
Canad. Math. Bull. Vol. 46 (4), 2003 pp. 546–558

L-Series of Certain Elliptic Surfaces

Ling Long

Abstract. In this paper, we study the modularity of certain elliptic surfaces by determining their L-

series through their monodromy groups.

1 Introduction

In this article, we will make an attempt to understand the modularity of elliptic
surfaces. This problem is related to many interesting areas of mathematics such as
number theory, the theory of elliptic modular surfaces, and the theory of modular

forms. In this paper, we will present some preliminary results toward understanding
why certain elliptic surfaces to be modular, and why some character sum calculations
yield satisfactory results to this end. Basic standard results and notations in the lit-
erature which are relevant to our discussion are reviewed in the Sections 2 and 3.

Then we use three explicit examples of elliptic surfaces illustrating our approach in
establishing their modularity.

Let V be an irreducible smooth projective variety of dimension d over Q . Let p

be a prime, and V̄ p be the reduction of V mod p. Suppose V̄ p ⊗ F̄p is irreducible
and smooth over F̄p . Let Nn be the number of points of V̄ p over the degree n field
extension of Fp.

The local Zeta function ZV̄ p
(T) attached to V̄ p is defined as

(1) ZV̄ p
(T) = exp

(

∑

n≥1

Nn
Tn

n

)

,

where T is a variable. By the weak Weil conjecture, proved by B. Dwork, ZV̄ p
(T) is a

rational function of T [Dwo60]. We now define the L-series of V over Q as

L(V, s) “=”
∏

p

ZV̄ p
(p−s)−1,

where the symbol “=” indicates equality up to finitely many factors related to those

p’s such that V̄ p is singular. For the full Weil conjecture and basic knowledge of
modular forms, refer to the book by W. C. Li [Li96, Chapter 2].

Here, by modularity of a variety V defined over Q , we mean the partial L-series of

V defined in Section 3, up to p-factors, the product of the Dirichlet series of one or
more Hecke eigenforms. In terms of local Zeta function, this means that the number
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#(V̄ p/Fp) of rational points of V̄ p over Fp, is related to the Euler p-factor of some
Heck eigenforms.

Establishing the modularity of a given variety over Q is, in general, a difficult
question.

In the dimension one case, the proof of the Shimura-Taniyama-Weil conjecture
for semi-stable elliptic curves over Q by Wiles and others is one of the most celebrated

results in the last century. It asserts that an elliptic curve E defined over Q with
conductor N is modular, that is, there exists a modular parameterization from the
modular curve X0(N) to E, and the modularity of the modular curve is given by the
Eichler-Shimura theory [Shi71, Chapter 7].

However, for higher dimensional varieties, there are only sporadic results. Indeed,
for 2 dimensional varieties (i.e., surfaces), the modularity can be realized only in very
few special cases so far, for example, singular K3 surfaces by T. Shioda and H. Inose
[SI77], and elliptic modular surfaces by T. Shioda [Shi72]. There are several differ-

ent approaches for establishing the modularity of certain surfaces. One approach,
employed by S. Ahlgren, and K. Ono [AO00] is to use explicit character sums and
the trace formulae. Another approach is based on Serre’s mod 2 Galois representa-
tion criterion formulated by Livné [Liv87]. This method was applied by H. Verrill

to compute the L-series of several Calabi-Yau varieties constructed using toric vari-
eties [Ver00]. For a survey article in modularity of Calabi-Yau manifolds, refer to the
paper by N. Yui [Yui01].

Our approach is to establish the modularity of a certain surface through studying

its monodromy group. Given an elliptic surface, a theorem of M. Nori [Nor85] gives a
criterion for checking whether it is an elliptic modular surface or not. If it is modular,
we can study its homological invariant (its monodromy group) by way of its special
fibres and the group of global sections. In our cases, we can determine explicitly the

monodromy groups up to conjugacy classes. Hence by the theory of elliptic modular
surfaces [Shi72], the L-series of these surfaces are related to the weight 3 newforms
of the monodromy groups. From this perspective, we also obtain some insight for
certain character sum calculations which will be discussed in the Sections 4 and 5.

