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A Generalized Torelli Theorem

Ajneet Dhillon

Abstract. Given a smooth projective curve C of positive genus g, Torelli’s theorem asserts that the pair
(

J(C),W g−1
)

determines C . We show that the theorem is true with W g−1 replaced by W d for each

d in the range 1 ≤ d ≤ g − 1.

1 Introduction

All curves in subsequent sections will be assumed to be smooth projective curves over

C. The genus of C will always be denoted by g. If C is such a curve (with g > 0) we

will let J(C) denote its Jacobian and

u : C −→ J(C)

will be the Abel-Jacobi map. We will let C (d) denote the d-th symmetric power of

C and for 1 ≤ d ≤ g − 1, W d will be the image of C (d) inside the Jacobian under

the Abel-Jacobi map. Since by a theorem of Riemann, the theta divisor is a translate

of W g−1, Torelli’s theorem asserts that the pair
(

J(C),W g−1
)

determines the curve,

meaning that if C ′ is another curve such that there is an isomorphism J(C) ∼= J(C ′)

carrying theta divisors to theta divisors then the curves must be isomorphic. Our

aim is to show that an analogous statement holds for each 1 ≤ d < g − 1. With this

in mind we will assume in all following sections that g ≥ 4, as smaller genera are

covered by existing theorems.

As a corollary we have that two curves are isomorphic if and only if their d-th

symmetric powers are isomorphic, where d is an integer smaller than the genus of

one (and hence both) of the curves.

After this work was completed, Prof. Ziv Ran pointed out the same result had been

proved by different means in [8] and [7]. Both of these articles reduce the above

stated theorem to the usual Torelli theorem. In [8], this accomplished by use of the

Poincaré formula that relates the cohomology classes of the self-intersection of the

theta divisor to those of W d.

In this paper, by contrast, we show how to reconstruct C from the pair
(

J(C),W d
)

geometrically. In particular we do not reduce the theorem to the usual Torelli the-

orem. Our method, which is based on the strategy in [1], reconstructs C from the

branch locus of a map associated to the Gauss map of the inclusion W d ↪→ J(C).

This will be explained in more detail in Section 3.

This problem and the above mentioned corollary was originally proposed by Prof.

Donu Arapura. Thanks also to the participants of the Working Algebraic Geometry
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Seminar at Purdue, in particular to Prof. Kenji Matsuki who pointed out a mistake

in an earlier version. The method of proof of Proposition 4.1 was suggested by the

referee as it is more direct than the proof originally given by the author.

2 Preliminaries

The Jacobian of a curve C is defined to be

J(C) = H0(C, Ω1
C )∗/H1(C, Z).

The Abel-Jacobi map is defined by

u : C −→ J(C)

p 7−→

∫ p

p0

where p0 is a fixed basepoint. Let C (d)
= Cd/Sd be the d-th symmetric power of C .

We identify the points of C (d) with effective divisors of degree d on C . The Abel-Jacobi

map can be extended to a morphism

u : C(d) −→ J(C).

We have:

Theorem 2.1 (Abel’s) Let D, D ′ ∈ C(d). Then

D ∼ D ′ if and only if u(D) = u(D ′)

where the relation ∼ is linear equivalence.

Proof See [4].

We let W d
= u(C(d)). By Abel’s Theorem W d parameterizes complete linear sys-

tems of degree d on C . Our aim is to reconstruct C from the pair
(

J(C),W d
)

where

0 < d ≤ g −1. The main tool in doing this will be the Gauss map, defined as follows.

Take p ∈ W d
smooth and let Tp(W d) be its holomorphic tangent space. There is an

automorphism, translation by −p,

τp : J(C) −→ J(C)

x 7−→ x − p.

This allows us to canonically identify Tp(W d) with a d-dimensional subspace of

T0

(
J(C)

)
' H0(C, Ω1

C )∗. This defines the Gauss map

G : W d
smooth −→ G(d − 1, g − 1),

where G(d − 1, g − 1) is the Grassmanian parameterizing d − 1 dimensional linear

subvarieties of P
g−1 (or equivalently d-dimensional subspaces of C

g). The result we

need is:
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Theorem 2.2 Let φK : C → (P
g−1)∗ be the canonical morphism and let D ∈ C (d).

Then u(D) ∈ W d
smooth if and only if dim |D| = 0. If we denote by φK (D) the linear span

of D on the canonical curve then

G
(

u(D)
)

= φK (D).

Proof This result can be found in Section 2.7 of [4].

Note that the linear span of a multiple of a point is the appropriate osculating

plane to C inside P
g−1. The condition that dim |D| = 0 forces φK (D) to be a d − 1

dimensional linear subvariety of P
g−1. This is by:

Theorem 2.3 (Geometric Riemann-Roch) For D as in the above discussion we have

dim |D| = d − 1 − dim φK (D).

Proof Again this can be found in [4].

3 Our Strategy

We first describe the idea behind the proof of the Torelli theorem for curves, due to

A. Andreotti, see [1]. The Gauss map

G : W
g−1
smooth −→ (P

g−1)∗

is a quasi-finite morphism of degree

(
2g − 2

g − 1

)

.

