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Abstract

Let N ∗ be a Hilbert inductive limit and X a Banach space. In this paper, we obtain a necessary and
sufficient condition for an analytic mapping 9 : N ∗ 7→ X to have a factorization of the form 9 = T ◦ E ,
where E is the exponential mapping on N ∗ and T : 0(N ∗) 7→ X is a continuous linear operator, where
0(N ∗) denotes the Boson Fock space over N ∗. To prove this result, we establish some kernel theorems
for multilinear mappings defined on multifold Cartesian products of a Hilbert space and valued in a
Banach space, which are of interest in their own right. We also apply the above factorization result to
white noise theory and get a characterization theorem for white noise testing functionals.
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1. Introduction

By a Hilbert inductive limit we mean the inductive limit of a family of Hilbert spaces
satisfying certain conditions, which belongs to the category of local convex topological
vector spaces. Hilbert inductive limits play a crucial role in white noise theory. For
example, the domain of white noise testing functionals is exactly a Hilbert inductive
limit, and the space of white noise generalized functionals also forms a Hilbert
inductive limit. White noise theory is essentially an infinite-dimensional analogue
of Schwartz generalized function theory, which was initiated by Hida in 1975 and has
now been considerably developed and successfully applied to many research fields,
including stochastic analysis and quantum physics (see, for example, [1–4]).

Let N ∗ be a Hilbert inductive limit and X a Banach space. In this paper we are
interested in analytic mappings defined on N ∗ and valued in X . More precisely, we at-
tempt to find necessary and sufficient conditions for an analytic mapping 9 : N ∗ 7→ X
to have a factorization of the form 9 = T ◦ E , where E is the exponential mapping on
N ∗ and T : 0(N ∗) 7→ X is a continuous linear operator, where 0(N ∗) is the Boson
Fock space over N ∗ (see Section 3 for the definition).
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Our motivation for this study comes from a problem in white noise theory.
Let (E)⊂ (L2)⊂ (E)∗ be the classical white noise analysis framework over a real
Gel’fand triple E ⊂H⊂ E∗. Elements of (E) are known as white noise testing
functionals, while elements of (E)∗ are known as white noise generalized functionals
(see, for example, [2, 3]). It is known that the complexification E∗c of E∗ is a Hilbert
inductive limit. Through the Wiener–Itô–Segal isomorphism, we can identify (E)∗

with 0(E∗c ), the Boson Fock space over E∗c . Hence each ϕ ∈ (E) can be viewed as a
C-valued continuous linear functional on 0(E∗c ) and the composition ϕ ◦ E then makes
sense as a C-valued functional on E∗c , where E is the exponential mapping on E∗c .
One natural problem is to find necessary and sufficient conditions for a functional
G : E∗c 7→ C to have a factorization of the form G = ϕ ◦ E , with ϕ being a certain
white noise testing functional. This problem is clearly a very special case of what we
study in the present paper.

The paper is organized as follows. In Section 2 we establish some kernel
theorems for multilinear mappings defined on multifold Cartesian products of a Hilbert
space and valued in a Banach space, which will be used to prove our main results. In
Section 3, we state and prove our main results. We first introduce notions and notation
concerning a Hilbert inductive limit. Then we prove our main theorems, which provide
a necessary and sufficient condition for an analytic mapping 9 : N ∗ 7→ X to have a
factorization of the form 9 = T ◦ E , with T : 0(N ∗) 7→ X being a continuous linear
operator. In the last section, we apply our main results to white noise theory and get a
characterization theorem for white noise testing functionals.

2. Kernel theorems for B-valued multilinear mappings

In this section we prove some kernel theorems for multilinear mappings defined on
multifold Cartesian products of a Hilbert space and valued in a Banach space. These
kernel theorems will be used to prove our main theorems.

Throughout this section, K denotes either the real numbers R or the complex
numbers C.

Let H be a separable Hilbert space over K with inner product 〈·, ·〉 and norm | · |.
Let X be a Banach space over K with norm ‖ · ‖X . We denote by 〈·, ·〉X∗×X the
canonical bilinear form on X∗ × X , where X∗ is the dual of X .

Let n ≥ 1 and M : Hn
7→ X an n-linear mapping. M is called bounded if ‖M‖<

∞, where ‖M‖ is defined by

‖M‖ = sup{‖M(h1, h2, . . . , hn)‖X ||h1| ≤ 1, |h2| ≤ 1, . . . , |hn| ≤ 1,

(h1, h2, . . . , hn) ∈ Hn
}.

In that case, ‖M‖ is called the norm of M .

