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We present results from open-channel, Euler–Lagrange (EL) simulations of turbulent flow
over an erodible particle bed at a shear Reynolds number of Reτ = 180. Upon space and
time averaging, our simulations correctly reproduce the Wong & Parker (ASCE J. Hydraul.
Engng, vol. 132, issue 11, 2006, pp. 1159–1168) bedload transport relation (WP). However,
local and instantaneous sediment flux shows orders of magnitude scatter around the
WP prediction. Visualization of the vortical structures using swirling strength shows the
existence of bed-penetrating Kelvin–Helmholtz (KH) vortex packets, which coupled with
particle inertia are primarily responsible for the large scatter. The results also show that
Euler–Euler (EE) simulations, where the individual sediment grains are not distinguished,
are still able to reliably capture the turbulent shear stress variation, however, they do not
capture the wide distribution of sediment flux indicative of saltating transport. The KH
vortices induce non-zero streamwise and bed-normal velocities at the upper surface of the
bed, which must be considered in EE simulations.
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1. Introduction

Meyer-Peter & Müller proposed in 1948 an empirical equation (hereafter referred to
as MPM) relating sediment flux to excess Shields stress (Meyer-Peter & Müller 1948).
Their experiments were conducted for bedload dominated transport on nearly horizontal
sediment beds. They proposed the well known power law expression of q = 8(θ − θcr)

1.5,
where q is the non-dimensional volumetric sediment flux per unit width, θ is the Shields
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number and θcr is the critical Shields number for incipient transport. Nearly six decades
later, Wong & Parker (2006) corrected an error and proposed the modified power-law q =
4.93(θ − θcr)

1.6 (hereafter referred to as WP). The Shields number θ = τ ∗
w/(ρ∗

f Rg∗d∗
p), is

a function of fluid and sediment properties, where τ ∗
w is the local shear stress, ρ∗

f is the fluid
density, R is the submerged specific gravity of the sediment, d∗

p is the sediment diameter
and g∗ is the gravitational acceleration. The critical value θ∗

cr is usually given as a function

of particle Reynolds number, Rep =
√

Rg∗d∗3
p /ν∗ (e.g. Shields 1936; Garcia 2008), where

ν∗ is the fluid kinematic viscosity.
Wong & Parker (2006) developed their bedload transport relation to estimate the

total sediment flux for large-scale geophysical flows. It is best suited for cases where
the sediment bed encompasses a very large number of particles and is subjected to a
stationary shearing flow for times much larger than the turbulent flow time scales (e.g.
Charru 2006; Ouriemi, Aussillous & Guazzelli 2009; Lajeunesse, Malverti & Charru
2010; Mazzuoli et al. 2016, 2020). Wong & Parker (2006) considered sediment flux as
a statistical quantity that is averaged over turbulent fluctuations, stochastic arrangement of
particles at the microscale, and over macroscale bedforms (e.g. Parteli, Durán & Herrmann
2007; Andreotti, Claudin & Pouliquen 2010); WP is not intended to be used in a local and
instantaneous setting.

Sediment transport at the grain level is difficult to predict as it requires knowledge
of turbulent fluctuations and particle bed arrangement. Lee, Ha & Balachandar (2012)
compared the geometric pocket formed by surrounding particles within which an
individual particle resides with an energy barrier. They argued that this energy barrier,
which varies from one pocket geometry to another, must be overcome for particles to
initiate irreversible downstream migration. A particle lying within a pocket will start to
move once the hydrodynamic forces acting on it are sufficient to overcome its weight and
frictional resistance. However, the particle will escape the pocket, and contribute to the
sediment flux, only if the hydrodynamic forces are sustained long enough, i.e. if sufficient
work is done on the particle to overcome the energy barrier.

After a particle has overcome its energy barrier, its velocity will depend on the history
of forces acting on the particle. This implies that for turbulent flows, the instantaneous
sediment flux, which is proportional to the local particle velocity, is not solely dependent
on the instantaneous excess Shields stress (θ − θcr), but on the cumulative effect of the past
history of excess Shields stress. This temporal shift is related to the spatial lag expounded
in the context of aeolian transport (Charru 2006; Parteli et al. 2007; Andreotti et al. 2010),
where the saturation length is defined as the distance needed for the sediment flux to relax
to new forcing conditions.