To see this, a hyperplane H intersects the image of a curve C under its canonical

morphism in 2g − 2 points p1, p2, . . . , p2g−2, which are in general position for a

generic H. By Theorem 2.2 the fiber over H consists of all images of divisors of

the form u(pi1
+ pi2

+ · · · + pig−1
) where i j range over {1, 2, . . . , 2g − 2}. If C is

non-hyperelliptic then let C∗ be the dual variety to C , that is the locus of all tangent

hyperplanes to φK (C) inside (P
g−1)∗. Now one would expect that the (closure of the)

branch locus of G to be C∗ since the fiber over a tangent hyperplane H should have

cardinality smaller than
(

2g − 2

g − 1

)

.

(Since H.C = 2p1 + · · ·+ p2g−3, the first point is repeated and there are fewer choices

for points in the fiber.) It is known how to recover C from C∗, for example see [5]. In

the case that C is hyperelliptic the canonical morphism φK : C → P
g−1 is branched

at 2g +2 points labeled b1, . . . , b2g+2. We denote by C∗ the dual variety to the rational

normal curve φK(C) and b∗i denotes the locus of all hyperplanes passing through bi .

In the hyperelliptic case, by the same reasoning as in the non-hyperelliptic case, one
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would expect that the branch locus of G to be C∗ ∪ b∗1 ∪ · · · ∪ b∗2g+2. It is known how

to recover C from this information.

We would like to try to apply this technique to our situation. Firstly, we may

reduce to the case where (g − 1)/2 < d < g − 1. To do this choose an integer n so

that (g − 1)/2 < nd ≤ g − 1. Then

W nd
= W d + W d + · · · + W d

︸ ︷︷ ︸

n times

.

The above addition is addition inside the Jacobian.

Fix P
g−1

= P
(

H0(C, Ω1
C )∗
)

. Now consider the locus

F(d, g) = {(V,W ) ∈ G(d − 1, P
g−1) × G(d − 1, P

g−1) | V + W 6= P
g−1}.

The notation V + W means linear span of V and W . So F(d, g) is the locus of all pairs

of (d−1)-dimensional linear subvarieties that are contained inside some hyperplane.

There is a rational morphism

α : F(d, g) //___ (P
g−1)∗

defined by (V,W ) 7→ V + W . We take E(d, g) to be the pullback of F(d, g) under

G × G : W d
smooth ×W d

smooth −→ G(d − 1, g − 1) × G(d − 1, g − 1).

Now let β be the composed rational morphism

β : E(d, g) //___ (P
g−1)∗.

Arguing as in the case d = g − 1 we see that the branch locus of β contains enough

information to recover C . Note that the hypothesis (g −1)/2 < d < g−1 is required

to insure that E(d, g) is not empty.

4 Generic Determinental Varieties

Two identities that will be useful later are presented in this section.

In this section d and g will be non-negative integers with (g − 1)/2 < d < g − 1.

We will need the case g ≥ 4 later. Let M be the generic g × 2d matrix,

M =








x11 x12 · · · x1,2d

x21 x22 · · · x1,2d

...
...

...

xg1 xg2 · · · xg,2d
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over the polynomial ring C[xi j]. Let I = {i1, i2, . . . , iα} ⊆ {1, 2, . . . , 2d}, with

i1 < i2 < · · · < iα. We will denote by MI the following submatrix of M.

MI =








x1,i1
x1,i2

· · · x1,iα

x2,i1
x2,i2

· · · x1,iα
...

...
...

xg,i1
xg,i2

· · · xg,iα








.

Also let

N =








x11 x12 · · · x1,g−1

x21 x22 · · · x1,g−1

...
...

...

xg1 xg2 · · · xg,g−1








.

Let f be the product of the (g − 1) × (g − 1) minors of N . Let R = C[xi j] f .

Proposition 4.1 In the above situation let I be the ideal in R generated by the g × g

minors of M. Let J be the ideal in R generated by minors of the form

det(M{1,2,...,g−1,i})

as i ranges over g ≤ i ≤ 2d. We have I = J.

Proof Let Λ ⊆ {1, . . . , 2d} with |Λ| = g. We wish to show that det MΛ ∈ J. We

will proceed by descending induction on

|Λ ∩ {1, 2, . . . , g − 1}| = p.

If p = g − 1, the statement is clear.

For general p < g − 1 we may reindex so that Λ = {1, . . . , p, i1, i2, . . . , ig−p}
where g ≤ i1 < i2 < · · · < ig−p ≤ 2d. Let S = {1, . . . , p + 1} and for α ∈ S set

Πα = S \ {α} ∪ {i1, i2, . . . , ig−p}.

Also let

Π
iα = S ∪ {i1, i2, . . . , ig−p} \ {iα}.

Note that MΛ = MΠp+1
. For 1 ≤ s ≤ g − 1 we let

As =








x11 . . . x1,p+1 x1,i1
. . . x1,ig−p

...
...

...
...

xg1 . . . xg,p+1 xg,i1
. . . xg,ig−p

xs1 . . . xs,p+1 xs,i1
. . . xs,ig−p








.

