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A CONJECTURE OF BACHMUTH AND MOCHIZUKI
ON AUTOMORPHISMS OF SOLUBLE GROUPS

BRIAN HARTLEY

1. Introduction. In [1], Bachmuth and Mochizuki conjecture, by analogy
with a celebrated result of Tits on linear groups [8], that a finitely generated
group of automorphisms of a finitely generated soluble group either contains
a soluble subgroup of finite index (which may of course be taken to be normal)
or contains a non-abelian free subgroup. They point out that their conjecture
holds for nilpotent-by-abelian groups and in some other cases. We show here
that it breaks down for groups of derived length three. In order to describe
niore precisely how the conjecture breaks down, we will say that a group G is
perfectly distributed, if every subgroup of finite index of G contains a non-
trivial finitely generated perfect subgroup. Clearly no perfectly distributed
group can be soluble-by-finite, and in fact no such group can even have an
SN-subgroup of finite index. Here SN is the class of all groups having a
(generalized) series with abelian factors (see {6] cr [7]).

THEOREM 1. There exists a finitely-generated soluble group G of derived length
three whose uutomorphism group contains subgroups Lol I' sich that

(a) T s finitely generated,

(b) T/Ty is infinite cyclic,

(c) T 1s perfectly distributed,

(d) Ty s locally finite.

The proof will show that we can even arrange that Ty is locally a direct
power of any given finite non-abelian simple group. Clearly T' is not soluble-
by-finite, nor does it contain a non-abelian free subgroup.

A question which arises naturally is: which groups can be faithfully repre-
sented by automorphisms of finitely generated soluble groups? The only
restriction I know on such groups is the obvious one that they must be count-
able, and it would be interesting to know if there are others. In another direc-
tion, one may ask for which finitely-generated soluble groups the Bachmuth-
Mochizuki Conjecture holds. The group G of Theorem 1 is actually an exten-
sion of a locally finite group by an infinite cyclic group, and so the case of
torsion-free G seems to merit consideration. But a somewhat more complicated
version of the construction for Theorem 1 gives

THEOREM 2. There exists a finitely-generated soluble group G of derived length
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four whose automorphism group contains « torsion-free subgroup T having a
normal subgroup T such that (a)—(c) of Theorem 1 hold. Further,
(d") every finitely generated subgroup of Ty is abelian-by-finite.

2. The constructions. A few remarks will clarify the relationship between
the problems we are discussing and certain problems of matrix representability.
Let F be a finitely-generated soluble group and let R be a ring homomorphic
image of the integral group ring ZF. Let B Dbe any subgroup of M ,(R)*,
where M ,(R) is the ring of all ¢ X ¢ matrices over R and stars denote groups
of units. Then we can identify B with a group of automorphisms of a free
right R-module 1 of rank ¢{. We can view V as a Z F-module using the epimor-
phism {rom ZF to R and form the split extension G = VF. This is a finitely-
generated soluble group, and for each b € B, the map by : (v, f) — (vd, f) is
an automorphism of it. Clearly ¢ embeds B in Aut G. Thus we have

LeEmMA 1. If Fis any finitely-generated soluble group and R 1is any ring tmage
of ZF, then any group of invertible matrices over R can be faithfully represented
by automorphisms of some finitely generated soluble group.

In the light of this, we shall see that Theorems 1 and 2 follow from

THEOREM 3. Let k be any prime field, and let p be a prime different from the
characteristic of k. Let t = 2 and let H be a subgroup of M,(k)* containing a
normal finitely-generated subgroup X consisting of diagonal matrices and such
that H/X is a finite non-abelian simple group. Then M ,(k[C, { C,])* contains
subgroups Ty < T satisfying (a)—(c) of Theorem 1, together with

(d"") Ty s locally a finite subdirect power of H.

In more detail, (d’’) means that every finite set of elements of T'y lies in a
subgroup of Ty which is isomorphic to a subdirect product of finitely many
copies of H. For 1 = n = o, C, denotes a cyclic group of order #.