One of the objectives of this study is to explore the orders of magnitude variation in the
local and instantaneous sediment flux about the WP prediction. These differences are due
to the periodic train of bed-penetrating Kelvin–Helmholtz (KH) rollers that we observe
in the simulated sediment-laden porous beds. These spanwise rollers have previously
been explained based on the inflectional nature of the mean velocity profile (Jimenez
et al. 2001) and their existence has been inferred experimentally (e.g. Manes, Poggi &
Ridolfi 2011; Voermans et al. 2017). To be more specific, Manes et al. (2011) reported
the existence of such eddies, but only for very permeable porous foams and not granular
beds. Voermans et al. (2017) were the first to provide measurements at the bed–fluid
interface of granular beds using the refractive index matching particle image velocimetry
technique. However, they did not detect or report on the existence of KH instabilities. They
observed that the bulk velocity statistics at the bed–fluid interface tends to those reported
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Figure 1. (a) Isometric view of a portion of the numerical domain. The uppermost layer of the particle bed is
coloured by the particle’s vertical location. Schematics of mean profiles of the streamwise component of the
flow and volume fraction are shown in red and green, respectively. (b) The mean streamwise velocity profile as
a function of z normalized by the boundary layer thickness δ. Greyscale lines are from Voermans, Ghisalberti
& Ivey (2017), with darker colours denoting less permeable granular beds. The blue line corresponds to case
S0 (see table 1), which is the least permeable case considered. The simulation result is in reasonable agreement
with the trend in the experiments.

for large-permeability beds (i.e. vegetation-type canopies), where such KH instabilities
occur provided the permeability Reynolds number reaches the value of 2–3.

When averaged over long duration and large spatial extent, the variability in sediment
flux vanishes, and thus, WP can be used reliably in the spatially and temporally
averaged setting (Kidanemariam & Uhlmann 2017). Another important consequence of
the bed-penetrating KH rollers is that the local streamwise and bed-normal fluid velocities
at the bed–fluid interface (defined as volume fraction value of 0.1 by Kidanemariam
& Uhlmann 2017) is non-zero. This implies that the traditionally used no-slip and
no-penetration conditions (e.g. Chou & Fringer 2010; Zgheib et al. 2018a) in Euler–Euler
(EE) simulations with Exner equation for bed evolution must be reconsidered. The
choice of a threshold value of 0.1 for the particle volume fraction is somewhat arbitrary
unlike the ‘resting bed elevation’ definition, which is the location within the bed where
particles do not move (Vittori et al. 2020). Nonetheless, the volume fraction isosurface of
〈φ〉 = 0.1 is observed to closely match the maximum location of the particle flux 〈upφ〉
in all the cases, thus demonstrating some consistency of the definition. Here up is the
streamwise component of the particle velocity field. This paper additionally provides a
simple correlation of the mean streamwise velocity condition at the bed–fluid interface.

2. Numerical model

A schematic representation of the numerical domain is shown in figure 1. Before the start
of the simulation, the bed is frozen, and the flow is allowed to reach a stationary state.
Once reached, the particle bed is unfrozen and each simulation is run for two time units
such that the particle bed remains featureless without bedforms for the entire duration of
the simulation. Data is collected from t = 0.5 to t = 2 to ensure the initial transient state
when particles are first allowed to move does not influence the results.

The mean flow depth H∗
f and shear velocity U∗

τ are chosen as length and velocity scales,
where U∗

τ is related to the mean streamwise pressure gradient as U∗2
τ = ∇∗P∗H∗

f /ρ∗
f .

