + c)-1^ - x2)~x /2P(x)|. 

We claim that again the reasoning of Section 2 leading to the characterisa
tion of the extremal polynomials corresponding to the functional co(P) = 
P ( ; ) ( / ) remains valid. Thus, in order to show that (x + c)Pn-\(x) is 
never extremal we simply need to check that F(S) (0) 9e 0 where 

F( \ = i ( 1 " *2)x / 2(* + c)(%2 ~ l ) ^ - i W if x i s even 
W \(1 - *2)<x+l>/2(* + c)7Vx-iCx) if X is odd. 
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Again we write F(x) = (x2 — l)(x + c)G{x) where, for every n, G(x) is 
either even or odd. Calculating F(j)(0) we get 

/?O)(0) = -<&<'> (0) -jGV-l*(0) + cj(j - l)G<'-'>(0) 

+ JU- l ) 0 ' - 2 ) G ^ - » > ( 0 ) . 

Since w — j is odd GU)(0) = G(j"*2)(0) = 0. Also, on examining G(x) 
more closely we notice that the non-zero coefficients alternate in sign, i.e., 
G(J-1}(0) and G ( '-3)(0) are of opposite sign and hence F^(0) 9* 0. 

Proof of Theorem 2. Let 

Mn = sup {maxi-i.i] \P^(x)\ \P G &n,\\P\\ è 1}. 

It is obvious that if Q £ SPn is such that ||Q|| ^ 1, 

|Ç<»(/0)| = m a x - i ^ i | Q < » ( * ) | - Mn 

then Q(x) = p(x,to) where p(x,to) is an extremal polynomial for the 
functional u(P) = Pa)(t0) on ^ w and so 

Mn = max-igi^i |£y,o(*, 01-

Clearly, p(x, t) is of norm 1. If for a given a, P*(x, t) is the minimal 
polynomial in &n<<x then 

P*(Xtt) =--£L-p(Xtt). 
0){p) 

Using the same notation as before we get 

W(x, t) = ZP*(x, t)/\\P*\\2 = (P*(x, *))7I|-P*I|2(1 - *)x(l + xY 
= p2(x,t)/(i - x)x(i + xy. 

Thus if p(x, t) = jyv==0 dv(t) xn~v then 

c0(t) = ( - l ) W ( O -

We know that for 

£(*.*) = P„(*) 

whereas for / = px (I = 1, 2, . . . , w — j ) , 

p(x, 0 = Pw_i(x). 

Hence the desired result will follow if we show that the function \pj(t, t)\ 
cannot have a local maximum on the intervals (£z, pt), (pi,r)i) (I = 
1,2, . . . , » - j ) . 

Let us put 4̂ (£) = pj,o(t, 0- In order to show that a local extremum of 
\A (/)| is necessarily a minimum it is enough to show that, if / is a point 
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belonging to any of the intervals (^ , A*), (Xz, pz), (p,, HI), (M;> VI) such 
that A'(J,) = 0, then A{t)A"(t) è 0 whereas if A'(t0) = Oior t0 = \tor 
/0 = iii t h e n 

l im^ , 0 _y l (0^ / / (0 è 0 and l i m ^ o + A (t)A"{t) è 0. 

This consideration is made necessary by the fact that at the points 
\ h HI the function A"(t) is not continuous (see [9, p. 193, Theorem 6]). 
Here we shall restrict ourselves to an interval of the form (£z, pt), the 
corresponding result for intervals of the form (ph r]i) being obtained by 
symmetry. 

Using (51) and the fact that 

F(x, t) = (1 - x)[(X+1)/21(l + x)[{"+1)m " t f (x - x,(/)), 

1=1 

p(x,t) = ( - l ) ^ X + 1 ^ l d o ( 0 ( l - x ) ^ ^ f V ( l +5C)[(M + l)/2] 

x n (*-yi(0)(*-««)) 

(where b(t) = yv{n)_i{t) if t £ (£z, X?]) we easily obtain 

(56) K i C M ) = ( -1 ) [ ( X + 1 ) / 2 W(0/<OM). 