DEFINITION 2.1. Let n ≥ 1. A bounded n-linear mapping M : Hn
7→ X is said to be

strongly bounded if there exists an orthonormal basis {ek}k≥1 of H such that

‖M‖2s ≡ sup
‖g‖=1,g∈X∗

∑
j1, j2,..., jn

|〈g, M(e j1, e j2, . . . , e jn )〉X∗×X |
2 <∞ (2.1)

where
∑

j1, j2,..., jn ≡
∑
∞

j1, j2,..., jn=1. In that case, ‖M‖s is called the strong norm of M .
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As is shown below, ‖M‖s is actually independent of the choice of the orthonormal
basis {ek}k≥1.

Let H⊗n be the n-fold Hilbert tensor product of H . By convention, the inner
product and norm of H⊗n are still denoted by 〈·, ·〉 and | · |, respectively.

THEOREM 2.2. Let n ≥ 1. If M : Hn
7→ X is a strongly bounded n-linear mapping,

then there exists a unique bounded linear operator TM : H⊗n
7→ X such that

M(h1, h2, . . . , hn)= TM (h1 ⊗ h2 ⊗ · · · ⊗ hn), (h1, h2, . . . , hn) ∈ Hn, (2.2)

and moreover, ‖TM‖ = ‖M‖s , where ‖TM‖ stands for the usual operator norm.

PROOF. Obviously, TM is unique if it exists. To prove the existence, we define a
mapping M+ : X∗ 7→ (H⊗n)∗ as

M+g =
∑

j1, j2,..., jn

〈g, M(e j1, e j2, . . . , e jn )〉X∗×X R(e j1 ⊗ e j2 ⊗ · · · ⊗ e jn ), g ∈ X∗,

(2.3)
where {ek}k≥1 is an orthonormal basis of H and R : H⊗n

7→ (H⊗n)∗ is the Riesz
mapping. It can be easily verified that M+ : X∗ 7→ (H⊗n)∗ is a bounded linear
operator and

‖M+g‖2
(H⊗n)∗

=

∑
j1, j2,..., jn

|〈g, M(e j1, e j2, . . . , e jn )〉X∗×X |
2, g ∈ X∗, (2.4)

which means ‖M+‖ = ‖M‖s .
For (h1, h2, . . . , hn) ∈ Hn and g ∈ X∗, it follows that

〈M+g, h1 ⊗ h2 ⊗ · · · ⊗ hn〉(H⊗n)∗×H⊗n

=

∑
j1, j2,..., jn

〈g, M(e j1, e j2, . . . , e jn )〉X∗×X 〈h1, e j1〉〈h2, e j2〉 · · · 〈hn, e jn 〉

=

∑
j1, j2,..., jn

〈g, M(〈h1, e j1〉e j1, 〈h2, e j2〉e j2, . . . , 〈hn, e jn 〉e jn )〉X∗×X

= 〈g, M(h1, h2, . . . , hn)〉X∗×X .

Now let J1 : H⊗n
7→ (H⊗n)∗∗ and J2 : X 7→ X∗∗ be the natural embedding mappings

and denote by M∗+ the adjoint of M+. Then, for (h1, h2, . . . , hn) ∈ Hn and g ∈ X∗,

〈M∗+ J1(h1 ⊗ h2 ⊗ · · · ⊗ hn), g〉X∗∗×X∗

= 〈J1(h1 ⊗ h2 ⊗ · · · ⊗ hn), M+g〉(H⊗n)∗∗×(H⊗n)∗

= 〈M+g, h1 ⊗ h2 ⊗ · · · ⊗ hn〉(H⊗n)∗×H⊗n

= 〈g, M(h1, h2, . . . , hn)〉X∗×X

= 〈J2 M(h1, h2, . . . , hn), g〉X∗∗×X∗,

which implies that, for each (h1, h2, . . . , hn) ∈ Hn ,

M∗+ J1(h1 ⊗ h2 ⊗ · · · ⊗ hn)= J2 M(h1, h2, . . . , hn) ∈ J2(X). (2.5)
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Since {h1 ⊗ h2 ⊗ · · · ⊗ hn | (h1, h2, . . . , hn) ∈ Hn
} is total in H⊗n and J2(X) is a

closed subspace of X∗∗, it follows that

M∗+ J1(H⊗n)⊂ J2(X).

Hence TM ≡ J−1
2 M∗+ J1 is a bounded linear operator from H⊗n to X . It follows

from (2.5) that

M(h1, h2, . . . , hn)= TM (h1 ⊗ h2 ⊗ · · · ⊗ hn), (h1, h2, . . . , hn) ∈ Hn.

