
7 

Self-force 

The inhomogeneous Maxwell equations have been solved in (2.16), (2.17). Thus 
it is natural to insert them into the Lorentz force in order to obtain a closed, albeit 
memory equation for the position of the particle. 

According to (2.16), (2.17) the Maxwell fields are a sum of initial and retarded 
terms. We discuss first the contribution from the initial fields. By our specific 
choice of initial conditions they have the representation, for t :=:: 0, 

0 

Eini(X, t) =- I ds I d3y (VGr-s (x- y) ecp(y- q0 - v0s) 

-00 

+ orGt-s (x- y)v0 ecp(y- q0 - v0s)), (7.I) 

0 

Bini(X, t) = I ds I d3y \1 x Gt-s (x- y) v0ecp(y- q0 - v0s); (7.2) 

-oo 

compare with (4.31), (4.32). Since Gt is concentrated on the light cone, one con
cludes from (7.I), (7.2) that Eini(X, t) = 0, Bini(X, t) = 0 for lq0 - xl :S t- R'P. 
If we had allowed for more general initial data, such a property would hold only 
asymptotically for large t. 

Next we note that constrained by energy conservation the particle cannot travel 
too far. Using the bound on the potential, one can find a v < I such that 

sup lv(t)l < v < I, 
tElR 

(7.3) 

cf. Eq. (7.26). The charge distribution vanishes for lx- q(t)l :=:: R'P. Therefore, 
once 

(7.4) 
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7.1 Memory equation 81 

the initial fields and the charge distribution have no overlap. We conclude that for 
t > i'P the initial fields make no contribution to the self-force and it remains to 
discuss the effect of the retarded fields. 

We insert (2.12), (2.13) into the Lorentz force for which purpose it is convenient 
to use the scaled version ( 6.11 ). The external potentials are set equal to zero for a 
while. Then on the macroscopic scale, fort ::::_ ci'P, 

with the self-force 

t 

F~elf (t) = e2 J ds 8 J d3k lifJ(8k)l 2 e-ik·(q"(t)-q"(s))( (lkl- 1 sin lkl(t- s))ik 

0 

(7.5) 

-(cos lkl(t- s))v~:(s)- (lkl-l sin lkl(t- s)) v~:(t) x (ik x v~:(s))), 

(7.6) 

which in position space for 8 = 1 was already written down in Eq. (2.57). 
Equation (7.5) is exact under the stated conditions on the initial fields. No in

formation has been discarded. The interaction with the field has been merely tran
scribed into a memory term. To make further progress we have to use a suitable 
approximation which exploits the assumption that the external forces are slowly 
varying. Since this corresponds to small 8, we just have to Taylor-expand F~e1f (t), 
which is carried out in section 7.2 with the proper justification left for section 7.3. 
But before that, and to make contact with previous work, we take a closer look at 
the memory term. 

7.1 Memory equation 

Equation (7.6) can be simplified, for which it is convenient to set 8 = 1. By partial 
integration 

t J ds J d3k lifJ(k)l 2 e-ik·(q(t)-q(s))v(s) ~ lkl- 1 sin lkl(t- s) 

0 

=-J d3k lifJ(k)l 2 e-ik·(q(t)-q(O))v(O)Ikl- 1 sin lklt 

t 

-J ds J d3klifJ(k)l 2 e-ik·(q(t)-q(s))(lkl- 1 sin lkl(t- s))(v(s) 

0 

+ i(k · v(s))v(s)). (7.7) 
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Since t :=:: tlfJ, the boundary term vanishes. Inserting (7.7) into (7.6), returning to 
physical space, and setting t - s = r, one has for t :=:: tlfJ 

00 

Fself (t) = -e2 I dr [ v(t- r) + (1 - v(t). v(t- r))Y'x 

0 

+v(t- r)(v(t)- v(t- r)) · Y'x]Wr(x)lx=q(t)-q(t-r), (7.8) 

where 

(7.9) 

In (7.8) we have extended the integration to oo, since the integrand vanishes any
way for r :=:: tlfJ. Carrying out the integrations on the angles in (7.9) one obtains 

00 

h(w) = 2rr I dk g(k) cos kw 

0 

(7.1 0) 

(7.11) 

with g(lkl) = l$(k)e. Since cp vanishes for lxl :=:: RlfJ, h(w) = 0 for lwl :=:: 2RifJ. 
Note that lq(t)- q(t- r)l ::: v r. Thus for t :=:: tlfJ we indeed have Wr(q(t)

q (t - r)) = 0, as claimed before. F self(t) has a finite memory extending back
wards in time up to t - tlfJ. 