Since As has a repeated row its determinant vanishes. Expanding along the bottom

row we have for 1 ≤ s ≤ g − 1,

0 = xs1 det MΠ1
+ · · · + xs,p+1 det MΠp+1

+ xs,i1
det MΠi1 + · · · + xs,ig−p

det M
Π

ig−p .
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By induction det MΠiα ∈ J. It follows that

xs1 det MΠ1
+ · · · + xs,p+1 det MΠp+1

∈ J

for 1 ≤ s ≤ g − 1. Let

X =








x11 x12 · · · x1,g−1

x21 x22 · · · x1,g−1

...
...

...

xg−1,1 xg−1,2 · · · xg−1,g−1








and

Y =













det MΠ1

...

det MΠp+1

0
...

0













a (g − 1) × 1 matrix. By the above, the entries of XY are in J. As X is invertible over

R, the entries of Y are in J.

Now let M be the matrix

M =






x11 · · · x1,2d

...
...

xg1 · · · xg,2d






over the polynomial ring C[xi j]. Consider the submatrices

A =






x11 · · · x1,d

...
...

xd,1 · · · xd,d




 B =






x1,d+1 · · · x1,2d

...
...

xd,d+1 · · · xd,2d




 .

Set f = det(A) and g = det(B). We will be interested in the following ideals of the

ring C[xi j] f g . Let I be the ideal of the g × g minors of M and let J be the ideal of the

g × g minors of

N = M

(
A−1 0

0 B−1

)

.

Lemma 4.2 The ideals I and J of C[xi j] f g are equal.
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Proof The subschemes of spec(C[xi j] f g) defined by I and J are supported on the

same closed subset. So it suffices to show that both I and J are reduced. The fact that

I is reduced is the fundamental theorem of invariant theory, see [2]. To show that J

is reduced consider the C algebra automorphism of C[xi j] f g defined by

xi j 7−→ yi j

where

M

(
A 0

0 B

)

=






y11 · · · y1,2d

...
...

yg1 · · · yg,2d




 .

This automorphism carries J to I so we are done.

5 A Subvariety of G(d − 1, g − 1) × G(d − 1, g − 1)

We let G(d − 1, g − 1) denote the Grassmanian parameterizing (d − 1) dimensional

linear subspaces of P
g−1. Let

F(d, g) = {(V,W ) ∈ G(d − 1, g − 1) × G(d − 1, g − 1) | V ⊆ H,

W ⊆ H for some hyperplane H ⊆ P
g−1}.

In the above V and W are closed points of the Grassmanian. We wish to describe

the reduced scheme structure on F(d, g). First we recall how to cover Grassmanian

with open affines isomorphic to C
d(g−d).

Let V ∈ G(d − 1, g − 1) be a closed point. So V can be thought of as the column

space of a g × d matrix A. Write

A =








a11 a12 · · · a1d

a21 a22 · · · a2d

...
...

...

ag1 ag2 · · · agd








.

This representation is unique up to the action of GL(d, C).

Let I = (i1, i2, . . . , id), where i j ∈ {1, 2, . . . , g} and i1 < i2 < · · · < id. We will

denote by AI the following d × d submatrix of A:1

AI
=








ai11 ai12 · · · ai1d

ai21 ai22 · · · ai2d

...
...

...

aig 1 aig 2 · · · aig d








.

Now since the rank of A is d, the matrix A has a non-vanishing d × d minor.

Let this minor be det(AI). The matrix A ′
= A(AI)−1 also has column space equal

1In the preceding section we defined AI . In that section the submatrix AI of A was obtained by choosing
columns of A, while here we are choosing rows.
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to V , furthermore it is the unique representative with (A ′)I
= Idd. For each I =

(i1, i2, . . . , id) as above, set

UI = {V ∈ G(d, g) | the I minor of a matrix representative of V is invertible}.

There is a bijection UI
∼= C

d.(g−d), which is in fact an isomorphism. For further

details see [4] or [5].

It follows from the above that G(d − 1, g − 1) × G(d − 1, g − 1) has an open

affine cover consisting of opens of the form UI ×U J
∼= C

2d(g−d). Now take (V,W ) ∈
UI ×U J, with V the column space of a matrix A and W the column space of a matrix

B. The locus we are trying to describe, F(d, g), consists of those pairs (V,W ) such

that rank(A|B) < g. Here (A|B) is the matrix obtained by augmenting the matrix

A with the matrix B. Now the rank of (A|B) < g if and only if the g × g minors of

(A|B) vanish. The latter condition holds if and only if the g × g minors of the matrix

(A|B)C vanish where

C =

(
A−1

I 0

0 B−1
J

)

.

The entries of the matrix (A|B)C determine the image of (V,W ) under the isomor-

phism UI ×U J
∼= C

d(g−d)+d(g−d). So the ideal generated by the g×g minors of (A|B)C

determines a scheme structure on F(d, g) ∩ UI × U J. It follows from [2, p. 71] that

this scheme structure is reduced, being a specialization of the ideal Ik defined there.

Hence these ideal sheaves on UI × U J glue together to give an ideal sheaf for the

reduced structure on F(d, g).

We let

UF = {(V,W ) ∈ F(d, g) | rank(A|B) = g − 1}.

There is a morphism

α : UF
//___ (P

g−1)∗.

It takes a closed point (V,W ) to the linear span of V and W . We will denote U F by

F(d, g)main.