2 SL2(Z), PSL2(Z) and Their Subgroups

Let SL2(Z) denote the group of all 2 × 2 integral matrices of determinant 1. The

projective special linear group PSL2(Z) is defined as the quotient group

SL2(Z)/ ± I.

The group SL2(Z) acts naturally on the Poincaré upper-half plane H = {τ ∈ C |
Im τ > 0} by fractional linear transformations. Explicitly, for any γ =

(

a b
c d

)

∈

SL2(Z) and τ ∈ H, γ maps τ to γ · τ =
aτ+b
cτ+d

. Since γ · τ = −γ · τ , the action of

SL2(Z) on H induces an action of PSL2(Z) on H.

Given an integer N > 0, the level N principal congruence subgroup Γ(N) of SL2(Z)
is defined as

Γ(N) = {γ ∈ SL2(Z) | γ ≡ I mod N}.
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A subgroup Γ of SL2(Z) is called a congruence subgroup if it contains Γ(N) for some
integer N > 0. Similarly, we can define the level N principal congruence subgroup

and congruence subgroups of PSL2(Z).
Given a finite index subgroup Γ of PSL2(Z) or SL2(Z), Γ acts freely on H provided

−I /∈ Γ. The orbit space H/Γ is a Riemann surface of complex dimension 1. The sur-
face H/Γ can be compactified by adding finitely many points, namely, the equivalent

classes of Γ acting on Q ∪ {∞}, and they are called the cusps of Γ. The compactified
surface CΓ is called the modular curve associated to Γ. The singularities of the com-
pactified surfaces are the cusps and the elliptic points, which are the fixed points of
the torsion elements of Γ.

Given a cusp v of Γ ⊂ SL2(Z), the stabilizer of v is a cyclic subgroup of Γ generated
by a matrix N conjugate to ±

(

1 b
0 1

)

for some positive integer b. The integer b is called
the cusp width of v. The cusp v is called the first kind if the matrix N is conjugate to
(

1 b
0 1

)

, and is called the second kind otherwise.

A finite index subgroup Γ of PSL2(Z) is said to be torsion-free if it does not contain
any torsion elements and Γ is said to be genus zero if the associated modular curve CΓ

is of genus zero. A. Sebbar has classified all the torsion-free genus zero congruence
subgroups of PSL2(Z) [Seb01].

3 Basics of Elliptic Surfaces

Let C be a curve defined over an algebraically closed field K. An elliptic surface X over

C is defined as a two dimensional variety with a morphism π : X → C and a finite
collection of points Σ on C such that if t /∈ Σ then the fibre Xt = π−1(t) is a smooth
curve of genus 1. If t ∈ Σ, Xt is called a special fibre. A global section σ is a morphism
σ : C → X such that π ◦ σ is the identity map on C . Given an elliptic surface X,

there are two important invariants associated to π : X → C [Kod63]. One is called
the functional invariant, which is a rational function and we will also refer it as the
j-function of the elliptic surface π : X → C ; another one is called the homological

invariant, which is a sheaf over C , locally constant over C − Σ with general stalk

Z ⊕ Z, determined by the monodromy representation ρ : π1(C − Σ) → SL2(Z).
Subsequently we will be considering elliptic surfaces defined over number fields,

or finite fields. We will say an elliptic surface π : X → C is defined over a number
field or a finite field K if the curve C , the surface X, and the map π : X → C are all

defined over K. In these cases, we will take models of elliptic surfaces in question
defined over K. However, in this section we will assume that the elliptic surfaces are
defined over algebraically closed fields unless we specify the field of definition.

Let π1 : X1 → C and π2 : X2 → C be two elliptic surfaces over the same curve

C . We say that they are birationally equivalent as elliptic surfaces over C if there is a
birational map: f : X1 → X2 with π1 = π2 ◦ f .

By the work of K. Kodaira, we will assume that the surfaces are minimal which
means they do not contain any rational curves of self-intersection number−1. Some-

times, we will simply refer to the elliptic surface π : X → C as X without specifying
the elliptic fibration map π and the base curve C .