To go beyond (7.1 0) one has to use a specific form factor$. Two choices, popu
lar at the time, are ({Js(x) = (4rr R~)- 1 8(1xl - RlfJ) and ({Jb(x) = e (4rr R~/3)- 1 for 
lx I ::: RlfJ, ({Jb (x) = 0 for lx I :=:: RlfJ. For the uniformly charged sphere one finds 

and for the uniformly charged ball 

for I w I ::: 2 , 
for I w I :=:: 2 , 

-1 9 ~ ~ 

h(R<pw) = { (8rr R<p) 08 h * h(w) for lwl ::: 2, 
for I w I :=:: 2 , 

with h(w) = (1 - w2) for lwl ::: I and h(w) = 0 otherwise. 

(7.12) 

(7.13) 

For the charged sphere Wt(X) is piecewise linear and, by first taking the gradi
ent of W, the time integrations simplify. In the approximation of small velocities 
the motion of the charged particle is then governed by the differential-difference 
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equation 

e2 
mbv(t) = e(Eex(q(t)) + v(t) x Bex(q(t))) + 2 (v(t- 2R<p)- v(t)), 

I2n RlfJ 

(7.14) 

where we have reintroduced the external fields. 
The memory equation (7.I4) is of suggestive simplicity. To have a well-defined 

dynamics one has to prescribe q(O) and v(t) for -2RifJ :S t :S 0 as initial data. 
Of course, the coupled system determines these data completely. However, the 
supporters of differential-difference equations regard (7.I4) as the starting point 
with no instruction for the choice of initial data. Their claim is that solutions to 
(7.14) are not very sensitive to this choice. While there is some evidence on the 
linearized level, the dependence on the initial data for the full nonlinear problem 
remains to be studied. 

7.2 Taylor expansion 

We return to Eq. (7.5). As will be explained in section 7.3, one knows that there 
exists a constant C, independent of s for s < so, such that 

lif'(t)l :S C, lif'(t)l :S C(I + E(E + ltl)-2), 

l.iT'(t)l :s C(I + E(E: + ltl)-2 + E(E: + ltl)-3) (7.I5) 

for all t, provided the total charge e is sufficiently small. This smallness condition 
merely reflects the fact that at present we do not know how to do better mathemat
ically. Physically we expect (7 .I5) to hold no matter how large e. 

Note that in higher time derivatives the mismatch of the initial conditions be
comes visible. Only if the charge is allowed to move for a time span of order s 113 , 

which is short on the macroscopic scale but long as O(s-213) on the microscopic 
scale, do the derivatives become uniformly bounded. 

Because of (7.15) we are allowed to Taylor-expand in (7.6). To simplify notation 
we set v 8 (t) = v and t- s = r. Then 

I 
v 8 (s) = v 8 (t- r) = v- vr + 2 vr2 + O(r3), (7.I6) 

-ik(qE (t)-qE (s)) _ -ik(qE (t)-qE(t-r)) _ -i(k·v)r (I + I 2· (k ·) I 3 · (k ··) e -e -e -Tl ·V--TI ·V 
2 6 

I (I 2 . I 3 .. )2 2 3 ) - 2 2 r (k · v) - 6 r (k · v) + O((lklr )·) . (7.I7) 
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Inserting in (7.6) and substituting s' = .s- 1 s, k' = .sk yields 

8-lt 

F~elf(t) = e2 I du- 1 I d3kl$(k)l 2e-i(k·v)r { (lkl- 1 sin lklr)ik 

0 

-(cos lklr)( v- .srv + ~.s2 r 2v)- (lkl- 1 sin lklr)(v x (ik x v) 

1 1 
- v x (ik x .srv) +- v x (ik x .s2 r 2v)) +- .sr2i(k. v) 