The simulations consist of a particle bed composed of nearly 1.3 million particles
of dimensionless diameter dp = d∗

p/H∗
f = 0.025 below a unidirectional open-channel
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turbulent flow. The particle Stokes number may be defined from the particle terminal
settling velocity V∗

s (Kidanemariam & Uhlmann 2014) as St = (ρ∗
p V∗

s d∗
p)/(9ρ∗

f ν∗), where
V∗

s is given by the following implicit equation (Zgheib, Bonometti & Balachandar 2015):

V∗
s =

d∗2
p (ρ∗

p/ρ∗
f − 1)g∗

18ν∗[1 + 0.15(V∗
s d∗

p/ν∗)0.687]
. (2.1)

Five simulations are considered (see table 1). Here case S0 corresponds to the limiting
case of immobile particles (i.e. small value of Θ/θcr). The submerged specific gravity
of the sediment is chosen to be R = ρ∗

p/ρ∗
f − 1 = 0.57 to allow for comparison with

the corresponding EE simulations of Zgheib et al. (2018a,b). The critical Shields
number is computed as θcr = [0.22Re−0.6

p + 0.06 exp(−17.77Re−0.6
p )]/2 (Garcia 2008).

The imposed flow is characterized by the Shields-like parameter Θ = U∗2
τ /(R g∗d∗

p). Since
part of the applied pressure gradient will go to balance the form drag of the rough bed,
Θ will be larger than the mean streamwise shields stress 〈θx〉 to be evaluated in the
simulation, where in terms of the local streamwise shear stress θx = τ ∗

x /[(ρ∗
p − ρ∗

f ) g∗d∗
p].

The bulk Reynolds number Rebf = U∗
bf H∗

f /ν∗, where U∗
bf = (1/H∗

f )
∫ H∗

b+H∗
f

H∗
b

〈u∗〉 dz∗ is the

mean fluid velocity above the bed–fluid interface. The values of Rebf and St are given in
table 1.

The permeability Reynolds number is defined as Rek = √
K∗U∗

τ /ν∗, where the
permeability K∗ = (1 − φ)3d∗2

p /(180φ2) is estimated using the Carman–Kozeny model
(Voermans et al. 2017). In our simulations, the value of φ deep within the bed and away
from the bed–fluid interface is around 0.62, which yields a low value of Rek = 0.13.
However, as will be discussed below, the KH vortices in the present simulations are
observed only in selected regions of the bed where they penetrate to a depth of three
particle diameters from the bed–fluid interface. Considering such a representative volume,
we obtain a particle volume fraction of φ = 0.39. Furthermore, the local shear stress in
this high-speed region is 16 % higher than the global average. This yields Rek = 0.48,
which is still lower than the critical value for the observation of KH vortices in the
recent experiments of Voermans et al. (2017). The difference could be perhaps due to
the substantially smaller particles in the present simulations (d+ = 3.74) in comparison
with the range used in the experiments (15 � d+ � 250). As can be seen from figure 1(b),
the mean velocity profile qualitatively captures the trend observed in the experiments of
Voermans et al. (2017) where the darker lines correspond to less permeable beds. The
permeability of S0 is the lowest of all the cases in the frame. Quantitative differences
are again perhaps due to the different particle sizes used in the simulations and the
experiments.

Here and throughout the manuscript, the asterisk ∗ denotes a dimensional quantity. The
fluid phase mass and momentum conservation equations are

∇ · u = − 1
φf

Dφf

Dt
, (2.2)

Du
Dt

= G − ∇p + 1
Reτ

∇2u + f pf

φf
. (2.3)

Here p is the dynamic pressure, φf = 1 − φ and u are the volume fraction and velocity
of the fluid phase, respectively. We impose a constant streamwise pressure gradient
G = (1, 0, 0) and a shear Reynolds number Reτ = U∗

τ H∗
f /ν∗ = 180. Particle motion is
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Sim Rep θcr Θ Θ/θcr 〈θx〉/θcr d∗
p U∗

τ H∗
f H∗

b V∗
s St Rebf

(μm) (cm s−1) (cm) (cm) (cm s−1)