Given an elliptic surface X, its minimal compact smooth model X is unique up to
isomorphism, which is called the Néron model of X. Any two elliptic surfaces which
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are birationally equivalent as elliptic surfaces have the same Néron models. K. Ko-
daira [Kod63] and A. Néron [Nér64] independently classified all the possible types

of the special fibres of minimal compact smooth elliptic surfaces. In this paper, we
will use Kodaira’s symbols of special fibres [Kod63]. J. Tate developed an algorithm
for the determination of the special fibres of the Néron model of an elliptic surface
given by a Weierstrass equation [Tat75].

The Néron-Severi group of an elliptic surface X, denoted by NS(X), is the group of
divisors on X modulo algebraic equivalence. It lies in the second cohomology group
H2(X, Z) of X, and its rank, denoted by ρ(X), is called the Picard number of X. An
elliptic surface can also be viewed as an elliptic curve defined over the functional field

of its base curve C . When the j-function of X is not a constant, by the Mordell-Weil
Theorem [Lan62, P.71], the global sections of the elliptic surface with respect to the
fixed elliptic fibration π form a finitely generated abelian group. This group is called
the Mordell-Weil group of X, denoted by MW (X). The rank of MW (X) is called the

Mordell-Weil rank of X, denoted by r(X) in the sequel. T. Shioda explained that the
Néron-Severi group of a given elliptic surface π : X → C is generated by its Mordell-
Weil group and by the irreducible components of the fibres [Shi72]. He obtained the
Shioda-Tate formula:

(2) ρ(X) = 2 + r +
∑

t∈Σ

(mt − 1),

where mt is the number of irreducible components of the fibre Xt = π−1(t) for t ∈ Σ.

Using Kodaira’s notation, if Xt is of the type Ib, then mt = b, and if Xt is of the type
I∗b , mt = 5 + b.

Now we consider some numerical invariants for a minimal compact smooth ellip-
tic surface X. We will always assume that the j-function of X is not a constant. Let g

denote the genus of the base curve C , pg the geometric genus of X, and c2 the Euler
characteristic of X. K. Kodaira [Kod63] gave a formula to calculate c2 as follows:

(3)

c2 = 12(pg − g + 1)

= d + 6
∑

b≥0

v(I∗b ) + 2v(II) + 10v(II∗) + 3v(III)

+ 9v(III∗) + 4v(IV ) + 8v(IV ∗),

where d is the degree of the j-function, and v(·) represents the number of special
fibres of X of the type indicated in (·).

Now we consider the elliptic surfaces X given by Weierstrass equations

(4) y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x + a6(t), ai ∈ K[t],

where K is a perfect field of characteristic different from 2 and 3. By the discussion in
[SB85, part II], there exists a minimal compact smooth Néron model X of X defined
over K. In particular, if K = Q , we can investigate the local Zeta function Z

X̄p
(T) for

every prime p. We are mainly interested in the factor P2,p(X, T) ∈ Z[T] of Z
X̄p

(T),
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which is the characteristic polynomial of the action of Frobenius on H2
crys (X̄/Zp). By

a Theorem of Shioda [Shi72, Theorem 1.1], we know that, given an elliptic fibration

on X/F̄p , the algebraic equivalence classes of the general fibre, of the zero section
and of the components of the singular fibres which do not meet the zero section, are
linearly independent elements in the Néron-Severi group NS(X/F̄p). This gives a
subspace V of NS(X/F̄p) ⊗ Q . The dimension of this subspace is given by

(5) dim V = 2 +
∑

t∈Σ

(mt − 1),

where mt is the number of irreducible components of the special fibre Xt as before.
We note that dimV is independent of the characteristic p. Since NS(X/F̄p) ⊗ Q is a
subspace of the crystalline cohomology group H2

crys (X̄/Zp) of X̄p, so is V . The action
of the Frobenius on this space V is p times the map induced by the endomorphism of

the space X which raises coordinates to their p-th power. Let P2,2,p(X, T) be the char-
acteristic polynomial of the Frobenius on V . Then P2,2,p(X, T) ∈ Z[T]. Moreover,
P2,p(X, T) can be decomposed as