Deduction of Theorem 1. We take k to be any finite prime field, of charac-
teristic ¢ say, and p to be any prime different from ¢. If H is any finite non-
abelian simple group, then we can embed H in M,(k)* for suitable ¢, taking
the normal diagonal subgroup X to be 1. The corresponding group T produced
by Theorem 3 satisfies (a)—(d) of Theorem 1; (d) of course follows from (d").
By Lemma 1, T is faithfully represented by automorphisms of a finitely-
generated soluble group G, which is actually a split extension of an elementary
abelian g-group 4 by C, ! C,. Thus G has derived length at most three. Let
D = C,{ C,. Then D’ is infinite and so fixes no non-trivial element of the
free kD-module 4. Hence [4, D', D'] # 1, from which it follows that G'" ## 1.
Therefore the derived length of G is three exactly.

It is perhaps most natural to try to prove Theorem 2 by applying Lemma 1
with R = ZF for a suitable finitely-generated soluble group F. But we shall
see later (Theorem 4) that a group of invertible matrices over such an R
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cannot be perfectly distributed, which prevents us from obtaining examples
like T in this way. For this reason, we have had to resort to a somewhat more
devious approach.

Deduction of Theorem 2. We first require a finitely-generated soluble group 7°
whose integral group ring contains an ideal I such that Z7'/I contains a sub-
ring (with the same identity) isomorphic to the rational field Q. We may
take as 1" any finitely-generated soluble group containing a free abelian sub-
group Y of infinite rank in its centre—such groups are constructed for example
in [2, Theorem 7] or [4]. There is an epimorphism ¥ — Q%*, and this can be
extended to a ring epimorphism ZY — Q with kernel J, say. Then I = JT
is a two-sided ideal of ZT with IMNZY = J, and so the image of ZYV in
Z7/I = S is isomorphic to Q. Now let F =T X (C_,? C.). Then ZF =
ZT1[C, ) C,], the group ring of C_ { C, over ZT. Thus, if p is any prime, we
have an epimorphism ZF — S[C, ! C,] = R, and this contains a subring
(with the same 1) isomorphic to Q[C, ¢ C.].

Let L be any finite non-abelian simple group and let E be a free group of
finite rank containing a normal subgroup D such that E/D =~ L. Let H =
E/D’. Then H is torsion-free [5]. Let X = D/D’, which is free abelian of
finite rank. X has a faithful one-dimensional representation over Q, and
inducing this to H, we obtain a faithful representation of H over Q in which X
acts diagonally. Thus, for suitable ¢t = 2, we may view H as a subgroup of
M, (Q)*, with X a normal diagonal subgroup such that H/C is finite non-
abelian simple.

If T and Ty are the subgroups of M,(Q[C, ! C.1)* = M,(R)* furnished by
Theorem 3, then they satisfy (a)—(c) of Theorem 1, and it follows from (d"")
that T is torsion-free and (d") of Theorem 2 holds, since H is abelian-by-finite
by assumption. The group G given by Lemma 1, on which T operates faithfully,
is the split extension VF, where F = T X (C, ! C,), which is torsion-free,
and V is a free R-module of rank ¢. Since R contains a subring isomorphic
to Q and containing the identity of R, it is additively torsion-free. Hence
so is V, whence G is torsion-free.

It remains to consider the derived length of G. If we take T to be centre-by-
metabelian, with ¥ < 7", as we may (2, Theorem 7; 4]), then G clearly has
derived length at most four. Let y be an element of ¥ which is not mapped to 1
under the epimorphism ¥ — Q* with which we began. Then y — 1 is a non-
zero element of S lying in a subring isomorphic to Q, and hence (y — 1)2 0
in S and in R. Therefore V(y — 1)2 # 0, and [V, y, ¥] # 1 in multiplicative
notation. Since y € T < G”, this tells us that G’/ is not abelian, and so G
has derived length four exactly. The deduction of Theorem 2 is complete.

Now we must embark on the proof of Theorem 3. Let & be a prime field,
and let C be a cyclic group of prime order p different from the characteristic
of k. Let 4 be the group algebra kC. Since 4 is commutative and semisimple
we can write 4 = F @ F, where F is a minimal ideal of A generated by an
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idempotent ¢, and F = A(1 —¢). Let m = 1, and for 0 £ j < m, let ¢ > ¢;
be an isomorphism of C onto a group C;. Let R = k[Cy X C; X ... X C,],
and extend ¢ — ¢, to a k-algebra isomorphism of 4 onto 4; = kC; < R. Then
F,is a field contained in 4 ; with identity e;; we emphasize that /'; and R have
different identity elements.