6 The Construction of E(d, g)

In this section let C be a curve of genus g ≥ 4. Let (g − 1)/2 < d < g − 1. We have a

morphism

G × G : W d
smooth ×W d

smooth −→ G(d − 1, g − 1) × G(d − 1, g − 1).

Define E(d, g) ↪→ W d
smooth × W d

smooth to be the fiber over F(d, g). We take UE to be

the pre-image of UF and E(d, g)main to be the closure of UE. There is morphism

β : UE −→ (P
g−1)∗.

We have, by Theorem 2.2,

β
(

u(D), u(D ′)
)

= φK (D) ∪ φK(D ′),
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where (D, D ′) ∈ C(d) × C(d) are divisors whose image under the Abel-Jacobi map is

in W d
smooth . Recall that A means linear span of some subset A of P

g−1 in P
g−1. Notice

that φK(D) ∪ φK (D ′) is a hyperplane in P
g−1, for the condition

(
u(D), u(D ′)

)
∈

E(d, g) forces φK(D) ∪ φK (D ′) to be contained in a hyperplane and the condition
(

u(D), u(D ′)
)
∈ UE forces φK(D) ∪ φK (D ′) to be exactly a hyperplane.

A generic hyperplane H ∈ (P
g−1)∗ intersects C in 2g−2 points that are in general

position, see [2]. So suppose that H.C = p1 + p2 + · · ·+ p2g−2. Then by Theorem 2.3,

the pair
(

u(p1 + p2 + · · · + pd), u(pd+1 + pd+2 + · · · + p2d)
)
,

(notice 2d < 2g − 2) is a closed point of W d
smooth ×W d

smooth . Furthermore the above

pair, gives a point in UE mapping to H under β. Hence β is dominant. Since a

hyperplane can only intersect C in a finite number of points, the map β is quasi-

finite. It follows that UE has dimension g − 1.

We let C∗ denote the dual variety to φK(C).

Lemma 6.1

(a) Suppose that C is a non-hyperelliptic curve. Let H ∈ (P
g−1)∗ − C∗. If

β
((

u(D), u(D ′)
))

= H then
(

u(D), u(D ′)
)

lies on a component of E(d, g) of

dimension g − 1 and is in the smooth locus of E(d, g)main.

(b) Suppose that C is hyperelliptic. Let H ∈ (P
g−1)∗−C∗ and assume also that H does

not pass through any of the branch points of the canonical map φK : C → P
g−1.

If β
((

u(D), u(D ′)
))

= H then
(

u(D), u(D ′)
)

lies on a component of E(d, g) of

dimension g − 1 and is in the smooth locus of E(d, g)main.

Proof The following proof is for (a).

Write D = p1 + p2 + · · · + pd and D ′
= p ′

1 + p ′
2 + · · · + p ′

d. We choose local

coordinates zi and z ′i on C centered at pi and p ′
i respectively. Now as H is not a

tangent hyperplane C , we have pi 6= p j and p ′
i 6= p ′

j for i 6= j. It follows that

z1, z2, . . . , zd and z ′1, z ′2, . . . , z ′d descend to local co-ordinates on C (d) × C(d) centered

at (D, D ′). Furthermore, by Theorem 2.1, the Abel-Jacobi map is an isomorphism

around (D, D ′), since u(D), u(D ′) ∈ W d
smooth . So we have some local co-ordinates on

W d ×W d centered at
(

u(D), u(D ′)
)

. Let ω1, . . . , ωg be a basis for H0(Ω1
C ). We write

ω j as Ω ji(zi)dzi in a neighbourhood of pi and as Ω
′
ji(z ′j )dz ′j in a neighborhood of p ′

j .

Let

M(z) =








Ω11(z1) . . . Ω1d(zd) Ω
′
11(z ′1) . . . Ω

′
1d(z ′d)

Ω21(z1) . . . Ω2d(zd) Ω
′
21(z ′2) . . . Ω

′
2d(z ′d)

...
...

...
...

Ωg1(z1) . . . Ωgd(zd) Ω
′
g1(z ′1) . . . Ω

′
gd(z ′d)








.

In a neighborhood of
(

u(D), u(D ′)
)

, E(d, g) is defined by the vanishing of the g × g

minors of M(z), by Lemma 4.2. Now by Theorem 2.3, dim φK(D) = d − 1, so in a

neighborhood of
(

u(D), u(D ′)
)

the first d columns of M(z) are linearly independent.

Since M(Z) has rank g − 1 at the point
(

u(D), u(D ′)
)

we may reindex the points of
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D ′ so that the first g−1 columns of M(z) are linearly independent in a neighborhood

of
(

u(D), u(D ′)
)

. Set

fi = det M(z)(1,2,...,g−1,i),

where g − 1 < i ≤ 2d. By Proposition 4.1, E(d, g) is defined by fi in a neighbor-

hood of
(

u(D), u(D ′)
)

. The assertion that
(

u(D), u(D ′)
)

lies on a component of

dimension g − 1 of E(d, g) follows.