Finally,

‖TM‖ = sup
|u|=1,u∈H⊗n

‖TM u‖X = sup
|u|=1,u∈H⊗n

‖J−1
2 M∗+ J1u‖X

= sup
|u|=1,u∈H⊗n

‖M∗+ J1u‖X∗∗

= sup
‖v‖=1,v∈(H⊗n)∗∗

‖M∗+v‖X∗∗ = ‖M
∗
+‖ = ‖M+‖ = ‖M‖s .

This completes the proof. 2

REMARK 2.3. According to Theorem 2.2, if M : Hn
7→ X is a strongly bounded n-

linear mapping, then ‖M‖ ≤ ‖M‖s .

Let H ⊗̂n be the n-fold symmetric Hilbert tensor product of H , which is a closed
subspace of H⊗n . Note that H ⊗̂0

=K. By convention, H ⊗̂n is endowed with the inner
product n!〈·, ·〉 instead, which is equivalent to the inner product 〈·, ·〉 of H⊗n . Hence
‖ · ‖H ⊗̂n =

√
n!| · |.

THEOREM 2.4. Let n ≥ 1. If M : Hn
7→ X is a strongly bounded symmetric n-linear

mapping, then there exists a unique bounded linear operator L M : H ⊗̂n
7→ X such

that

M(h1, h2, . . . , hn)= L M (h1⊗̂h2⊗̂ · · · ⊗̂hn), (h1, h2, . . . , hn) ∈ Hn, (2.6)

and moreover,

‖L M‖ =
1
√

n!
‖M‖s . (2.7)

PROOF. By Theorem 2.2, there is a unique bounded linear operator TM : H⊗n
7→ X

such that

M(h1, h2, . . . , hn)= TM (h1 ⊗ h2 ⊗ · · · ⊗ hn), (h1, h2, . . . , hn) ∈ Hn.

Put L M = TM |H ⊗̂n . Then it is easy to verify that L M : H ⊗̂n
7→ X is a bounded linear

operator and, moreover, L M satisfies equality (2.6).
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Taking an orthonormal basis {ek}k≥1 of H , we have

‖M‖2s = sup
‖g‖=1,g∈X∗

∑
j1, j2,..., jn

|〈g, M(e j1, e j2, . . . , e jn )〉X∗×X |
2.

It is known that{e⊗r1
i1
⊗̂e⊗r2

i2
⊗̂ · · · ⊗̂e⊗rk

ik
√

r1!r2! · · · rk !

∣∣∣∣ 1≤ i1 < i2 < · · ·< ik, r1 + r2 + · · · + rk = n, 1≤ k ≤ n

}
,

where 1≤ r1, r2, . . . , rk ≤ n, constitutes an orthonormal basis of H ⊗̂n . Hence

‖L M‖
2
= ‖L∗M‖

2
= sup
‖g‖=1,g∈X∗

‖L∗M g‖2
(H ⊗̂n)∗

= sup
‖g‖=1,g∈X∗

∑
4n

∣∣∣∣〈L∗M g,
e⊗r1

i1
⊗̂e⊗r2

i2
⊗̂ · · · ⊗̂e⊗rk

ik
√

r1!r2! · · · rk !

〉
(H ⊗̂n)∗×H ⊗̂n

∣∣∣∣2
= sup
‖g‖=1,g∈X∗

1
n!

∑
j1, j2,..., jn

|〈L∗M g, e j1⊗̂e j2⊗̂ · · · ⊗̂e jn 〉(H ⊗̂n)∗×H ⊗̂n |
2

= sup
‖g‖=1,g∈X∗

1
n!

∑
j1, j2,..., jn

|〈g, L M (e j1⊗̂e j2⊗̂ · · · ⊗̂e jn )〉X∗×X |
2

= sup
‖g‖=1,g∈X∗

1
n!

∑
j1, j2,..., jn

|〈g, M(e j1, e j2, . . . , e jn )〉X∗×X |
2

=
1
n!
‖M‖2s ,

where 4n denotes the relation

1≤ i1 < i2 < · · ·< ik, 1≤ r1, r2, . . . , rk ≤ n,

r1 + r2 + · · · + rk = n, 1≤ k ≤ n. (2.8)

Hence ‖L M‖ = ‖M‖s/
√

n!. 2

Let 0(H) be the Boson Fock space over H , namely

0(H)=K⊕ H ⊕ H ⊗̂2
⊕ · · · ⊕ H ⊗̂n

⊕ · · ·. (2.9)

The inner product and norm of 0(H) are denoted by 〈〈·, ·〉〉 and ‖ · ‖, respectively. It is
well known that F ∈ 0(H) if and only if F =

⊕
∞

n=0 un , where un ∈ H ⊗̂n , n ≥ 0 and∑
∞

n=0 n!|un|
2 <∞. In that case, ‖F‖2 =

∑
∞

n=0 n!|un|
2.