2 2 

x (Cikl- 1 sin lklr)ik-(cos lklr)(v-.srv)-(lkl- 1 sin lklr)(vx(ikxv) 

- v x (ik x .srv))) + (- ~ .s2 r 3i(k. v)- ~ .s2 r 4 (k. v) 2) 

x ( (lkl- 1 sin lklr)ik- (cos lklr)v- (lkl- 1 sin lklr)( v x (ik x v)))} 

+0(.s2). (7.18) 

The terms proportional to .s - 1 cancel by symmetry. We sort all other terms, 

8-lt 

F~elf(t) = e2l d3k l$(k)l 2 { (- (v. v)\lv + v(v. Vv)) I dre-i(k·v)r (lkl- 1 sin lklr) 

0 

8-l t 

+(v+~v(v·\lv)) I drre-i(k·v)r(coslklr)+.s(~[ -(v2 -I) 

0 

x (v · Vv)Vv + v(v · Vv)(v · Vv) + (v · v)\lv- v(v · Vu) J 
I +- [-(I - v2)(v · Vv)Vv- v(v · Vv)(v · Vv) + 3(v · v)(v · Vv)Vv 
6 

1 
-3v(v · Vv)(v · Vv)] +-[(if -l)(v · Vv) 2Vv 

8 
8-lt 

-v(v · Vv)(v · Vv)2J) I dr re-i(k·v)r (lkl- 1 sin lklr) 

0 

t:- 1t 

+.s( -v-~[v(v·\lv)+3v(v·\lv)]) I drr2e-i(k·v)rcoslklr} 

0 

(7.19) 
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To take the limit £ --+ 0 we go back to position space and use the fundamental 
solution of the wave equation. Then 

0-l t 

lim I dr I d3kl$(k)l 2 e-i(k·v)r (lkl-l sin lklr) rP 
8--+0 

0 
(X) =I dt I d3x I d3 ycp(x)cp(y) 4~t8(1x+vt-yl-t)tP 

0 

{ J d3k l$(k)l 2 [k2 - (k · v)2r 1 for p = o, 
- Jd3xcp(x)jd3ycp(y)(y 2 j4n) for p=l. 

By the same method 

8-it 

lim I dr I d3k l$(k)l 2 e-i(k·v)r r 1+P ~ (lkl- 1 sin lklr) 
~:---+0 dr 

0 
(X) 

= -(1 + P + (v · Y'v)) I dt I d3k l$(k)l 2 e-i(k·v)t (lkl- 1 sin lklt)tP 

0 

__ {- f d3k l$(k)l 2 (k2 + (k. v) 2)[k2 - (k. v) 2r 2 for p = o, 
- J d3x cp(x) J d3ycp(y) (2y4 j4rr) for p =I. 

Collecting all terms the final result reads 

F~elf(t) =- mf(v)v + E(e2 j6n) [y 4 (v · v)v + 3y 6(v · v) 2v 

+3y4 (v. v)v + y 2v] + 0(£2) 

fort > 0 with 

mf(v) = me[ (lvl-2y 2 (3- v2)- lvl-3 (3 + if)arctanhlvl)v@v 

(7.20) 

(7.21) 

(7.22) 

+ ( - lvl-2 + lvl-3 (1 + if) arctanhlvl) ll J . (7.23) 

Note that mf(V) = d(Ps- mbyv)jdv as a 3 x 3 matrix. 
Up to order £, F~e1lt) consists of two parts of a rather different character. The 

term -mf( v)v is the contribution from the electromagnetic field to the change in 
total momentum. We computed this term already in section 4.1 via a completely 
different route. As emphasized there, since the Abraham model is semirelativistic, 
the velocity dependence of mf has no reason to be of relativistic form and indeed 
it is not. The term proportional to£ in (7.22) is the radiation reaction. Again there 
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86 Self-force 

is no a priori reason to expect it to be relativistic, but in fact it is. Using the four
vector notation of section 2.5, the radiation reaction can be rewritten as 

8(e2 j6n)(ii- (u. u)u) = 8(e2 j6n)(g + u Q9 u). ii. (7.24) 

The space part is the term proportional to e2 of (7 .22), i.e. the radiation reaction 
force, and the time part is the work done by this force per unit time. 