It will be convenient to think of k as an abstract field, rather than identify-
ing it with any particular subfield of R or A. Since % is a prime field, there is a
unique ring monomorphism of k into F;, namely ¢;: X — Xe;(\ € k). We
also write ¢; for the induced monomorphism A ,(k) — M ,(F;). Let H be as
given, so that H < M ,(k)*, and let
(1) H; = {he;+ (1g —e;))] : h € HY,
where 1z is the identity of R and I is the ¢ X ¢ identity matrix. Since
ho; € M(F,), hg;and (1 — e;)I annihilate each other, and so

(he; + (M — e) ) (e, + (1 — €;)I) = 1.
Consequently H; < M,(R)*, and H,; = H. Let
Q) J=(H,H,...,H
We proceed to establish some facts about J.

LeMmmMmA 2. J is a finite subdirect power of H.

Proof. By Maschke’'s Theorem, R is a commutative semisimple algebra,
that is, we can write

(3) R = @ K)\r

AEA

where A is a finite set and K, is a field with identity f say. Let m) be the pro-
jection of R on K, associated with (3), and let y) be the unique monomor-
phism of & into K,. Because of the uniqueness of ¥,, we have

(4) dh=¢m (O=j=mNcA)

unless F;my = 0. The maps induced by ¢, and m\ on the corresponding ¢ X ¢
matrix rings will be denoted by the same symbol, and then (4) holds for the
maps on ¢ X ¢ matrix rings also. We obtain from (3) corresponding decom-
positions in the matrix rings, namely

M, (R) = & M,/(K))
MeA
and

5) M(R)* = DrG,,
NeA

where G\ = M ,(K))* and Dr denotes direct product of groups. Explicitly,
Gy = {t+ (Ig — f); £ € M (K)*
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Thus, the projection g, of M,(R)* on Gy associated with (5) is given by
6) am =am + (Ig—H)T (a€ M (R)*)

Now let
(7)) My={hi+ (lg — ) h € H}.

Then like H;, My=H and My =< M, (R)*. We wish to describe H . If
Fym, = 0, then from (1) we obtain immediately that H;m = { fAl}, whence
(6) gives Hmy = {I}. On the other hand, if F;m # 0, then e;m = f = 1zm,
(1g —e;)m =0, and Hym, = {hemy i b € H}. From (4), (6) and (7), we
see that H,m = M, in this case. It follows that Jon = (Hom, . . ., H.m) = {1}
or M,, and so J is a subdirect product of those M) corresponding to indices A
such that Jn, ¢ {I}. Lemma 2 is established.

By assumption, H contains a normal finitely-generated diagonal subgroup
X such that H/X is a finite non-abelian simple group. Let

C)\ = {Xl//)\+ (IR “—f)\)llx € X}
be the subgroup of M, corresponding to X, and

8) C=DrG

AEA

Then by the proof of Lemma 2, J/J M C is a subdirect product of certain
of the M\/C\, each of which is isomorphic to the finite non-abelian simple
group H/X. We deduce

Lemyma 3. J/J M C s a finite direct power of H/X. J M C is finitely-generated
abelian.

Next we require
Lemma 4. H,, £ (Hy, ..., Hp1)(T N C).

Proof. In R, we have d = (1gp —ey) (g —e1)... (1g — emr)en # 0.
Hence dm\ #% 0 for some XN € A. Then (1z —e;)m # 0 and so em =
0 (0 =7 =m — 1). Therefore, as we saw in the proof of Lemma 2, H,m\ = {I}

(0=j=m—1). Since JMN C consists of diagonal matrices, so doces
(J M C)ny. Hence

(Hoy ..., Hye)(T N C)m

consists of diagonal matrices. But e,m # 0 and so H,m = M, = H, which
is not even abelian. The claim follows.

Finally, before proving Theorem 3, we note

LEMMA 5. Let S be any group containing an abelian normal subgroup U such
that S/ U 1s perfect. Then S’ is perfect.
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Proof. We have S = S'U, and so, since U is abelian, (U, S] = [U, S'] <
[U,S,S] =1U,S,S] £8”. Therefore, passing to S/[U, S], we may assume
that U is in the centre of S. But then any commutator in S has the form
[su, s'u’], with s, s' € 8, u, w' € U, and since # and #' are central, this is
equal to [s, s’], which lies in S”’. Hence .S" = S/, as claimed.