For each h ∈ H , let E (h) denote the exponential vector associated with h, namely

E (h)= 1⊕ h ⊕
1
2!

h⊗2
⊕ · · · ⊕

1
n!

h⊗n
⊕ · · ·, (2.10)

which belongs to 0(H). Then (2.10) defines a mapping E : H 7→ 0(H), which is
known as the exponential mapping on H .
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THEOREM 2.5. Let Ln : H ⊗̂n
7→ X, n ≥ 0, be a sequence of bounded linear operators

satisfying

sup
‖g‖=1,g∈X∗

∞∑
n=0

‖L∗ng‖2
(H ⊗̂n)∗

<∞. (2.11)

Then there exists a bounded linear operator L : 0(H) 7→ X such that

L(F)= (w)

∞∑
n=0

Lnun, F =
∞⊕

n=0

un ∈ 0(H). (2.12)

In particular,

L ◦ E (h)= (w)

∞∑
n=0

1
n!

Lnh⊗n, h ∈ H, (2.13)

where (w) means weak convergence in X.

PROOF. Let c = sup‖g‖=1,g∈X∗
∑
∞

n=0 ‖L
∗
ng‖2

(H ⊗̂n)∗
. For F =

⊕
∞

n=0 un ∈ 0(H), con-

sider the series
∑
∞

n=0 Lnun in X . For each g ∈ X∗,

∞∑
n=0

|〈g, Lnun〉X∗×X | =

∞∑
n=0

|〈Ln
∗g, un〉(H ⊗̂n)∗×H ⊗̂n |

≤

{ ∞∑
n=0

‖Ln
∗g‖2

(H ⊗̂n)∗

}1/2{ ∞∑
n=0

‖un‖
2
H ⊗̂n

}1/2

≤
√

c‖g‖‖F‖,

which implies that
∑
∞

n=0 Lnun is weakly convergent in X . Hence there exists a unique
element FX∗∗ ∈ X∗∗ such that

〈FX∗∗, g〉X∗∗×X∗ =

∞∑
n=0

〈g, Lnun〉X∗×X , g ∈ X∗. (2.14)

Define A(F)= FX∗∗ . Then A : 0(H) 7→ X∗∗ is a linear operator and, moreover,

〈A(F), g〉X∗∗×X∗ =

∞∑
n=0

〈g, Lnun〉X∗×X , F =
∞⊕

n=0

un ∈ 0(H), g ∈ X∗. (2.15)

For F =
⊕
∞

n=0 un ∈ 0(H), by (2.15), we obtain

‖A(F)‖X∗∗ = sup
‖g‖=1,g∈X∗

|〈A(F), g〉X∗∗×X∗ | ≤ sup
‖g‖=1,g∈X∗

∞∑
n=0

|〈g, Lnun〉X∗×X |

= sup
‖g‖=1,g∈X∗

∞∑
n=0

|〈L∗ng, un〉(H ⊗̂n)∗×H ⊗̂n | ≤
√

c ‖F‖.

Therefore A : 0(H) 7→ X∗∗ is a bounded linear operator.
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For each n ≥ 0 and each u ∈ H ⊗̂n , by viewing u as a vector of 0(H) and
using (2.15), we obtain

〈Au, g〉X∗∗×X∗ = 〈g, Lnu〉X∗×X = 〈J Lnu, g〉X∗∗×X∗, g ∈ X∗, (2.16)

where J : X 7→ X∗∗ is the natural embedding mapping. This implies that

A(H ⊗̂n)⊂ J (X), n ≥ 0.

Hence A(0(H))⊂ J (X).
Set L = J−1 A. Then L : 0(H) 7→ X is a bounded linear operator and, moreover,

for F =
⊕
∞

n=0 un ∈ 0(H),

〈g, L(F)〉X∗×X = 〈A(F), g〉X∗∗×X∗ =

∞∑
n=0

〈g, Lnun〉X∗×X , g ∈ X∗,

which means that

L(F)= (w)

∞∑
n=0

Lnun.

This completes the proof. 2

3. Fock factorization of B-valued analytic mappings

Throughout this section, X is a complex Banach space with the norm ‖ · ‖X . We
denote by 〈·, ·〉X∗×X the canonical bilinear form on X∗ × X , where X∗ is the dual
of X .