P2,p(X, T) = P2,2,p(X, T)P2,1,p(X, T),

for some P2,1,p(X, T) ∈ Z[T] of degree b2(X̄p ⊗ F̄p) − dim V . Here b2(X̄p ⊗ F̄p) is

the second Betti number of X̄p ⊗ F̄p .
Given an elliptic surface X in the Weierstrass form with ai[t] ∈ Z[t], in this paper,

we define the partial L-series of its Néron model X over Q as

(6) L(X, s) “=”
∏

p prime

P2,1,p(X, p−s)−1.

Later, we will determine the partial L-series L(X, s) defined by (6) for elliptic sur-
faces X over Q , rather than the full Hasse-Weil L-series of X.

In [Shi72], T. Shioda defined the elliptic modular surfaces associated to finite in-

dex subgroups of SL2(Z) which do not contain −I. An elliptic modular surface XΓ

associated to such a subgroup Γ can be considered as a universal elliptic curve over
the modular curve associated to Γ. For a torsion-free finite index subgroup Γ of
SL2(Z), the Euler characteristic of XΓ is given by [Shi72, formula (4.10)]

(7) c2 = µ + 6t2,

where µ = [SL2(Z) : Γ∪−Γ], and t2 is the number of cusps of Γ of the second kind.
The special fibres of such a surface XΓ are either of the type Ib for cusps with cusp
width b of the first kind or of the type I∗b for cusp with cusp width b of the second
kind. Let S3(Γ) denote the space of weight 3 cusp forms of Γ. Then

(8) dim S3(Γ) = pg(XΓ).

Proposition 3.1 ([Shi72]) The Hodge decomposition of the second cohomology of the

surface XΓ is given as follows:

H2(XΓ, C) = S3(Γ) ⊕ S̄3(Γ) ⊕
(

NS(XΓ) ⊗ C
)

.

https://doi.org/10.4153/CMB-2003-052-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-052-2


L-Series of Certain Elliptic Surfaces 551

Furthermore, if XΓ satisfies an algebraic equation with coefficients in Z, then by
the result of P. Deligne [Del73], the partial L-series of XΓ, defined by the formula (6)

is given, up to a finite number of p factors, by

(9) L(XΓ, s) =

∏

i

D( fi , s).

Here fi ’s are normalized cuspidal eigenforms of Γ which form a basis of the space

S3(Γ) and D( fi , s) is the associated Dirichlet series of fi . Given a normalized cuspidal

eigenform f =
∑

n≥1 anqn
d, qd = e

2πiz
d , we define the associated Dirichlet series as

D( f , s) =

∑

n≥1

ann−s.

Theorem 3.2 (Nori [Nor85]) Let X be a complex elliptic surface with non-constant

j-function such that X which admits a global section. Suppose X satisfies all the following

conditions:

1. it has no singular fibres of the type II∗ or III∗;

2. the Hodge number h1,1 of X is equal to the Picard number ρ(X);

3. the Mordell-Weil rank r(X) = 0.

Then X is an elliptic modular surface associated to a finite index subgroup of SL2(Z).

4 The Legendre Elliptic Surface and Its Twist

We first consider the Legendre family of elliptic curves given by the equation y2
=

x(x − 1)(x − t), which gives rise to an elliptic surface. Consider the smooth minimal
model X1 of this surface.

Theorem 4.1 The Néron model X1 of the Legendre family y2
= x(x − 1)(x − t) is an

elliptic modular surface associated to an index 12 subgroup Γ1 of SL2(Z). The group Γ1

is conjugate by an element in SL2(Z) to

{

γ ∈ SL2(Z)

∣

∣

∣

∣

γ ≡

(

1 0

0 1

)

,

(

−1 2

0 −1

)

,

(

1 0

2 1

)

, or

(

−1 2

2 −1

)

mod 4

}

.

The partial L-series of X1 defined in (6) is 1.