Proof of Theorem 3. We have to consider M,(k[C, ! C,])* where k is a
prime field of characteristic different from p. Let C be the C, and {(x) the C,,
embedded in C, { C, in the usual way. Let 4, F, e be as above, and let ¢ — ¢;
be the isomorphism ¢ — ¢* (¢ € C,i € Z) of C onto Cy = C*. In the notation

above, 4 is now identified with 4,. Let § = xI and
I'=(H,0) = MkCQ(x)D*
Since H is finitely-generated so is T'. Thus (a) of Theorem 1 holds. Let
Ty=(H" :1€Z).
Then T'y < T, and T = T'4(f). Noting that
(67180) oy = x g (&€ M(R[C 1 (x)])¥)

we find that Ty £ M,(C)*, where C = (C*¥ :47 ¢ Z) is the base group of
C } {x). Hence Ty M (#) = {1}, and so T'/Ty is infinite cyclic. This gives (b).
Let m 21, 0 £j < m. Let ¢ be the monomorphism of k into F, = F.
Then ¢; : N = (A\go)* is a monomorphism of k into F,, and must be the unique
such. It follows that H* = H,, where H, is given by (1). By Lemma 2,

) J = (H H ... H™ = (HyH,... H,)

is a finite subdirect power of H. Since any finite subset of T'y is conjugate
under a power of 8 to a subset of some such J, (d’") of Theorem 3 holds.

[t remains to show that T’y is perfectly distributed. To do this, it suffices
to show that each normal subgroup A of finite index in T'y contains a non-
trivial finitely-generated perfect subgroup. Since [Ty : A| < 0 we can write
I'y = AF, where F is a subgroup generated by a finite number of the H?.
Replacing A by a conjugate under a power of 8 if necessary, we may assume
that

(10) To = A(Hy, ..., Hpy)

for some m = 1. Let C be defined as in (8) and J be as in (9) above. If
JMN A =JNC, then we find from (10) that J = (Hy, ..., H,—1)(J N C),
contradicting Lemma 4. Therefore S = J/MN A £ JMNC. Since JM A J,
Lemma 3 shows that S/J M C is a non-trivial direct power of the finite non-
abelian simple group H/X, and so is perfect. Since J M C is abelian, Lemma 5
shows that S’ is perfect, and clearly S” # 1. Finally, since J is a finite subdirect
power of H, which clearly satisfies the maximal condition on subgroups, every
subgroup of J, and in particular S, is finitely-generated. The proof of Theorem
3 is complete.
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3. Groups of invertible matrices over group rings of generalized
soluble groups. We conclude by drawing attention to a property of groups
of invertible matrices over integral group ring of soluble groups, and even of
SI-groups, where ST is the class of all groups having a normal (in the whole
group) series with abelian factors (see [6; 7]). This seems of particular interest
because we have been unable to discover any analogous results when the
coefficient ring is a field; Theorem 3 at any rate shows that our result becomes
false as it stands if Z is replaced by a field. In fact, we have been unable to
discover any group-theoretic restrictions whatever on subgroups of (kF)*,
where £ is a field and F' is an arbitrary finitely generated soluble group.

TuEOREM 4. If G 1s an SI-group and t = 1, then M ,(ZG)* contains a normal
SI-subgroup A of finite index.

In fact, the proof will show that we can arrange that M ,(ZG)*/A is a linear
group of degree ¢ over any given finite prime field, and that A has an abelian
series with terms normal in M ,(ZG)*.