S0 50.0 0.0160 0.0081 0.51 small 764 0.59 3.05 0.946 5.927 7.900 2524
S1 29.8 0.0173 0.0229 1.32 1.0255 541 0.83 2.16 0.670 4.043 3.815 2509
S2 21.0 0.0194 0.0457 2.36 1.7721 429 1.05 1.72 0.533 3.046 3.046 2510
S3 14.9 0.0227 0.0914 4.04 2.9196 341 1.32 1.36 0.422 2.247 1.337 2508
S4 11.4 0.0260 0.1554 5.98 4.1140 286 1.58 1.14 0.353 1.749 0.872 2509

Table 1. Details of the numerical simulations. Here Rep is the particle Reynolds number; θcr is the critical Shields number; Θ is the Shields-like parameter of the imposed
flow; H∗

f is the mean flow depth and H∗
b is the mean height of the bed above the bottom wall; V∗

s is the particles’ terminal settling velocity (2.1); St is the Stokes number;
Rebf is the bulk Reynolds number. Dimensional parameters are denoted by an (·)∗. Case S0 corresponds to immobile particles and therefore parameters associated with
particle motion are irrelevant.
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Figure 2. (a) Scatter plot for qx versus (θx − θcr) for S3 coloured by number density with a total number
of bins of 62 500. The dashed green line corresponds to WP. The blue diamond symbol corresponds to 〈qx〉
versus (〈θx〉 − θcr). Insets: probability distribution for qx and (θx − θcr), with blue (respectively, red) curve
corresponding to the current EL (respectively, Zgheib et al. (2018a,b) EE) simulation; (b) 〈qx〉 versus (〈θx〉 −
θcr) for all simulations plotted against the WP (open triangles) and MPM original (+) data. The dashed and
solid lines correspond to WP and MPM, respectively.

computed by evaluating forces and torques and integrating the Newton–Euler equations.
For details please refer to Finn, Li & Apte (2016). Finally, f pf represents the back-coupling
force from the particles to the fluid.

The fluid and particle equations are solved using a highly scalable spectral element
solver (Patera 1984; Deville, Fischer & Mund 2002; Zwick & Balachandar 2020) in a
domain of size Lx × Ly × Lz = 4π × 4π/3 × 1.31 along the streamwise, spanwise and
vertical directions. The domain is discretized using 30 × 30 × 13 hexahedral elements
with 113 Gauss–Lobatto–Legendre (GLL) grid points within each element. The grid
resolution varies with location and direction. In terms of dp, the smallest (respectively,
largest) grid spacing is in the vertical direction near the bed–fluid interface (respectively,
along the flow direction) with a value of 0.0325dp (respectively, 2.29dp). We also note that
we do not apply any subgrid closure models. Data that is spatially averaged over the entire
horizontal plane and over the interval t = 0.5 to t = 2 is denoted by 〈·〉. We note that each
simulation shown in table 1 corresponds to a unique set of physical parameters (Zgheib
et al. 2018a,b).

3. Results

3.1. Sediment flux
In figure 2(a), we show a scatter plot coloured by number density of qx versus (θx − θcr)
from S3, where qx is the streamwise component of local sediment flux. The data is plotted
on a logarithmic scale along with WP correlation shown as the dashed line. The blue
diamond symbol corresponds to 〈qx〉 versus (〈θx〉 − θcr). We observe a large scatter in
the data spanning over several decades, yet we observe the mean value to match the WP
model. In figure 2(b), we plot 〈qx〉 versus (〈θx〉 − θcr). The open triangles correspond to
MPM data corrected by Wong & Parker (2006) and therefore match with the dashed WP
line. The + symbols correspond to MPM data, which along with the result of case S1
demonstrate that both MPM and WP correlations substantially underpredict the sediment
flux when 〈θx〉 is marginally in excess of θcr.
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The scatter plots for all cases show qualitatively similar features: the largest qx values
are realized for a wide range of (θx − θcr), and similarly a wide range of qx is realized
close to the largest (θx − θcr) values. The two most striking observations are: (i) small
values of (θx − θcr) are associated with the largest qx, and (ii) small values of qx occur
only during periods of intense turbulence marked by large values of (θx − θcr). Both
observations are counter intuitive at first glance. However, a closer look reveals that the
larger particle flux is not always driven by large instantaneous excess Shields, but rather
due to particles continuing their rapid downstream motion owing to their inertia, even
after the turbulent structures that initiated their motion have departed. Only when this
kinetic energy of particle motion is dissipated, the particle flux quickly decreases. On the
other hand, upon the arrival of a leading intense vortical structure the shear stress quickly
increases, but the particle flux may still remain small before its delayed response. It should
be mentioned that there are few instances when local shear stress falls below the critical
value (i.e. θx − θcr < 0) and similarly there are instances of negative qx. These infrequent
events are not captured in the log–log scatter plots.