Proof By the Tate algorithm [Tat75], we know that the special fibres of X1 are of
the types I2, I2, I∗2 . By Kodaira’s formula (3), c2(X1) = 12. This means X1 a rational

surface with geometric genus 0, and the Hodge number h1,1(X) = dim H1,1(X) = 10.
By the Shioda-Tate formula (2),

ρ(X1) = 2 + (2 − 1) + (2 − 1) + (5 + 2 − 1) + r(X1) = 10 + r(X1).

Since for any compact complex elliptic surface X over a field of characteristic 0,
ρ(X) ≤ h1,1(X), r(X1) = 0. By M. Nori’s Theorem 3.2, X1 is elliptic modular. Its
monodromy group Γ1 is a finite index subgroup of SL2(Z).
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Now we describe Γ1 explicitly. The group Γ1 is torsion-free (since it only has
special fibres of the types Ib and I∗b ). It has three cusps, two of them with cusp width 2

of the first kind, and another one with cusp width 2 of the second kind. By the
formula (7),

12 = 2µ + 6.

Since −I /∈ Γ1,
[SL2(Z) : Γ1] = 2µ = 12.

Furthermore, the Mordell-Weil group of X1 is isomorphic to Z/2Z × Z/2Z since X1

has 4 torsion sections and the X1 has a special fibre of the type I∗2 . This implies that
for any γ ∈ Γ1, and any m, n ∈ Z, (γ − I)( m

2
, n

2
)T ∈ Z2. Hence Γ1 ⊂ Γ(2) of index 2.

Now pick any three rational points as the cusps of Γ1. In this case different choices

of cusps determine different monodromy groups which are conjugate to each other
in SL2(Z). Suppose that the three cusps we pick are ∞, 0, 1 and the stabilizer of ∞ is
generated by

(

−1 −2
0 −1

)

, and the stabilizers of 0, 1 are generated by elements conjugate

to
(

1 2
0 1

)

. The above information and assumption determine that the monodromy

group Γ1 is conjugate by an element in SL2(Z) to the group:

{

γ ∈ SL2(Z)

∣

∣

∣

∣

γ ≡

(

1 0

0 1

)

,

(

−1 2

0 −1

)

,

(

1 0

2 1

)

, or

(

−1 2

2 −1

)

mod 4

}

.

Since the surface X1 is a rational surface, and the space of weight 3 cusp forms of
Γ1 is empty. Hence by the formula (9) the partial L-series of X1 is trivial.

In the Arizona winter school 2000, part of the project of N. Katz’s group was to
work on the following problem. Prove that

Theorem 4.2 For any odd prime p

∑

t,x∈Fp

(

t(t − 1)x(x − 1)(x − t)

p

)

=

{

0 if p ≡ 3 mod 4;

2(b2 − a2) if p ≡ 1 mod 4,

where integers a and b are given by p = a2 + b2 and a ≡ 0 mod 2.

One proof of this result can be found in [Eva81].
To get some geometric insight to Theorem 4.2, we consider the elliptic surface X2,

which is the Legendre family twisted by a factor t(t − 1):

π : X2 → C − Σ, {(x, y, t) | y2
= t(t − 1)x(x − 1)(x − t)} 7→ t,

where Σ = {0, 1,∞}. Let X2 be the Néron model of X2.

Theorem 4.3 The Néron model X2 of the surface y2
= t(t − 1)x(x − 1)(x − t) is a

K3 surface. It is an elliptic modular surface associated to an index 12 subgroup Γ2 of

SL2(Z), which is conjugate by an element in SL2(Z) to the group

{

γ ∈ SL2(Z)

∣

∣

∣

∣

γ ≡

(

1 0

0 1

)

,

(

−1 2

0 −1

)

,

(

−1 0

2 −1

)

, or

(

1 2

2 1

)

mod 4

}

.

https://doi.org/10.4153/CMB-2003-052-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-052-2


L-Series of Certain Elliptic Surfaces 553

The L-series of the surface X2 is given by

(10) L(X2, s) = D( f , s),

where

f (z) = q2

∏

n≥1

(

1 − (q2)4n
) 6

, q2 = e
2πiz

2 ,

is the weight 3 cusp form of Γ2 with integral coefficients.