Let {Hp | p ∈ R+} be a given family of complex separable Hilbert spaces, 〈·, ·〉p
and | · |p denoting the inner product and norm of Hp, respectively. We make the
following fundamental assumptions: for each pair p, q ∈ R+ with p < q , Hp is a
linear subspace of Hq and | · |p is stronger than | · |q on Hp.

DEFINITION 3.1. Let N ∗ =
⋃

p∈R+ Hp and endow N ∗ with the inductive limit
topology corresponding to the natural embeddings of Hps in N ∗. We call N ∗ the
Hilbert inductive limit of the family {Hp | p ∈ R+}.

For p ∈ R+, let 0(Hp) be the Boson Fock space over Hp with inner product 〈〈·, ·〉〉p
and norm ‖ · ‖p. It can be proved that for p, q ∈ R+ with p < q , 0(Hp) is a linear
subspace of 0(Hq) and, moreover, ‖ · ‖p is stronger than ‖ · ‖q on 0(Hp).

DEFINITION 3.2. The Hilbert inductive limit of the family {0(Hp) | p ∈ R+} is called
the Boson Fock space over N ∗ and denoted by 0(N ∗), namely

0(N ∗)=
⋃

p∈R+

0(Hp), (3.1)

and 0(N ∗) is endowed with the inductive limit topology corresponding to the natural
embeddings of 0(Hp)s in 0(N ∗).
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For each h ∈N ∗, let E (h) denote the exponential vector associated with h, namely

E (h)= 1⊕ h ⊕
1
2!

h⊗2
⊕ · · · ⊕

1
n!

h⊗n
⊕ · · ·. (3.2)

Then (3.2) defines a mapping E : N ∗ 7→ 0(N ∗), which is referred to as the exponential
mapping on N ∗. Clearly, for each p ∈ R+, E |Hp = E p, where E p denotes the
exponential mapping on Hp.

The exponential mapping E : N ∗→ 0(N ∗) is continuous and, moreover, the
exponential vector set E (N ∗) is total in 0(N ∗).

DEFINITION 3.3. A mapping 9 : N ∗ 7→ X is said to be an X -valued analytic
mapping on N ∗ if the following conditions are satisfied:

(i) 9 is locally bounded on N ∗;
(ii) for each f , h ∈N ∗ and g ∈ X∗, the complex function

z : 7→ 〈g, 9( f + zh)〉X∗×X

is an entire function on C.

REMARK 3.4. Let 9 : N ∗ 7→ X be an X -valued analytic mapping on N ∗. Then, by
the Graves–Taylor–Hille–Zorn theorem (see, for example, [1]), for each p ∈ R+, the
restriction 9p =9|Hp is an X -valued analytic mapping on the Hilbert space Hp.
Hence, for each p ∈ R+, 9p =9|Hp is infinitely Fréchet differentiable on Hp and,
moreover, for each f ∈ Hp there exists a constant r > 0 such that

9p(h)=

∞∑
n=0

1
n!

9(n)
p ( f )(h − f )n, h ∈ BHp ( f, r), (3.3)

where BHp ( f, r)= {h ∈ Hp | |h − f |p < r} and the series is convergent in the norm
of X .

From this remark, we easily arrive at the next proposition.

PROPOSITION 3.5. Let 9 : N ∗ 7→ X be an X-valued analytic mapping on N ∗. Then
for each n ≥ 1 and each f ∈N ∗, there exists a continuous symmetric n-linear
mapping 9(n)( f ) : N ∗n 7→ X such that

9(n)( f )
∣∣

Hn
p
=9(n)

p ( f ), p ∈ R+ and f ∈ Hp,

where 9p =9|Hp .

THEOREM 3.6. Let T : 0(N ∗) 7→ X be a continuous linear operator and 9 = T ◦ E .
Then 9 is an X-valued analytic mapping on N ∗ and, moreover, for each p ∈ R+,

‖9‖2p ≡ sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)(0)(e j1, e j2, . . . , e jn )〉X∗×X |
2 <∞,

(3.4)
where {ek}k≥1 is an orthonormal basis of Hp.
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PROOF. It is easy to check that 9 is an X -valued analytic mapping on N ∗.
Let p ∈ R+. Set M0 = T 1 and define Mn : Hn

p 7→ X for n ≥ 1 as follows:

Mn(h1, h2, . . . , hn)= Tp(h1⊗̂h2⊗̂ · · · ⊗̂hn), (h1, h2, . . . , hn) ∈ Hn
p , (3.5)

where Tp = T |0(Hp), which is a bounded linear operator from 0(Hp) to X .
Clearly, for each n ≥ 1, Mn : Hn

p 7→ X is a bounded symmetric n-linear mapping
and, moreover,

‖Mn‖ ≤
√

n!‖Tp‖

which implies [(1/n!)‖Mn‖]
1/n
→ 0 (n→∞). On the other hand, by a simple

computation, we get

9(h)=9p(h)= Tp ◦ E p(h)=

∞∑
n=0

1
n!