We revisited the EE simulation results of Zgheib et al. (2018a,b) and evaluated the
probability distribution function of θx − θcr. The results shown in insets in panel (a) of
figure 2 compare well with that of the corresponding Euler–Lagrange (EL) simulation
S3. This clearly shows that the EE simulations, where the individual sediment grains are
not distinguished as in the present EL simulations, are still able to reliably capture the
turbulent shear stress variation. In comparison, substantial differences can be observed in
the corresponding qx probability distribution function. The difference is in the inability of
the EE approach to predict q as a function of local θ using WP. The wider distribution of
the present EL approach indicates that q cannot be uniquely determined by the local and
instantaneous Shields stress.

In figure 3, we show two subregions of the particle bed at t = 0.9 (the entire
computational bed is later shown in figure 4). For both subregions five subpanels labelled
(i)–(v) are shown. Figure 3(a i,b i) shows isocontours of volume fraction in the vertical
plane bisecting the bed along with the bed-penetrating spanwise vortical structures
observed therein. The white line marks the φ = 0.1 interface between the bed and
the fluid. Figure 3(a ii,b ii) shows the vortical structures on the particle bed extracted
with isosurfaces of swirling strength λci = 20 in the near-bed region. Figure 3(a iii,b iii)
shows the regions where qx substantially deviates from what would be predicted by
WP correlation using local excess Shields stress. The red (respectively, yellow) region
corresponds to scatter plots where qx > qWP + 0.05 (respectively, qx < qWP − 0.05), with
qWP being the prediction based on WP correlation using local θx − θcr. Figures 3(a iv,b iv)
and 3(a v,b v) show isocontours of qx and θx − θcr, respectively.

Starting with group A, we observe a region void of near-bed vortical structures at
the downstream end of figure 3(a ii,b ii). This region is followed by a train of vortical
structures. The yellow region in figure 3(a iii,b iii) is immediately below the leading
vortical structure, while the red region is below the trailing part of the train of vortical
structures. As the leading vortex sweeps over a region, it instantaneously increases the
Shields stress as seen in figure 3(a v,b v). However, qx does not immediately follow this
increase in local Shields stress as seen in figure 3(a iv,b iv). Given enough time, and as the
train of vortices sweeps over the same region and continues to do work on the particles,
the yellow region in figure 3(a iii,b iii) turns red, i.e. particles that were already energized
by the vortex structures that have moved downstream, continue to be accelerated by vortex
structures that are currently overhead to yield a sediment flux much larger than what would
be predicted by WP.
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Figure 3. Flow information at two subregions of the particle bed from S3 at t = 0.9 displayed as five panels.
(i) Isocontours of volume fraction in the vertical plane bisecting the bed in panel (ii) and penetrated by the
same vortical structures observed therein. The white line marks the φ = 0.1 surface. (ii) View with particles
coloured by z location and overlain by KH rollers. (iii) Portions of the particle bed where qx is substantially
larger (red), substantially smaller (yellow), or nearly equivalent (blue) to the corresponding WP value.
(iv) Isocontours of qx. (v) Isocontours of θx − θcr. The time history plot for qx and θx corresponds to point C
in panel (a ii).