Proof The surface y2
= t(t − 1)x(x − 1)(x − t) is birationally equivalent as an

elliptic surface to the surface y2
= x

(

x − t(t − 1)
)(

x − t2(t − 1)
)

by (x, y) 7→
(

xt(t − 1), yt(t − 1)
)

. The latter surface is a Weierstrass equation. The smooth

minimal models are isomorphic, denoted by X2 as above. By the Tate algorithm, X2

have 3 special fibres of the types I∗2 , I∗2 , I∗2 respectively. By Kodaira’s formula (3),
c2(X2) = 24. Hence X2 is a K3 surface and its geometric genus is 1. By the Shioda-
Tate formula (2),

ρ(X2) = 2 + (5 + 2 − 1) + (5 + 2 − 1) + (5 + 2 − 1) + r(X2) = 20 + r(X2).

Since ρ(X2) ≤ h1,1(X2) = 20, we have r(X2) = 0. By Nori’s theorem, X2 is an elliptic
modular surface, and the associated subgroup of SL2(Z) is denoted by Γ2.

To determine Γ2, we first note by the formula that (7)

24 = µ + 6 · 3.

Hence
[SL2(Z) : Γ2] = 2µ = 12.

Since MW (X2) ∼= Z/2Z × Z/2Z, we have Γ2 ⊂ Γ(2) of index 2. Then by picking ∞,
0, 1 to be the three cusps of Γ2 whose stabilizers all generated by elements conjugate
to
(

−1 −2
0 −1

)

, we obtain that the group Γ2 is uniquely determined up to conjugacy in

SL2(Z). It has a representation as

{

γ ∈ SL2(Z)

∣

∣

∣

∣

γ ≡

(

1 0
0 1

)

,

(

−1 2
0 −1

)

,

(

−1 0
2 −1

)

, or

(

1 2
2 1

)

mod 4

}

.

By the formula (8),
dim S3(Γ2) = pg(Γ2) = 1.

Note that Γ(4) ⊂ Γ2, hence S3(Γ2) ⊂ S3

(

Γ(4)
)

. Since pg

(

Γ(4)
)

= 1, it has a
generator given by

g(z) = q4

∏

n≥1

(

1 − (q4)4n
) 6

,

where q4 = e
2πi
4 is the uniformizer of the modular curve associated to Γ(4) at the

cusp ∞. Hence S3(Γ2) is generated by

q2

∏

n≥1

(

1 − (q2)4n
) 6

=

∑

n≥1

a4n+1(q1/2)4n+1,
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where q2 = e
2πi
2 is the uniformizer of the modular curve associated to the group Γ2

at the cusp ∞ and a4n+1 are the integers appeared in Theorem 4.2.

Since X2 is the Néron model for X2 defined by an equation with coefficients in
Z and X2 is elliptic modular, by the result of (9), its partial L-series is of the form

of (10).

We return to consider how Theorem 4.2 is related to Theorem 4.3. By the defini-

tion of L-series in (6), the factor P2,1,p(X2, p−s)−1 of the local Zeta function ZX̄p
(p−s)

is related to the local Euler p-factor of f , which can be written as (1−ap p−s+p2−s)−1.
Hence ap is related to the coefficients of P2,1,p(T). According to the definition of local
Zeta functions (1), we need to consider the number of rational points of X2 over Fp .

For an odd prime p, this number is equal to #(X2/Fp), the number of rational points
of X2 over Fp, plus the contributions from the compactified fibres over Σ. We note
that the calculation for #(X2/Fp) is essential for finding the local Zeta function of Y .

We have

#(X2/Fp) =

∑

x,t∈Fp ,t 6=0,1

(

(

t(t − 1)x(x − 1)(x − t)

p

)

+ 1

)

(11)

=

∑

x,t∈Fp

(

t(t − 1)x(x − 1)(x − t)

p

)

+ p(p − 2),(12)

where ( ·
p

) is the Legendre symbol. Hence the value of the character sum

Sp =

∑

x,t∈Fp

(

t(t − 1)x(x − 1)(x − t)

p

)

is related to the p-th coefficient of f . It is easy to see that Sp = 0 when p ≡ 3 mod 4.