Proof. By refining the given series of G suitably, we see that we may assume
that G has a normal series {4,, B, : ¢ € Q} in which each factor is either
torsion-free abelian or elementary abelian. If we have a subgroup of G denoted
by a capital Italic letter, we will denote the augmentation ideal of that sub-
group by the corresponding small German letter. Also, XG will denote the
right ideal of ZG generated by a non-empty subset X of ZG. We show that

(11) {a.G, 0,G: o € Q}

is a series of two-sided ideals of g. Here a series of ideals is defined in the same
way as a series of subgroups (see [7, Part 1, p. 9]), and the only difficulty is to
show that if 0 # « € g, then there exists 7 € @ such that o € a,G, a ¢ b,G.
To see this, let 2 be the set of all ¢ € Q such that the sum of the coefficients
of a over every coset of 4, is zero. Z is not empty since the support of « must
be contained in a suitable 4,. For each ¢ € £ we have a partition P, of the
support supp @ of « determined by the cosets of A,, and we may choose
o € Z such that this partition is as fine as possible. Consider the finite set X
of elements xy~!, where x and y range over all distinct pairs of elements of
supp @ which come from the same coset of 4,. If X = ¢ then the elements
of supp «a all lie in distinct cosets of 4,, while the sum of the coefficients of «
over each coset of 4, is zero. In other words, & = 0. Hence X # ¢, and there
exists 7 € @ such that all members of X belong to 4., while not all belong to
B.. Thus there exist x¢ % yo in supp a such that x¢y,™! € 4., xpye~' ¢ B..
It follows that 7 < ¢ and that P, = P,. Hence r € Z, and a € a,G. Suppose
if possible that a € b,G. Since x¢y,~! ¢ B, the partition Q. of supp « deter-
mined by the cosets of B, is a strict refinement of P,. The sum of the coefficients
of a over each part of Q. is zero. There exists u € @ such that if ¥V is the set
of all uv=1, where u, v range over all distinct pairs of elements of supp « which

https://doi.org/10.4153/CJM-1976-129-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-129-7

SOLUBLE GROUPS 1309

lie in the same coset of B, then ¥ = A4,, ¥ £ B,. Then r > p. For otherwise
B, £ B,, while there exists an element ;™! of ¥ lying in B, but not in B,.
Hence 4, = B,, and P, = Q.. Thus u € Z, while P, refines P, properly, a
contradiction.

Let ¢ € Q and G = G/B,. The natural map G — G induces a ring homo-
morphism of ZG onto ZG with kernel b,G and which maps a,G onto a,G. Now
a, is a residually nilpotent ideal of ZA,, since 4, is either torsion-free abelian
or elementary abelian ([3, Theorem E, Lemma 18]). Since (@,G)" = §,"G =
@ier a5, where # =1 and T is a transversal to 4, in G, we have
Ny (@,G)" = 0. Hence

A (@G) + 6,G) = b,G.
n=1

It follows that the series (11) may be refined to a series of g, consisting of
two-sided ideals of ZG, with factors of square zero. Let p be any prime. Then
since ZG/g = Z, and Ny=1 p"Z = 0, we may extend this series to a series

{Ao, Vo: 6 € 6}
of ¢ 4+ pZ, with factors of square zero. Then
{M,(Ag), Mt(VB) NS 6}

is a series of M ,(g + pZ), consisting of ideals of M,(ZG) and with factors
of square zero.

Let T = M,(ZG)*, A=TN (1 + Mg+ pZ)). The augmentation, fol-
lowed by the natural map Z — Z/pZ, induces a homomorphism of T into
M,(Z,)* with kernel A, and so T'/A is a Z,-linear group of degree {. In par-
ticular, |T: Al < oo.LetEg = AN (1 + M,(Ao)), Fo = AN (1 + M, (Ve)).
Then

(12) {Es, Fs: 6 € 6}

is a series of A consisting of normal subgroups of T. Let & 5 € Ep. Then
t=14+an=1+4+ 8, witha, 8 € M,(Ap). Since

A4a)(l —a) =1—a*=1mod M,(Vy),

we have £1=1 — amod M,(V,), and similarly for ». Therefore [, 7] =
EFltn= (1 —a)(1 = B)(1 +a)(1 + B8) = 1 mod M,(Vs), since

M. (Ag)? = M (Vo).
Hence [£, 7] € Fy, and the factors of (12) are abelian. This proves Theorem 4.
We mention again in conclusion the

ProBLEM. What can be said about subgroups of (kF)*, where k is a field and F
15 a finitely-generated soluble group?
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Added in proof. A different kind of counterexample to the Bachmuth-
Mochizuki conjecture, involving an infinite cyclic extension of the restricted
symmetric group on a countable set, has been constructed independently by
P. M. Neumann (unpublished).
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