The temporal evolution of qx (solid black line) and θx (red dashed line) at a point
marked C is shown in figure 3. The time lag between the two curves is clearly visible.
The rise in the Shields number occurs as the first vortex sweeps over the point, however,
particles do not immediately react, and we observe a delay in the rise of qx. This time lag
results in a large variation between the computed and the WP-predicted qx. This temporal
shift due to particle inertia is related to the spatial lag or saturation length between the
location of change in shear stress to the point where a new equilibrium sediment flux is
established (Charru 2006; Parteli et al. 2007; Andreotti et al. 2010). In point C of figure 3,
the temporal shift is approximately 0.047 non-dimensional units or 0.047U∗

bf /U∗
τ = 0.65

bulk time units. The temporal shift not only depends on the particle size, but also on
the past history of shear stress and work done on the particles. In general, the shift is
pronounced only when the KH rollers are present.

On the other hand, we observe nearly the entire portion of the enlarged view B to
be covered by vortical structures. Yet, the low sediment flux region, marked yellow in
figure 3(a iii,b iii) does not appear at the same location over which the leading vortex acts,
but farther upstream. This is in contrast to what was observed in figure 3(a iii) where
the yellow region appears immediately below the leading vortex. Closer inspection of
subpanel (i) reveals that the leading vortex in figure 3(b) does not penetrate into the particle
bed (the green contour remains above the white line). This vertical separation between the
leading vortex and the particle bed results in a relatively weaker influence on the latter.
On the other hand, we observe the trailing vortices to dig well into the particle bed. In
fact, it is at the location of the middle vortex that the yellow region emerges. Thus, the
overall mechanism observed in figure 3(a) occurs in figure 3(b) as well. In figure 3, points
where the relation between local qx and excess Shields stress are in reasonable agreement
with WP (i.e. |qx − qWP| < 0.05) are marked blue in figure 3(a iii,b iii). Though there are
turbulent vortical structures in these regions they do not represent coherent KH packets as
observed in figure 3(a,b).

Coherent KH vortex structures that are substantially larger than individual pores
or particles have been observed over permeable beds (e.g. Jimenez et al. 2001;
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Figure 4. Isometric view of the particle bed from S3 with three horizontal planes showing contours of
streamwise velocity. The middle plane is located at the particle bed interface and denoted by η = zφ=0.1. The
other two planes are shifted by two particle diameters above and below the particle bed interface. Below the
interface, only KH rollers are present, while above the interface, we only observe longitudinal streaks and do
not detect the imprints of the KH rollers.

Manes et al. 2011; Suga, Mori & Kaneda 2011; Kuwata & Suga 2016, 2017) and have been
attributed to the presence of an inflection point in the mean streamwise velocity along
the bed-normal direction (e.g. Jimenez et al. 2001; Breugem, Boersma & Uittenbogaard
2006). The porosity of the bed is necessary for these bed-penetrating coherent structures
to form as they are not observed in wall-bounded flows over smooth or rough non-porous
walls. Particle motion is also not important, since the KH vortices are observed even in
case S0 of stationary particles. These KH vortices must be distinguished from the classical
quasi-streamwise vortices and hairpin vortex packets that are observed to form and travel
downstream in wall turbulence (e.g. Zhou et al. 1999; Cantero, Balachandar & Parker
2009). In fact, the inclined quasi-streamwise vortices and hairpin packets do not dig into
the sediment bed.
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Figure 4 shows the entire particle bed with individual grains coloured according to
their elevation. To avoid obstructing the view of the bed, densely populated vortical
structures, visualized as isosurfaces of λci = 20 are only shown on one half of the bed.
We plot contours of the fluid streamwise velocity u at z = η, η − 2dp, and η + 2dp (where
z = η is the bed interface identified as φ = 0.1). Well above the bed at η + 2dp, only
classical high and low-speed streaks are seen (see the white contour lines projected on the
panels below). Well inside the bed at z = η − 2dp imprints of the KH rollers are seen as
alternating red and blue stripes. Though the high and low-speed streaks are not visible in
the colour contours at this elevation within the bed, the localization of the KH vortices at
the highest shear regions of the high-speed streaks is clear. Both the streaks and the rollers
are observed at z = η. At z = η + 2dp, which is approximately eight wall units above
the bed, just outside the viscous sublayer, the streamwise velocity contours are clearly
indicative of the high- and low-speed streaks. The interpretation is that, in the present
simulations, involving smaller sized particles, the KH vortices influence the high-speed
streaks only within the viscous sublayer. The streamwise length of the streaks is observed
to be approximately 887 wall units with a standard deviation of 175.7. The mean spacing
between two adjacent high-speed streaks is approximately 103 wall units. These values are
comparable to those observed in smooth and rough-wall turbulent channel flows (Jiménez
& Moin 1991; Jiménez & Pinelli 1999; Bhaganagar, Kim & Coleman 2004).