Mnhn, h ∈ Hp, (3.6)

where 9p =9|Hp and Tp = T |0(Hp). This, together with Proposition 3.5, yields that

9(n)(0)=9(n)
p (0)= Mn, n ≥ 0.

Let {ek}k≥1 be an orthonormal basis of Hp. Then

‖9‖2p ≡ sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)(0)(e j1, e j2, . . . , e jn )〉X∗×X |
2

= sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, Mn(e j1, e j2, . . . , e jn )〉X∗×X |
2

= sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, Tp(e j1⊗̂e j2⊗̂ · · · ⊗̂e jn )〉X∗×X |
2.

On the other hand,

‖Tp‖
2
= ‖T ∗p ‖

2
= sup
‖g‖=1,g∈X∗

‖T ∗p g‖20(Hp)∗

= sup
‖g‖=1,g∈X∗

∞∑
n=0

∑
4n

∣∣∣∣〈T ∗p g,
e⊗r1

i1
⊗̂e⊗r2

i2
⊗̂ · · · ⊗̂e⊗rk

ik
√

r1!r2! · · · rk !

〉
0(Hp)∗×0(Hp)

∣∣∣∣2

= sup
‖g‖=1,g∈X∗

∞∑
n=0

∑
4n

∣∣∣∣〈g, Tp

(e⊗r1
i1
⊗̂e⊗r2

i2
⊗̂ · · · ⊗̂e⊗rk

ik
√

r1!r2! · · · rk !

)〉
X∗×X

∣∣∣∣2
= sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, Tp(e j1⊗̂e j2⊗̂ · · · ⊗̂e jn )〉X∗×X |
2,

where 4n is defined by (2.8). Therefore ‖9‖2p = ‖Tp‖
2 <∞. 2
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LEMMA 3.7. Let 9 : N ∗ 7→ X be an X-valued analytic mapping on N ∗. Assume
that, for each p ∈ R+,

‖9‖2p ≡ sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)(0)(e j1, e j2, . . . , e jn )〉X∗×X |
2 <∞,

(3.7)
where {ek}k≥1 is an orthonormal basis of Hp. Then, for each p ∈ R+, there exists a
bounded linear operator Tp : 0(Hp) 7→ X such that

9p = Tp ◦ E p, (3.8)

where 9p =9|Hp and E p is the exponential mapping on Hp.

PROOF. Let p ∈ R+. By Remark 3.4, there exists a constant r > 0 such that

9p(h)=

∞∑
n=0

1
n!

9(n)
p (0)hn, h ∈ BHp (0, r), (3.9)

where BHp (0, r)= {h ∈ Hp | |h|p < r} and the series is convergent in the norm of X .
For the orthonormal basis {ek}k≥1 of Hp, by Proposition 3.5,

1
n!
‖9(n)

p (0)‖2s = sup
‖g‖=1,g∈X∗

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)
p (0)(e j1, e j2, . . . , e jn )〉X∗×X |

2

≤ sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)
p (0)(e j1, e j2, . . . , e jn )〉X∗×X |

2

= sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)(0)(e j1, e j2, . . . , e jn )〉X∗×X |
2

= ‖9‖2p <∞.

This shows that 9
(n)
p (0) : Hn

p 7→ X is strongly bounded for each n ≥ 0 and, moreover,

1
n!
‖9(n)

p (0)‖ ≤
1
n!
‖9(n)

p (0)‖s ≤
1
√

n!
‖9‖p, n ≥ 0.

Hence

lim
n→∞

[
1
n!
‖9(n)

p (0)‖

]1/n

= 0,

which implies that the series
∑
∞

n=0(1/n!)9(n)
p (0)hn is absolutely convergent in X for

each h ∈ Hp.
On the other hand, the complex function

z : 7→ 〈g, 9p(zh)〉X∗×X = 〈g, 9(zh)〉X∗×X
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is an entire function on C for each pair g ∈ X∗ and h ∈ Hp. Hence

〈g, 9p(h)〉X∗×X =

∞∑
n=0

1
n!

dn

dzn 〈g, 9p(zh)〉X∗×X

∣∣∣∣
z=0
=

∞∑
n=0

1
n!
〈g, 9(n)

p (0)hn
〉X∗×X

=

〈
g,

∞∑
n=0

1
n!