Indeed for any odd prime p ≡ 1 mod 4,

∑

x,t∈Fp

(

t(t − 1)x(x − 1)(x − t)

p

)

= ap = 2(b2 − a2),

where p = a2 + b2 and a ≡ 0 mod 2.

5 The Elliptic Surface Related to Generalized Congruence Numbers

Another elliptic surface which is of similar flavor and related to the above two surfaces

is give by

(13) y2
= x(x − 1/t)(x + t).

This surface arises from the study of a generalized congruent number problem by
Long [Lon03].
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Let us briefly discuss how to obtain this surface. Let a, b, c be the lengths of three
sides of a triangle with area 1 and suppose that the angle α between a and b satisfies

sin(α) =
2t

t2+1
and cos(α) =

t2−1
t2+1

. Letting x = c2/4 and y = c(a2 − b2)/8, then x and
y satisfy the equation (13).

Theorem 5.1 The Néron model X3 of the elliptic surface

y2
= x(x − 1/t)(x + t)

is a K3 surface. It is an elliptic modular surface associated to a congruence subgroup Γ3

of SL2(Z). Up to conjugation by an element in SL2(Z), Γ3 is given by

Γ3 := γ−1
(

Γ(4) ∪ αΓ(4)
)

γ,

where γ =
(

1 1
0 2

)

and α =
(

−1 −2
0 −1

)

.

The L-series of X3 is given by L(X3, s) = D(g, s), where

g(z) :=
∑

n≥1

an

( 2

n

)

qn
8, q8 = e

2πiz
8

is a weight 3 modular form associated to Γ3, and an are the coefficients of the modular

form f which is defined in Theorem 4.2.

Proof By the Tate algorithm, X3 has 4 special fibres of the types I2, I24, I∗4 , I∗4 respec-
tively. By the formula (2), we obtain that it is a K3 surface with the Picard number
is 20, and the Mordell-Weil rank of X3 is 0. By Nori’s Theorem 3.2, it is an elliptic

modular surface.
To obtain the modular group associated to this surface, we first note that it is

relatively easy to get a torsion-free finite index subgroup Γ
′
3 of SL2(Z) with 4 cusps:

two of them with cusp width 4 of the first kind and another two with cusp width 2

of the second kind. Without loss of generosity, we many assume that 0 and 1 are two
cusps with cusp width 4 of the first kind; ∞ and 1/2 are two cusps with cusp width 2
of the second kind. This group Γ

′
3 is determined as

Γ
′
3 =

{

γ ∈ SL2(Z)

∣

∣

∣

∣

γ ≡

(

1 0
0 1

)

, or

(

−1 −2
0 −1

)

mod 4

}

.

We note that Γ(4) ⊂ Γ
′
3 of index 2, and µ = [SL2(Z) : ±Γ

′
3] = 12. Let XΓ

′

3
the elliptic

modular surface associated to Γ
′
3, by the formula (7), c2(XΓ

′

3
) = 12+2·6 = 24. Hence

dim
(

S3(Γ ′
3)
)

= dim
(

S3

(

Γ(4)
)

)

= 1.

It follows that the normalized new form f ′
= q4

∏

n≥1(1 − qn
4)6 of Γ(4) is induced

from Γ
′
3. In other words S3(Γ ′

3) = 〈 f ′〉.
Now let Γ3 = γ−1

Γ
′
3γ, where γ =

(

1 1
0 2

)

. We can check that Γ(8) ⊂ Γ3 of index
16, and the group Γ3 has 4 cusps: ∞ and 0 with cusp width 4 of the second kind; 1
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and −1 with cusp width 2 of the first kind. This group is determined by X3 up to
conjugation by an element in SL2(Z). Moreover,

dim S3(Γ3) = dim S3(Γ ′
3) = 1,

and S3(Γ3) = 〈 f ′(γz) = f ′( z
2

+ 1
2
)〉, where

f ′
( z

2
+

1

2

)