By definition, f j is independent of the co-ordinates z ′
i for g − d ≤ i ≤ d and

i 6= j − d. So the Jacobian matrix is of the form

































∂ fg

∂z1

∂ fg+1

∂z1
· · · ∂ f2d

∂z1

∂ fg

∂z2

∂ fg+1

∂z2
· · · ∂ f2d

∂z2

...
...

...
∂ fg

∂zd

∂ fg+1

∂zd
· · · ∂ f2d

∂zd

∂ fg

∂z ′

1

∂ fg+1

∂z ′

1
· · · ∂ f2d

∂z ′

1

∂ fg

∂z ′

2

∂ fg+1

∂z ′

2
· · · ∂ f2d

∂z ′

2

...
...

...
∂ fg

∂z ′

g−d−1

∂ fg+1

∂z ′

g−d−1

· · · ∂ f2d

∂z ′

g−d−1

∂ fg

∂z ′

g−d
0 · · · 0

0
∂ fg+1

∂z ′

g−d+1

· · · 0

...
...

...

0 0 · · · ∂ f2d

∂z ′

d


































∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(u(D),u(D ′))

.

Suppose that
(

u(D), u(D ′)
)

is a singular point of E(d, g). This is true if and only if

the above matrix has rank smaller than 2d− g + 1. It has rank smaller than 2d− g + 1

if and only if
∂ f j

∂z ′j

∣
∣
∣
∣

(u(D),u(D ′))

= 0

for some j. Now

0 =
∂ f j

∂z ′j

∣
∣
∣
∣

(u(D),u(D ′))

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ω11(p1) · · · Ω1d(pd) Ω
′
11(p ′

1) · · · Ω
′
1,g−1−d(p ′

g−1−d)
∂Ω

′

1 j

∂z ′

j

∣
∣
∣
∣

p j

Ω21(p1) · · · Ω2d(pd) Ω
′
21(p ′

1) · · · Ω
′
2,g−1−d(p ′

g−1−d)
∂Ω

′

2 j

∂z ′

j

∣
∣
∣
∣

p j

...
...

...
...

...

Ωg1(p1) · · · Ωgd(pd) Ω
′
g1(p ′

1) · · · Ω
′
g,g−1−d(p ′

g−1−d)
∂Ω

′

g j

∂z ′

j

∣
∣
∣
∣

p j

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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The first g −1 columns lie inside H. So it follows that the last column is contained

in H. This implies the tangent line to p ′
j is in H, which in turn contradicts H /∈ C∗.

A similar argument proves (b).

7 Generic Tangent Hyperplanes

Let C be a curve with a fixed non-degenerate embedding φ : C ↪→ P
n, with n ≥ 3.

Recall that all curves are assumed to be smooth and projective. The genus of our

curve will also be assume to be ≥ 4. We will denote by C∗ the dual variety to C inside

(P
n)∗. By forming the incidence correspondence

Σ = {(p, H) | p ∈ C, H ∈ (P
n)∗, Tp(C) ⊆ H}

and using standard arguments we see that C∗ is an irreducible hypersurface in (P
n)∗.

We use the notation Tp(C) to denote the tangent line to C at p inside P
n.

Let φ2 : C → G(2, n) be the second associated curve to φ. So φ2(p) is the unique

plane having intersection order at least 3 with C at p. (See [4, p. 263].) Let Γ2 ⊆
C × G(2, n) be the graph of φ2. We form the incidence correspondence

Σ
′′

= {(p, P, H) ∈ Γ2 × (P
n)∗ | (p, P) ∈ Γ2, and P ⊆ H}.

Let πC : be the projection πC : Σ
′′ → C . The fiber over p ∈ C is irreducible of di-

mension n − 3. It follows that Σ
′′ is irreducible of dimension n − 2. The projection

from Σ
′ ′ to C∗ is a finite morphism, hence the locus of hyperplanes having intersec-

tion at least 3 at some point of C is an irreducible closed subvariety of codimension

1 inside C∗.

Lemma 7.1 Let φK : C → P
g−1 be the canonical morphism.

(a) Suppose that C is a non-hyperelliptic curve so that φK is an immersion. Then for a

generic H ∈ C∗ ⊆ (P
g−1)∗,

H.C = 2p1 + p2 + p3 + · · · + p2g−3

where the pi are distinct.

(b) Suppose that C is a hyperelliptic curve so that φK(C) is a rational normal curve. Let

C∗ be the dual variety to φK(C). Let b1, . . . , b2g+2 be the branch points of φK . We

denote by b∗i ⊆ (P
g−1)∗ the dual variety to bi , consisting of all hyperplanes through

bi . So b∗i is a hyperplane in (P
g−1)∗. Then for a generic

H ∈ C∗ ∪ b∗1 ∪ · · · ∪ b∗2g+2

we have that

H.C = 2p1 + p2 + p3 + · · · + p2g−3

where the pi are distinct.
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Proof (a) We have seen, in the discussion preceding the lemma, that for a generic

H ∈ C∗, H.C has no points of multiplicity 3. So we need to show that a generic

tangent hyperplane has only one point of multiplicity 2. Form the incidence corre-

spondence

Σ
′
= {(p, q, P, H) ∈ C ×C × G(3, g − 1) × (P

g−1)∗ |

p 6= q, Tp(C), Tq(C) ⊆ P ⊆ H}.