9(n)
p (0)hn

〉
X∗×X

, g ∈ X∗, h ∈ Hp,

which shows that

9p(h)=

∞∑
n=0

1
n!

9(n)
p (0)hn, h ∈ Hp. (3.10)

We now take another look at 9
(n)
p (0) : Hn

p 7→ X , n ≥ 1, which are symmetric and
strongly bounded as is shown above. By Theorem 2.4, there exist bounded linear
operators Ln : H ⊗̂n

p 7→ X , n ≥ 1, such that ‖Ln‖ = ‖9
(n)
p (0)‖s/

√
n! and

9(n)
p (0)(h1, h2, . . . , hn)= Ln(h1⊗̂h2⊗̂ · · · ⊗̂hn), (h1, h2, . . . , hn) ∈ Hn

p , n ≥ 1.

(3.11)
Let

L0z = z9(0)
p (0)= z9p(0), z ∈ H ⊗̂0

p ≡ C.

Then

sup
‖g‖=1,g∈X∗

∞∑
n=0

‖L∗ng|2
(H ⊗̂n

p )∗

= sup
‖g‖=1,g∈X∗

∞∑
n=0

∑
4n

∣∣∣∣〈L∗ng,
e⊗r1

i1
⊗̂e⊗r2

i2
⊗̂ · · · ⊗̂e⊗rk

ik
√

r1!r2! · · · rk !

〉
(H ⊗̂n

p )∗×H ⊗̂n
p

∣∣∣∣2

= sup
‖g‖=1,g∈X∗

∞∑
n=0

∑
4n

∣∣∣∣〈g, Ln

(e⊗r1
i1
⊗̂e⊗r2

i2
⊗̂ · · · ⊗̂e⊗rk

ik
√

r1!r2! · · · rk !

)〉
X∗×X

∣∣∣∣2
= sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, Ln(e j1⊗̂e j2⊗̂ · · · ⊗̂e jn )〉X∗×X |
2

= sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)
p (0)(e j1, e j2, . . . , e jn )〉X∗×X |

2

= sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)(0)(e j1, e j2, . . . , e jn )〉X∗×X |
2

= ‖9‖2p <∞,

where {ek}k≥1 is the orthonormal basis of Hp as is shown in the conditions. Therefore,
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by Theorem 2.5, there exists a bounded linear operator Tp : 0(Hp) 7→ X such that

Tp ◦ E p(h)= (w)

∞∑
n=0

1
n!

Lnh⊗n, h ∈ Hp, (3.12)

where (w) means weak convergence in X . This, together with (3.10) and (3.11), yields
that

9p(h)= Tp ◦ E p(h), h ∈ Hp.

This completes the proof. 2

LEMMA 3.8. Let 9 : N ∗ 7→ X be an X-valued analytic mapping on N ∗. Assume
that, for each p ∈ R+, there exists a bounded linear operator Tp : 0(Hp) 7→ X such
that

9p = Tp ◦ E p, (3.13)

where 9p =9|Hp and E p is the exponential mapping on Hp. Then there exists a
continuous linear operator T : 0(N ∗) 7→ X such that 9 = T ◦ E .

PROOF. Consider the operator family {Tp}p∈R+ . For each pair p, q ∈ R+ with p ≤ q ,
we assert that

Tpu = Tqu, u ∈ 0(Hp). (3.14)

In fact, the restriction Tq |0(Hp) is bounded with respect to norm ‖ · ‖p since ‖ · ‖p is
stronger than ‖ · ‖q on 0(Hp). On the other hand, for each h ∈ Hp,

Tp(E p(h))=9p(h)=9q(h)= Tq(Eq(h))= Tq |0(Hp)(E p(h)),

which implies that Tp = Tq |0(Hp) since {E p(h) | h ∈ Hp} is total in 0(Hp).
Now define a mapping T : 0(N ∗) 7→ X as follows. For each u ∈ 0(N ∗), put

T u = Tpu if u ∈ 0(Hp). (3.15)

It is easy to see that T : 0(N ∗) 7→ X is a well-defined linear operator and, moreover,
for each p ∈ R+, the restriction of T on 0(Hp) is exactly Tp, which is continuous.
It then follows that T : 0(N ∗) 7→ X is continuous.

Finally, we show that 9 = T ◦ E . Indeed, for each h ∈N ∗, there exists a p ∈ R+
such that h ∈ Hp, hence

9(h)=9|p(h)= Tp(E p(h))= T (E (h))= T ◦ E (h).