Since on the interval under consideration Fjto(t, t) — 0 this implies that 

. 4 ' ( 0 = pj+i,o(t,t) +pjti(t,t) 

- £,+i,o(M) + ( - l ) " x + 1 ) / 2 W ( / ) ^ , o ( / , 0 

Further 

^ " ( 0 = £i+2.o(U) + ( - l ) ^ X + 1 ) / 2 W(/ )^ + l , 0 ( / , / ) . 

Let us now suppose that there exists a point /0 G (£*, p*) such that 

4'(/o) - ^+i,o(/o,*o) = 0 

and consider the product A (t)A" (t) for / in a neighbourhood of /0. For this 
we recall that if 

fv{n)-\ 

\ E (**(0 + !)**(*,') for/ G (£„ \i) 
4>{x,t) ={ k=l 

then 

(57) / ? ,+i .o(M)/^.o(U) = - c0'(t)/Nco(t) è 0. 
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It is a matter of simple calculation that 

4>(x, t) = -nF(x, t) + (x + fi(t))Fii0(x, t) + f(x, t) 

(here and in the sequel fi(t) is taken to be 1 for i G (£;, X()) where 

(58) (* - l)t(x,t) = - 2 

whereas 

A_±J 
2 

F(x,t) ut e (êi,x,) 

+ 

Hx, t) 

Q\t) - 1 

M+ l" 

2 
F(x, t) 

(x- 1 ) ( 1 - |8(0) 

+ ' | T l f,(*,Q 
2 J ( x + l ) ( - 1 - / 3 ( 0 ) W * i ( 0 - / 3 ( 0 

As well, it can be easily checked that in case t £ {\u pi) 

Ht 6 ( \ I , P I ) . 

Differentiating the two sides of (58) and of (59) j times with respect to 
x and then putting x = t we obtain for < £ (£j, X;) 

FiAt, t) (60) (* - 1)*,.,(/, 0 + i^ - i ,o« , 0 = - 2 [ ^ i 

and for t C (X;, p,) 

0 -/3(0)^,o(M) + j^-i ,o(M) 

= (/S*(0 - l){^+i ,o(U) ~ Fp^),\) FiAt'l) 

which, in view of the fact that Fjj0(t, t) = 0, gives us 

(ff2(Q - l)^+ 1 ,o(/ , / ) - j ^ _ 1 ( 0 ( U ) 

* - 0(0 
Similarly 

0;,o(/, /) = (* + /3(0)^+l,o(/, 0 + *,,<>(*, 0 

Combining the two preceding relations we obtain 

<l>j,o(t, t) = 
1 

Fj+i,o(t, t) 

Examining the system (45), we see that 

'Aj-i.oO, t). 

wi,o(x, o = Nc0(t) n (* - *«(0) n (* - ym(t))(x - «(o) 
X (* - (3(0) 

Kn)-2 

n 
m—1 
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where i f is the set of indices of the double roots of (11). This can be 
rewritten as 

d f p\x,t) \ 
dx\(i -x) x ( i + xyj 

= ( - 1 ) 

from which we deduce 

(61) PiAx, 0(x2 - 1) + p(x, 0{ (M"~) - {-J^x} 

Differentiating the two sides j' + 1 times with respect to x and putting 
x = t we obtain 

(62) £y+2,0«, 0(*2 - 1) + pJ+i,o(t, t){ [2(j + 1) - ( ^ f - ^ ) ) ^ 

+ ^=--}+^,o(U)(i--X-±^)(i+l) 

= ( _ 1 ) i ^ « / « ^ ^ l i 0 ( / | 0 ( ï _ / î W ) . 