The KH vortices are primarily located in the intense high-speed streaks due to
the stronger shear-induced instability. The KH vortices are approximately four particle
diameters in height, a dozen diameters in length and width. For the KH vortices to exist,
bed porosity must allow the flow to penetrate in and out of the bed with streamwise passage
in between. It must be emphasized that the clear signature of the KH vortices in figures 3
and 4 was possible only due to the coarse-graining of the flow implicit in the EL approach.
In particle-resolved simulations (and in experiments), where this approximation is avoided,
the KH vortices will be superposed with strong particle-scale perturbations and therefore
will be harder to observe.

The high shear, combined with the porosity of the bed, is responsible for the KH
vortices. Also, as described by the hairpin packet model of Zhou et al. (1999), the
streamwise propagation of the packet is the source of long high- and low-speed streaks
(Adrian & Balachandar 2000), which are present even over a permeable bed. However,
when the KH vortices coexist with the streaks, and with the disturbing influence of the
individual particles, it may be that they cannot always be visualized in a straightforward
way.

At any point on the bed, the arrival of bed-penetrating KH vortices swiftly increases
the local Shields stress. However, because of particle inertia, sediment flux reacts only
in a time-delayed fashion. A movie of the time evolution of figure 3(a iii,b iii) shows that
the yellow and red regions of qx remain coherent and advect with the flow. The local
regions of above and below average qx change only as dictated by the advecting vortical
structures. This suggests that the near-bed turbulent structures coupled with particle inertia
are primarily responsible for the large scatter observed in figure 2. This also suggests that
particle arrangement within the bed and pocket geometry play a lesser role.

3.2. Flow velocity at particle surface
An important consequence of KH vortices is that fluid and particle velocities at the
bed–fluid interface evolve both temporally and spatially. We denote the streamwise and
bed-normal components of fluid (respectively, particle) velocity at the bed surface as ubed

and wbed (respectively, up,bed and wp,bed). Figure 1 shows a schematic of w+
bed and w−

bed.
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Figure 5. (a) Graph of 〈ubed〉 and 〈up,bed〉 versus 〈θx〉 − θcr using filled and open symbols, respectively. The
line corresponds to the polynomial fit of 〈ubed〉. Inset: scatter of ubed from S3 coloured by number density along
with average value (cyan diamond). (b) Graph of 〈w+

bed〉/〈ubed〉 and 〈w+
p,bed〉/〈up,bed〉 versus 〈θx〉 − θcr using

filled and open symbols, respectively. Unlike panel (a) where spatial averaging is done for the entire horizontal
plane, here spatial averaging is done exclusively over nodes with wbed > 0 and wp,bed > 0, respectively. Inset:
scatter of wbed from S3 coloured by number density along with average value (cyan diamond). Total number of
bins for each scatter plot is 62 500.