Note that Σ
′ is only locally closed in C ×C × G(3, g − 1) × (P

g−1)∗. Let

Σ
′
= Σ

′
1 ∪ Σ

′
2 ∪ · · · ∪ Σ

′
l

be an irreducible decomposition for Σ
′. There is a projection Σ

′ → C ×C . From [6,

IV Theorem (3.10)] there is a closed subset X ⊆ C ×C such that for each (p, q) /∈ D,

the tangent lines Tp(C) and Tq(C) do not meet and X has codimension 1 in C × C .

Consider the restricted projection

πi : Σ
′
i −→ C ×C.

Now if there is a point (p, q) /∈ X, and in the image of Σ
′
i , the fiber over (p, q) has

dimension g − 5 as Tp(C) and Tq(C) span a 3-plane in P
g−1. Hence

dim Σ
′
i ≤ dimC ×C + dim(fibre)

= g − 3.

(Note that if g = 4, then there is no such (p, q).) If there is no such (p, q) then the

projection can be factored as

πi : Σ
′
i → X.

Now the fiber over a point has dimension g − 4. So as above dim Σ
′
i ≤ g − 3. Hence,

for the closure Σ ′, we have

dim Σ ′ ≤ g − 3.

So the image of the projection Σ ′ → C∗ has smaller than dimension g − 2. Since C∗

is a hypersurface, the result follows.

(b) First consider H ∈ C∗.

By the remark proceeding the lemma, it suffices to show that for a generic H ∈ C∗,

H.C has only one point of multiplicity two and H does not pass through one of

the bi . The first assertion follows as in (a). For the second assertion notice that

C∗, b∗1 , . . . , b∗2g+2 are distinct hypersurfaces in (P
g−1)∗. The result follows.

This last remark also deals with the case H ∈ bi
∗.

8 Proof of the Generalized Torelli Theorem

We wish to prove:
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Theorem 8.1 Let C be a smooth projective curve over C of genus g ≥ 1. If 1 ≤
d ≤ g − 1 is an integer then the pair

(
J(C),W d

)
determine the curve, that is if

(
J(C),W d(C)

)
∼=
(

J(C ′),W d(C ′)
)

for some other smooth projective curve C ′ then

C ′ ∼= C.

Proof We may assume g ≥ 4 as the cases g = 1, 2, 3 are covered by the regular

Torelli theorem. Furthermore we may reduce to the case (g − 1)/2 < d < g − 1 as

follows. If d = g − 1 we are done by Torelli’s theorem. If d < (g − 1)/2 then choose

n so that (g − 1)/2 < nd ≤ g − 1. Now we may replace W d by

W nd
= W d + W d + · · · + W d.
︸ ︷︷ ︸

n times

We will study the branch locus of the map

β : E(d, g)main
//___ (P

g−1)∗.

Note that we can recover the rational map β from the information
(

J(C),W d
)

.

Now let UE ⊆ E(d, g) be the open subset defined at the start of Section 5. We have a

morphism β|UE
: UE → (P

g−1)∗. Let B be the branch locus of β. This is the image

of the ramification locus inside (P
g−1)∗. A closed point p is in the ramification locus

if and only if β fails to be a local analytic isomorphism at p. At this point we break

the proof into two cases, the case where C is non-hyperelliptic and the case where C

is hyperelliptic.

First we study the case where C is non-hyperelliptic. We will show that B̄ = C∗.

Then C can be recovered from this information, see [5].

First we show that B̄ ⊆ C∗. Let H /∈ C∗. Then H.C = p1 + p2 + · · · + p2g−2 with

the pi distinct. Let T ⊆ (P
g−1)∗ be all the hyperplanes having transverse intersection

with C , that is T = (P
g−1)∗ −C∗. The incidence correspondence

I = {(p, H) ∈ C × T | p ∈ Supp H.C} −→ T

is a (2g − 2)-sheeted covering space of T [2, p. 110]. Given
(

u(D), u(D ′)
)
∈ UE with

β
((

u(D), u(D ′)
))

= H ∈ T. It is claimed that there exists an open neighborhood

V in the usual topology such that

β|V : V → β(V )

is an injection. To see this, first take H ∈ W ⊆ T, with sheets W1,W2, . . . ,W2g−2. Let

µi be the composition W → W i → C , which is holomorphic. Write D = p1+· · ·+pd.

The pi are distinct by choice of H, so we may find open pi ∈ Ui such that

(1) Ui ∩U j = ∅ for i 6= j

(2) Ui ⊆ µ j(W ) for some j.
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Writing D ′
= p ′

1 + · · · + p ′
d we may find similar open U ′

i . Set U = U1 × · · · ×
Ud, U ′

= U ′
1 × · · · × U ′

d . By condition (1), U × U ′ is an open neighborhood of

(p1 + · · ·+ pd, p ′
1 + · · ·+ p ′

d) on C(d)×C(d). As the Abel-Jacobi map is an isomorphism

near (p1 + · · · + pd, p ′
1 + · · · + p ′

d), as
(

u(D), u(D ′)
)
∈ W ddsmooth ×W ddsmooth . We

take V = β−1 ∩ (U ×U ′) ∩UE. It is easy to see that this works.