7.3 How can the acceleration be bounded? 

We return to the microscopic time scale. From the conservation of energy together 
with condition (P), we have 

Es(v0) + ecp(8q0) = £(E0, B0 , q0 , v0) = £(E(t), B(t), q(t), v(t)) 

:::: mby(v(t)) + e <P 

and therefore 

sup lv(t)l :S v < 1. 
tEJR: 

(7.25) 

(7.26) 

In (6.4) the external forces are of order 8. Superficially the self-force is of order 
one. However for a Coulombic charge soliton field the self-force vanishes. Thus 
if we could show that the deviations from the appropriate local soliton field are of 
order 8, then the acceleration would satisfy 

sup liJ(t)l :S C8 (7.27) 
tEJR: 

with C a suitable constant. This is what we want to prove. We will not keep track 
of the constants, and the value of C changes from equation to equation. We make 
sure, however, that the e-dependence is explicit and that C depends only on v, 
and thus is determined by the initial conditions. Of course, to justify the Taylor 
expansion of section 7.2, we also need analogous estimates of higher derivatives, 
which can be obtained with considerably more effort through the same scheme. 
Here we want to explain how to get (7.27) and why we need e to be sufficiently 
small, at least for the moment. 

From the equations of motion one has 

v = mo(v)-1 [8e(Eex(8q) + v x Bex (8q)) + e(Erp(q) + v x Brp(q))], (7.28) 

where m01(v) = (mby)- 1(11- vQ9v) is the matrix inverse of mo(v). Clearly by 
(7.26) we have llmo(v)- 1 11 :S C and, by condition (P), the first term is bounded as 

(7.29) 
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On the other hand, the self-force looks to be of order one. To reduce it in order 
we have to exploit the fact that E, B deviate only slightly from Ev, Bv close to the 
charge distribution, i.e. we subtract zero and rewrite the self-force as 

Our goal is to show that this difference is of order £. 

Let us define then 

Z(x, t) = (E(x, t)- Ev(t)(x- q(t))) . 
B(x, t)- Bv(t)(X- q(t)) 

(7.31) 

Using Maxwell's equations and the relations ( v · \7) Ev = -\7 x Bv + ecpv, 

(v · \l)Bv = \7 x Ev one obtains 

d 
dtZ(t) = AZ(t)- g(t), (7.32) 

where A is defined in (2.18) and 

(x, t) = ( (~(t) · Y'v)Ev(X- q(t))) . 
g (v(t) · Y'v)Bv(X- q(t)) 

(7.33) 

Therefore (7.32) has again the structure of the inhomogeneous Maxwell equations. 
Since Z (0) = 0 by our assumption on the initial data, one has 

t 

Z(t) =-Ids U(t- s)g(s). 

0 

In terms of Z(t), using (7.28), (7.30), the acceleration is bounded through 

(7.34) 

lv(t)l ::: C(£ +lei) I d3 xcp(x)IZ1 (x + q(t), t) + v(t) x Z2(x + q(t), t)l. 

(7.35) 

Let us set W(t, s) = U(t- s)g(s). Below we will prove that 

IW1 (t, s, q(t) + x)l + IW2(t, s, q(t) + x)l::: leiCiv(s)l(l + (t- s)2)- 1 (7.36) 

for lx I ::::; R'P. Therefore inserting (7 .36) in (7 .35) one obtains 

t 

lv(t)l::: leiC(£ +lei Ids (1 + (t- s)2)-1 lv(s)l). (7.37) 

0 
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LetK =sup lv(t)l. Then(7.37)reads 
t:>:O 

00 

K :s lei c(s + leiK Ids (1 + s2)-l)' 
0 

lei C 
K < 2 8. 

- 1- e C 
(7.38) 

From the computation below we will see that C depends on v (and on model 
parameters like the form factor (j), but not on e. Thus taking lei sufficiently small 

one can ensure e2 C < 1 and therefore K :S C 8 as claimed. 
We still have to establish (7.36). U(t) is given in Eqs. (2.12), (2.13). Since 

V' · g 1 (s) = 0 = V' · g 2(s), the term proportional to k@ k drops out. In real space 
lkl- 1 sin lklt becomes Gt from (2.15) and cos lklt becomes atGt. Therefore 

WI(t,s,x)= 1 
2 !d3y8(1x-yl-(t-s)) 

4n(t- s) 

x [Ct- s)V' x g 2(y, s) + g 1 (y, s)- (x- y) · Y'g 1 (y, s)], 

W2(t,s,x)= 1 
2 Jd3y8(1x-yl-(t-s)) 

4n(t- s) 

X [ - (t - S) Y' X g l (y, S) + g 2 (y, S) - (X - J) · V' g 2 (y, S)] . 