A non-zero fluid velocity at the bed surface has important implications on EE simulations,
since most EE simulations use no-slip and no-penetration conditions (Janssen et al. 2012;
Broecker et al. 2018; Zgheib & Balachandar 2019). We should note here that some EE
simulations (Cheng, Hsu & Chauchat 2018) consider the sediment–fluid interface to
be the location where the sediment bed attains its maximum packing fraction. At that
location, the fluid velocity amounts to only a small fraction of the bulk velocity. For such
simulations, the use of a no-slip, no-penetration velocity boundary condition is likely be
appropriate. Figure 5(a) shows 〈ubed〉 and 〈up,bed〉 versus 〈θx〉 − θcr. When 〈θx〉 − θcr �
0.015, 〈ubed〉 attains a near-constant value and increases monotonically thereafter. The
quadratic polynomial fit

〈u∗
bed〉√

〈τ ∗
x 〉/ρ∗

f

= 150(〈θx〉 − θcr)
2 − 0.62(〈θx〉 − θcr) + 2.67 (3.1)

adequately represents the trend. Even though the fit was derived for Reτ = 180, the results
are likely to be valid for a wider range of Reτ similar to the fact that the Wong & Parker
(2006) relationship is also valid over a wide range of Reynolds number. Nevertheless, the
applicability of the fit remains to be verified. In the inset of figure 5(a), we show the scatter
plot coloured by number density for ubed versus θx − θcr for case S3. The scatter shows that
ubed spans a wide range from slightly negative values up to 75 % of the bulk velocity. The
mean value of the scatter, shown by the blue diamond symbol, takes on a value of around
2.5, equivalent to nearly 16 % of the bulk velocity. It can be seen that the negative values
of θx − θcr predominantly correspond to positive ubed of substantial magnitude. Such data
points suggest occasional significant value of qx even in regions of θx < θcr.

The variation of wbed is also substantial when compared with the bulk streamwise flow
(inset of figure 5b). The average of w+

bed over the respective area scaled by 〈ubed〉 is plotted
in figure 5(b). It is equivalent to the average over the negative component w−

bed, and thus
only the positive component is shown. In fact, it is observed that the positive and negative
bed-normal velocities cover approximately 50 % of the bed each. This is to be expected
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since the total wall-normal velocity on any horizontal plane must be zero. We find the
mean, positive and negative, bed-normal velocities to increase monotonically with excess
Shields stress, but remain around 10 %, compared with ubed. The increase in 〈ubed〉 and
〈w+

bed〉 in figure 5 does not necessarily imply an increase in intensity and frequency of KH
rollers but is likely a result of the elevated location η for larger excess Shields stress values.

Particle streamwise and bed-normal velocities at the bed surface are also shown in
figure 5 as open symbols. As expected, we observe the mean particle velocity to be smaller
than the fluid velocity, since the latter drives the particle motion. The difference between
the two indicates the slip velocity between the particle and the fluid near the bed surface.
We should note that the randomly distributed KH vortex packets are present in all cases
considered, and they appear to be of comparable strength. Even under intense bedload
transport, we observe the fluid velocity to be locally larger than the sediment velocity.
Furthermore, the two main ingredients needed for KH vortices, namely bed porosity and
mean shear in the fluid velocity profile, are present even under strong bedload transport.
However, it is not clear if the intensity of the KH vortices will increase or decrease with
further increase in excess Shields stress.

4. Conclusions

We presented results from EL simulations of turbulent flow over a mobile particle
bed. From a global perspective, our simulations correctly reproduce the WP relation of
bedload transport. However, large variations, up to a few orders of magnitude, between
the computed and WP-estimated sediment flux (qx) are observed at the instantaneous
and local level. These large variations are attributed primarily to the combined effects of
particle inertia and bed-penetrating KH vortices. The influence of particle bed arrangement
or pocket geometry was observed to play a lesser role. The EE simulations (Zgheib
et al. 2018a,b) can reliably reproduce turbulent shear stress variations observed in the
present EL simulations, provided the particle diameter is sufficiently small. However,
qx predicted based on WP correlation will exhibit far lower variation than the EL
counterpart. Models that account for the past history of the Shields stress θ and the
inertial behaviour of particles must be developed for improved prediction. Additionally, an
important consequence of KH vortices is that fluid and particle velocities at the bed surface
are non-zero but are temporally and spatially evolving quantities. A simple quadratic
correlation is presented for the mean streamwise fluid velocity applicable at the bed–fluid
interface. Finally, we note that the results related to the KH instability require experimental
validation.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2020.1060.
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