It follows from Theorem 7.6, of [3], that β is a local isomorphism at
(

u(D), u(D ′)
)

since this point is in the smooth locus of E(d, g) by Lemma 6.1. It remains to show

that B contains an open dense subset of C∗.

By Lemma 7.1 there exists an open subset V ⊆ C∗ such that for each H ∈ V ,

H.C = 2p1 + p2 + · · · + p2g−3,

with the p1, . . . , p2g−3 are distinct. Since g 6= 0 and

K ∼ 2p1 + p2 + · · · + p2g−3,

we have that H = φK(p1 + p2 + · · · + p2g−3). (Notice that there is no 2 in front of p1

in the last statement.) After reindexing we may assume that p1, p2, . . . , pg−1 span H

and the tangent line at p1 to C lies inside H. Let

D = q1 + q2 + · · · + qd and D ′
= q ′

1 + q ′
2 + · · · + q ′

d

where qi = pi for 1 ≤ i ≤ d and q ′
i = pg−i for 1 ≤ i ≤ d. So

(
u(D), u(D ′)

)
∈ UE.

Let zi (resp. z ′i ) be local coordinates centered at qi (resp. q ′
i ). Since qi 6= q j (resp.

q ′
i 6= q ′

j) for i 6= j, we have local coordinates (z1, z2, . . . , zd) (resp. (z ′1, z ′2, . . . , z ′d) on

C(d) centered at (q1, q2, . . . , qd) (resp. (q ′
1, . . . , q ′

d)). As u is an isomorphism around

D (resp. D ′), by Theorems 2.1 and 2.3 and as dim φK (D) = d−1 (resp. dim φK(D ′) =

d−1), we have that
(

(z1, z2, . . . , zd), (z ′1, z ′2, . . . , z ′d)
)

descend to local coordinates on

W d ×W d centered at
(

u(D), u(D ′)
)

.

Choose a basis ω1, . . . , ωg for H0(C, Ω1
C ) and write ωi = Ωi j(z j )dz j (resp. ωi =

Ω
′
i j(z ′j )dz ′j ). Let

M(z) =







Ω11(z1) Ω12(z2) · · · Ω1,d(zd) Ω
′
11(z ′1) Ω

′
12(z ′2) · · · Ω

′
1,d(z ′d)

Ω21(z1) Ω22(z2) · · · Ω2,d(zd) Ω
′
21(z ′1) Ω

′
22(z ′2) · · · Ω

′
2,d(z ′d)

· · · · · · · · · · · · · · · · · ·
Ωg1(z1) Ωg2(z2) · · · Ωg,d(zd) Ω

′
g1(z ′1) Ω

′
g2(z ′2) · · · Ω

′
g,d(z ′d)







and let

M ′(z)

=








∂Ω11(z1)
∂z1

Ω12(z2) · · · Ω1,d(zd) Ω
′
11(z ′1) Ω

′
12(z ′2) · · · Ω

′
1,d(z ′d)

∂Ω21(z1)
∂z1

Ω22(z2) · · · Ω2,d(zd) Ω
′
21(z ′1) Ω

′
22(z ′2) · · · Ω

′
2,d(z ′d)

· · · · · · · · · · · · · · · · · ·
∂Ωg1(z1)

∂z1
Ωg2(z2) · · · Ωg,d(zd) Ω

′
g1(z ′1) Ω

′
g2(z ′2) · · · Ω

′
g,d(z ′d)








https://doi.org/10.4153/CJM-2003-012-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-012-5


262 Ajneet Dhillon

By definition of D and D ′ the first g −1 columns of M(z) are linearly independent

in a neighborhood of
(

u(D), u(D ′)
)

. So E(d, g) is defined by

fi = det
(

M(z)1,2,...,g−1,i

)
,

where g ≤ i ≤ 2d, in a neighborhood of
(

u(D), u(D ′)
)

. (To see this, use Propo-

sition 4.1 as in Lemma 6.1.) Now since the tangent line to C at p1 is inside H we

have
∂ fi

∂z1

= det
(

M ′(z)1,2,...,g−1,i

) ∣
∣

(u(D),u(D ′))
= 0.

So the Jacobian matrix, as in the proof of Lemma 6.1, reduces to






























0 0 · · · 0
∂ fg

∂z2

∂ fg+1

∂z2
· · · ∂ f2d

∂z2

...
...

...
∂ fg

∂zd

∂ fg+1

∂zd
· · · ∂ f2d

∂zd

∂ fg

∂z ′

1

∂ fg+1

∂z ′

1
· · · ∂ f2d

∂z ′

1

...
...

...
∂ fg

∂z ′

g−1−d

∂ fg+1

∂z ′

g−1−d

· · · ∂ f2d

∂z ′

g−1−d

∂ fg

∂z ′

g−d

0 · · · 0

0
∂ fg+1

∂z ′

g−d+1
· · · 0

. . .

0 0 · · · ∂ f2d
∂z ′

d






























.

Arguing as in Lemma 6.1 we find that
(

u(D), u(D ′)
)

is a smooth point of E(d, g).