=

∑

n≥1

a4n+1e
2πi(4n+1)

4
( z

2
+ 1

2
)

= i
∑

8n+1

a8n+1e
2πi(8n+1)

8
z − i

∑

8n+5

a8n+5e
2πi(8n+5)

8
z

= i
∑

4n+1

a4n+1

( 2

4n + 1

)

e
2πi(4n+1)

8
z

= i
∑

n≥1

an

( 2

n

)

e
2πin

8
z

= i
∑

n≥1

an

( 2

n

)

qn
8

= ig(z).

Since X3 is the Néron model of X3 defined by an algebraic equation with integral
coefficients and it is elliptic modular, hence its L-series defined by (9) is

L(X3, s) = L(g, s).

Another method for establishing the last claim of Theorem 5.1 is by a calculation
of the character sum. Consider another surface y2

= xt(xt − 1)(x + t), which is

birationally equivalent as elliptic surfaces to the surface y2
= x(x − 1/t)(x + t) by

sending (x, y) 7→ (x, y/t).

Lemma 5.2 For any odd prime p

∑

t,x∈Fp

(

tx(xt − 1)(x + t)

p

)

=

{

0 if p ≡ 3 mod 4,

( 2
p

)2(b2 − a2) if p ≡ 1 mod 4,

where integers a and b are given by p = a2 + b2 and a ≡ 0 mod 2.

Proof When p ≡ 3 mod 4, we have (−1
p

) = −1. If we replace x by −x and t by −t ,

the product is differed by −1. Hence the sum is 0 by symmetry.

Now we assume p ≡ 1 mod 4. The surface y2
= −itx(tx−1)(x + t) is birationally

equivalent to the surface y2
= xt(x − 1)(t − 1)(x − t) by the following birational

map:

(x, y, t) →

(

−it − 1

xt − 1
,

(x + i)(t − 1)y

(xt − 1)3
,

ix − 1

xt − 1

)

,
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over any field containing i, for example, Fp when p ≡ 1 mod 4.

When p ≡ 5 mod 8, ( 2
p

) = −1, i = 2
p−1

4 in Fp; when p ≡ 1 mod 8, such i is a

square in Fp and ( 2
p

) = 1. In either case, we have ( i
p

) = ( 2
p

).

Hence we have

∑

x,t∈Fp ,xt 6=1

(

tx(xt − 1)(x + t)

p

)

=

( 2

p

)

∑

x,t∈Fp

(

2tx(xt − 1)(x + t)

p

)

=

( 2

p

)

∑

x,t∈Fp

(

−itx(xt − 1)(x + t)

p

)

=

( 2

p

)

∑

x,t∈Fp

(

t(t − 1)x(x − 1)(x − t)

p

)

.

This lemma follows from Theorem 4.2.

Remark 5.3 The projections of Γ1, Γ2 and Γ
′
3 in PSL2(Z) are all the same, i.e.

±Γ1/ ± I = ±Γ2/ ± I = ±Γ
′
3/ ± I = ±Γ(2)/ ± I.

This projection to PSL2(Z) is in the list of Sebbar’s classification of genus zero, torsion-

free congruence subgroup of PSL2(Z).
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Hautes Études Sci. Publ. Math. 21(1964), 128.
[Nor85] M. Nori, On certain elliptic surfaces with maximal Picard number. Topology (2) 24(1985),

175–186.
[SB85] J. Stienstra and F. Beukers, On the Picard-Fuchs equation and the formal Brauer group of

certain elliptic K3-surfaces. Math. Ann. (2) 271(1985), 269–304.
[Seb01] A. Sebbar, Classification of torsion-free genus zero congruence groups. Proc. Amer. Math. Soc.

(9) 129(2001), 2517–2527 (electronic).
[Shi71] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Publications of

the Math. Society of Japan 11, Iwanami Shoten, Publishers, Tokyo, 1971, Kanô Memorial
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