Hence 

^"(0 = P„*At, t) + ( - i ) [ ( X + 1 ) / , ] - 1 ^ ^ ^ t i # # ^,,oO, 0 9 *,.<>(*, 0 

Pj+2,o(t, t) — ——j—r-

pj+Ut, t)(f- - l) + (j + i)(j - ±±Ji)Pjit(t, t) 
x _ _ _ _ _ 

4( f ) J • f <-l.oO, 0 _>J+2.0«, Q 
/3(.) - t\J Fj+1,o(t, t) pitl)(t,t) 

+0+1)(,._i±_)} 

x ^+i.o(*, *) + A'(t) FmdbJ) 

x{(2o-+D-^_)/ + ̂ } . 
Let us now assume that A'(t0) = pj+it0(t0, t0) = 0. Using Lemma 4 we 

https://doi.org/10.4153/CJM-1981-055-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-055-8


A PROBLEM OF TURAN 729 

may conclude that for all / in [%h pt] we have 

{£i+i,o(/, 0 Î 2 - Pj+*At> t)Pj.o(t, t) < 0 

where the inequality is strict since t ^ dbl. Hence by continuity there 
exists a constant M such that for all t £ [Ci, pi] 

{pj+i.o(t, 0 } 2 - £;+2>0(/, 0pito(*, 0 < M < 0. 

From this it follows that if pj+\,o(to, to) = 0, then there exists an interval 
around t0 wherein 

pj+2,o(t,t)PjAt*t) < 0. 

The quantity (j + l)(j — (X + p.)/2) appearing in the expression for 
A"(t) is clearly non-negative and because of (57) so is the factor 
Fj+1>0(t, t)/<j)jto(t} t) for t 9^ \i so that 

lim^xi- Fj+i,o(t, t)/<t>jto(t, 0 è 0 and 

lim^XH-^+i.o(U)/**.o(U) è 0 

as well. 
Let us now consider the factor /?(/) — /. For this we rewrite (62) in the 

form 

(ao'\ Pi+w(t> 0 /t2 i\ t Pj+i,o(t* 0 
{bZ ' d0(t)

 {t ~ 1 ) + d0(t) 

i,o(t, t 
do(t) + É^(i+l)(i--X-^) 

We have already noticed that there exists an interval around t0 wherein 

(t2 - i)pj+2At,0PiAt>t) > 0. 

Further, since Fj<0(t, t) = 0 for each /, we can apply Lemma 6' to the 
polynomials 

g(x) = (-l)"K+l"À1F(x,t) and A(*) = ^ 

to obtain 

a(\+i)/2]j-, /, *\PjAhJl 

Hence if ^+i,o(£o, Jo) = 0, the two sides of (62') can be of the same sign if 
and only if p(tQ) - t0 ^ 0. 
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It is clear that the proof will be complete if we show that 

* , - M ( / f t)/Fj+lt0(t,t) è 0 

for all / 7* X i so that 

l im^xi- tj,o(t, t)/Fj+lt0(t, t) ^ 0 and 

\lmt^l+tJ>0(t,t)/Fj+1<0(t,t) ^ 0. 

Let us first consider the case / G (£/, \ j ) . In view of (60) we have 

\fr?-i,o(X 0 t - l 4,jf0(t, t) 
j Fj+i,0(t,t) 

X + 1 
2 

1 ~dxj I x - 1 / 
7 F m , o ( U ) 

and we can apply Lemma 5 to conclude that this latter quantity is 
negative. We are thus left with the case t 6 (\i, pi). 

Let us first show that for all t £ (Xz, pi) 

(63) (02(O - 1) F1>0(/3(0, 0 / W O , t) è 0. 

If 0(0 = 1 this is a consequence of the fact that all the roots of F(x, t) lie 
in [ - 1 , 1]. If 0(0 ^ 1 we show that 

^,o(0(O,O/^(0(O,O ^ o 

for every n if X = ju and for n §; 3(X + M)/2 if X ^ /X. We recall that the 
situation /3(t) ^ 1 occurs only when X is odd and that in this case we 
have the inequalities 

•1 ^ xi(t) < yi{t) < . . . < s,,(B)_i(*) < 5(0 < /3(<) ^ 1. 

Writing 

. H I 
Fi,o(P(t),t)  

F(p(t),t) ( 3 ( < ) - l 

.X + ! 