This completes the proof. 2

Lemmas 3.7 and 3.8 easily lead to the next theorem.
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THEOREM 3.9. Let 9 : N ∗ 7→ X be an X-valued analytic mapping on N ∗. Assume
that, for each p ∈ R+,

‖9‖2p ≡ sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)(0)(e j1, e j2, . . . , e jn )〉X∗×X |
2 <∞,

(3.16)
where {ek}k≥1 is an orthonormal basis of Hp. Then there exists a continuous linear
operator T : 0(N ∗) 7→ X such that 9 = T ◦ E .

The next corollary, an immediate consequence of Theorems 3.6 and 3.9, provides a
necessary and sufficient condition for an X -valued analytic mapping 9 on N ∗ to have
a factorization of the form 9 = T ◦ E .

COROLLARY 3.10. Let 9 : N ∗ 7→ X be an X-valued analytic mapping on N ∗. Then
the following two conditions are equivalent:

(i) there exists a continuous linear operator T : 0(N ∗) 7→ X such that 9 = T ◦ E ;
(ii) for each p ∈ R+,

‖9‖2p ≡ sup
‖g‖=1,g∈X∗

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|〈g, 9(n)(0)(e j1 , e j2 , . . . , e jn )〉X∗×X |
2 <∞,

(3.17)

where {ek}k≥1 is an orthonormal basis of Hp.

4. Application

In this final section, we show an application of our main results to white noise
testing functionals.

Let (E)⊂ (L2)⊂ (E)∗ be the classical white noise analysis framework over a real
Gel’fand triple

E ⊂H⊂ E∗. (4.1)

Elements of (E) are known as white noise testing functionals, while elements of (E)∗

are known as white noise generalized functionals (see, for example, [2, 3]).
It is known (see, for example, [2, 3]) that there exists a family {E−p | p ∈ R+} of

real separable Hilbert spaces satisfying the following conditions:

(i) for each pair p, q ∈ R+ with p < q , E−p is a linear subspace of E−q and | · |−p
is stronger than | · |−q on E−p, where | · |−p means the norm of E−p;

(ii) E∗ is the Hilbert inductive limit of the family {E−p | p ∈ R+}, namely

E∗ =
⋃

p∈R+

E−p,

and E∗ is endowed with the inductive limit topology.
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For each p ∈ R+, put Hp = E−p,c, the complexification of E−p, which is a
complex separable Hilbert space. We denote by 〈·, ·〉p and | · |p the inner product
and norm of Hp, respectively. It is easy to see that for each pair p, q ∈ R+ with p < q,
Hp is a linear subspace of Hq and | · |p is stronger than | · |q on Hp.

Let N ∗ be the Hilbert inductive limit of the family {Hp | p ∈ R+}, namely that
N ∗ =

⋃
p∈R+ Hp and N ∗ is endowed with the inductive limit topology corresponding

to the natural embeddings of Hps in N ∗. Let 0(N ∗) be the Boson Fock space over N ∗
and E the exponential mapping on N ∗ (see Section 3 for the definitions).

Through the Wiener–Itô–Segal isomorphism (see, for example, [2, 3]), we can
identify (E)∗ with 0(N ∗). Hence each white noise testing functional ϕ ∈ (E) can
be viewed as a C-valued continuous linear functional on 0(N ∗) and the composition
ϕ ◦ E then makes sense. Moreover, by Theorem 3.6, ϕ ◦ E is a C-valued analytic
functional on N ∗, where E is the exponential mapping on N ∗.

Applying Corollary 3.10, we come to the next characterization theorem for white
noise testing functionals.

THEOREM 4.1. Let 9 : N ∗ 7→ C be a C-valued analytic functional on N ∗. Then the
following two conditions are equivalent:

(i) there exists a white noise testing functional ϕ ∈ (E) such that 9 = ϕ ◦ E ;
(ii) for each p ∈ R+,

‖9‖2p ≡

∞∑
n=0

1
n!

∑
j1, j2,..., jn

|9(n)(0)(e j1, e j2, . . . , e jn )|
2 <∞, (4.2)

where {ek}k≥1 is an orthonormal basis of Hp.

PROOF. Taking X = C in Corollary 3.10, we find that (3.17) becomes (4.2). On the
other hand, as is shown above, each white noise testing functional ϕ ∈ (E) can be
viewed as a continuous linear operator ϕ : 0(N ∗) 7→ C. Hence, by Corollary 3.10, we
conclude the proof. 2
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