We also see that ∂
∂z1

∣
∣

(u(D),u(D ′))
is in the null space of the above Jacobian. Hence

∂
∂z1

∣
∣

(u(D),u(D ′))
is in fact a tangential to E(d, g) at

(
u(D), u(D ′)

)
. In order to show that

H ∈ B it will suffice to show that ∂
∂z1

∣
∣

(u(D),u(D ′))
maps to zero under the morphism of

tangent space induced by β. Let

N(z) =






Ω11(z1) · · · Ω1d(zd) Ω
′
11(z ′1) · · · Ω1,g−1−d(zg−1−d)

...
...

...
...

Ωg1(z1) · · · Ωgd(zd) Ω
′
g1(z ′1) · · · Ωg,g−1−d(zg−1−d)




 .

So N(z) is just the first g−1 columns of M(z). In a neighborhood of
(

u(D), u(D ′)
)

the morphism β : U → (P
g−1)∗ is given by z 7→ col. space N(z). Identify (P

g−1)∗ ∼=
P(
∧g−1

C
g) we see that β is the morphism

z 7−→
[

det
(

N(z)1

)
: det

(
N(z)2

)
: · · · : det

(
N(z)g

)]
.
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Recall that N(z)i is the submatrix of N(z) obtained by deleting the i-th row. We may

assume that det
(

N(z)1

)
6= 0. So we need to show that

∂

∂z1

∣
∣
∣
∣

(u(D),u(D ′))

(

det
(

N(z)i

)

det
(

N(z)1

)

)

= 0.

That is
∂ det

(
N(z)1

)

∂z1

. det
(

N(z)i

)
=

∂ det
(

N(z)i

)

∂z1

. det
(

N(z)1

)

after evaluation at
(

u(D), u(D ′)
)

. Let

∂N(z)

∂z1

be the matrix obtained from N(z) by differentiating the first column with respect z1.

Observe that

col. space
∂N(z)

∂z1

∣
∣
∣
∣

(u(D),u(D ′))

⊆ col. space N(z)|(u(D),u(D ′))

as the tangent line at p1 lies inside H. It is a general fact from linear algebra that given

two g × (g − 1) matrices M, N with col. space M ⊆ col. space N then for each i, j in

the range 1 ≤ i, j ≤ g we have

det(Mi) det(N j) = det(M j) det(Ni).

We will include the proof of this statement at the end of this proof for completeness.

This shows that B̄ = C∗.

Now we treat the case that C is a hyperelliptic curve. We show that B̄ = C∗ ∪
b∗1 ∪ b∗2 ∪ · · · ∪ b∗2g+2 where the bi are the branch points of the canonical morphism

φK : C → (P
g−1)∗. The proof is almost identical to the above. Here are a few details.

The same proof as in the non-hyperelliptic case shows that B̄ ⊆ C∗ ∪ b∗1 ∪ b∗2 ∪ · · · ∪
b∗2g+2, and similarly we show that B̄ ⊇ C∗. To show that B̄ ⊇ b∗i proceed as follows.

From Lemma 7.1 we know that for a generic H ∈ b∗i that

H.C = 2p1 + p2 + · · · + p2g−3

where the pi are distinct and p1 = b1. As above we form, after appropriate reindex-

ing,

D = q1 + q2 + · · · + qd and D ′
= q ′

1 + q ′
2 + · · · + q ′

d.

Note that these two divisors are defined exactly as they were before. Also define, as

before, zi , z ′i , M(z), M ′(z) and fi . To see that

∂ fi

∂z1

∣
∣
∣
∣

(u(D),u(D ′))

= 0,
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first observe that since p1 is a branch point, J(φK)|q1
= 0. Around q1,

φK = [Ω11(z1) : · · · : Ωg1(z1)].

We may assume that Ω11(z1) 6= 0. Since the Jacobian at q1 vanishes we see that

Ω11(q1)
∂Ω1 j(q1)

∂z1

∣
∣
∣
∣

q1

=
∂Ω11(z1)

∂z1

∣
∣
∣
∣

q1

Ω1 j(q1),

which in turn implies

φK (q1) = [Ω11(q1) : · · · : Ωg1(q1)] =

[
∂Ω11

∂z1

: · · · :
∂Ωg1

∂z1

]∣
∣
∣
∣

q1

.

So
∂ fi

∂z1

∣
∣
∣
∣

(u(D),u(D ′))

= fi |(u(D),u(D ′)) = 0.

Now proceed as before.

Here is the linear algebra result that was needed before.

Lemma 8.2 Let M, N be two g × (g − 1) matrices over C. If

col. space M ⊆ col. spaceN

then

(1) det Mi det N j = det M j det Ni ,

for each i, j with 1 ≤ i, j ≤ g. Recall that Mi is the submatrix of M obtained by deleting

the i-th row.

Proof Firstly if rank M < g − 1 then both sides of (1) vanish. So we may assume

M, N are of maximal rank and that their column spaces are equal. So N = M.H for

some H ∈ Gl(g − 1, C). The result follows from the observation (M.H)i = Mi .H.

Corollary 8.3 Let C and C ′ be two smooth projective curves and let d be an integer less

than or equal to the genus of C. If C (d) ∼= C ′(d)
then C ∼= C ′.

Proof This is because the Albanese variety Alb(C (d)) is isomorphic to J(C) and the

image of C(d) under the Albanese map is W d.
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