/> (0(0.0 

+ 

+ 

/* + ! 
2 

M+ 1 

1+ 2 
A ( = 1 

0(0 - *«(0 ' 

0(0 - 1 0(0 + 1 
j /(n)-2 1 

+ 
1 

^ i 0(0 - yn(t) 0(0 - 5(0 ' 

we see that 

F M (0(O, 0 / ^ ( 0 ( 0 , 0 ^ ^i,o(0(O, 0 / ^ ( 0 ( 0 , 0-
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From (61) we readily obtain 

Pi,om),t)/P(M),t) = ( ( M - X)/2) 
- ((M + X)/2)/3(0)/(l - / 3 2 ( 0 ) 

and so (63) will be proved if we show that /?(/) ^ (JU — X)/(pt + X). 
Using the fact that 

and X ^ 1 we can easily check that this inequality holds for n ^ 3 (X + n)/2 
if X 9^ (A. If X = n then it obviously holds for all n. 

Now we will prove that 

^ _ i , o ( U ) / ^ + i , o ( U ) â 0, 

giving the details only in the case when X is odd and /* is even. Since 

Kn)-1 

/?(«, o = ( - D ( X + I ) / 2 ( X - i)<x+i) /2(x + D ( " + 2 ) / 2 n (* - *«(0) 

the functions Fito(x, t), \f/(x, t) must be of the form 

p(n)-l 

Fh0(x,t) = (-l) (X+1) /2«(x - l)(X-1)/2(x + 1)*/2 J ! (* - * i ( 0 ) 
1=1 

Hx,t) = (-D^'VCO - D ^ f ^ f (* - D(X-1)/2 

X (x+iyl2*n (x- Ym{t)) 
m=\ 

where X i(t), Ym(t) belong to the interval [ — 1, 1] and 

^•« • ' ) -^ - ' )^ )?o '^ -^ -
We observe that the inequality f$(t) ^ Xv{n)-\(t) is always true (if 

P(t) ^ 1 it is evident whereas if @(t) g 1 it is a consequence of 
F M ( / 3 ( / ) , / ) / W 0 , 0 g O ) . 

Since 

(/32(0 - l ) F i , o 0 8 ( O , O / W O , ' ) ^ 0 

the dominating coefficients of ^(x, /) and Fix, t) are of opposite signs 
whereas at each of the points Xi(t), 

sign iK*j( /) , / ) = signF(Xl(t),t). 

Consequently, for x > 1 we have 

sign ^(x, /) = —sign F(x, t) 
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while 

sign ^(X„(w)_i(/), t) = sign F(Xv{n)-X(t), t). 

But the number of sign changes at + 1 is one less for \//(x, t) than for 
F(x, t) so that yf/(xt t) vanishes in (X„(n)_i(/), 1) an even number of times. 
On the other hand for x < — 1, 

sign \j/(x, t) — sign F(x, t) 

while 

sign ^(Xi(/) , t) = sign F&iit), t); 

so, repeating the previous argument, we can conclude that \//(x, t) 
vanishes in ( — \,X\(t)) an odd number of times. 

Moreover, \p{x, t) vanishes at least once in each of the intervals 
(Xlit), Xt+i(t)). These remarks lead to the inequalities 

- 1 S Y1(t) S X,{t) S Y,{t) S • • S Yv{n)^{t) 
S XHn)-!(t) g + 1 . 

Using again the fact that Fjto(t, t) = 0 we can apply Lemma 6 to obtain 

1^-1,o(*, t)/Fj+1,o(U) g 0 

which completes the proof. 

In conclusion we verify that (5) is valid for j ^ 3. For this we apply 
Theorem 2 with Pn(x) = (1 — x2)Tn-i(x)/(n — 1). Using the well 
known differential equation for Tn_i we obtain 

Pn
u){x) = - ^—{xT'Jlrix) + T£?(x)((j - 1) + („ - 1)2)|. 

But maX[_i i+i]|rK
0,(x)| = T„U)(1) is an increasing function of n so that 

max[_, i+1] | iV»(*)| = |P„<»(1)I 

is also an increasing function of n. 
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