(7.39) 

We insert g from (7.33). Ev and Bv are first-order derivatives of the function </Jvrp 
which according to (4.7) is given by 

Using (4.5) one has componentwise 

I'VvEv(x)l + I'VvBv(x)l :S C ( IY'</Jv(x)l + IY'Y'v</Jv(x)l), 

I'V'VvEv(x)l + I'V'VvBv(x)l :S C ( IY'Y'v</Jv(x)l + IV'Y'Y'v</Jv(x)l) (7.41) 

and taking successive derivatives in (7.40) one obtains the bounds 

IY'</Jv(x)l + IY'Y'v</Jv(x)l :SeC (1 + lxl)-2 , 

IY'Y'</Jv(x)l + IY'Y'Y'v</Jv(x)l :SeC (1 + lxl)-3 , (7.42) 

which imply 

lg1 (x, s)l + lg2(x, s)l :S e Clv(s)l(l + lx- q(s)l 2)-1 , 

IV'gi (x, s)l + IV'g2(x, s)l :S e Clv(s)l(l + lx- q(s)l 3)-1 . (7.43) 
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We insert the bound (7.43) in (7.39) which results m an upper bound on 
W(t, s, q(t) + x). Using the condition that lxl ::::; R'P and lq(t)- q(s)l ::::; lilt- sl 
finally yields (7 .36). 

We summarize our findings as 

Theorem 7.1 (Bounds on the velocity and its derivatives). For the Abraham 
model satisfying conditions (C), (P), and (I) there exist constants C, depending 
through v only on the initial conditions, and e such that 

lv(t)l ::: v < 1, lv(t)l::: Ct:, lv(t)l::: C(t:2 + £(1 + ltl)-2), 

l"v(t)l ::: c(t:3 + £2 (1 + ltl)-2 + £(1 + ltl)-3) (7.44) 

for all t on the microscopic time scale, provided the charge is sufficiently small, 

i.e. lei <e. 

By keeping track of the constant C, one could get a bound on the charge ad
missible in Theorem 7.1. Since we believe this restriction to be an artifact of the 
method anyhow, there is no point in the effort. 

Notes and references 

Section 7.1 

Sommerfeld (1904a, 1905) systematically uses memory equations. In fact he con
siders the Abraham model with the kinetic energy mbif /2 for the particle and 
wants to understand what happens when v(O) > c. He argues that the particle 
rapidly loses its energy to become slower than c by emitting what we now call 
Cerenkov radiation. The differential-difference equation (7 .14) is derived by Page 
(1918) and its relativistic generalization by Caldirola (1956). For reviews we refer 
to Erber (1961) and Pearle (1982). Moniz and Sharp (1974, 1977) supply a linear 
stability analysis and show that the solutions to (7.14) are stable provided R'P is not 
too small. For that reason Rohrlich (1997) regards (7.14) and its relativistic sister 
as the fundamental starting point for the classical dynamics of extended charges. 
We take the Abraham model as the basic dynamical theory. Memory equations are 
a useful tool in analyzing its properties. 

Section 7.2 

The Taylor expansion is taken from Kunze and Spohn (2000a). Such an expansion 
was already used in Sommerfeld (1904a, 1905), to be repeated in various disguises. 
The traditional expansion parameter is the size of the charge distribution, which in 
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our context is replaced by the scaling parameter s controlling the variation of the 
potentials. 

Section 7.3 

The contraction argument appears in Komech, Kunze and Spohn (1999). The 
bound on v(t) is taken from Kunze and Spohn (2000a), where also higher deriva
tives are discussed. It is claimed that lv(t)l::::; Cs2 and l"v(t)l ::::; Cs3 . In the ar
gument some initial terms are overlooked and the correct bounds are as given in 
(7.44). 
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