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1. Introduction

Let p.,Pz,---,pN be JV points in the unit s-dimensional closed square
Q = [0, l ] s . For any measurable set S £ Q, we define <5(S), the discrepancy of S, by

(1) 3(S) = F(S) - n(S)/N,

where V(S) is the s-dimensional volume of S, and n(S) is the number of indices i
for which p(eS. Let

DK = sup \S(B)\,

where the supremum is taken over all s-balls B £ Q, and

Dc = sup |<5(C)|,

the supremum in this case being taken over all convex sets C £ Q. Clearly
Dc ^ DK. In this paper we establish

THEOREM 1. DK ^ ^ ^ s ) ^ ^ 1 , where <j>i is a constant depending only on s.

This replaces the best previously known inequality in this direction,

DK ^

(Vi>?2 depending only on s) due to Hlawka [3].

In the other direction, I have given an example in [3 ] to show that the expo-
nent in Theorem 1 cannot be improved to less than J(s + 1).

Denote by D the classical s-interval discrepancy D = sup \d(J)\, the supre-
mum being taken over all intervals J of the form

J = {x =\Xj)\0 ^ <xj ^ Xj < J?,. S 10" = 1,- ,«)) .
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Cassels (unpublished) has proved

(2) DK^Us)D'+1;

my proof of Theorem 1 is a fairly natural generalisation, from intervals to convex
bodies, of his proof of (2). Recently I [3] have improved (2) to DK ^ <J>3(S,E)DS+'.

Hlawka [2] has proved the inequality (5) below relating D and Dc (see also [3]).
Thus we have the following six inequalities connecting DK,DC and D:

(3)

(4)

(5)

(6)

(7)

(8)

Dc

Dc

D

D

DK

for any e > 0, DK
All

All
All

All
All

All

D

(0i,#4 depend only on s, <£3 only on s and e).
Of these inequalities (3) and (4) are, of course, trivial while (6) follows

straight from (4) and (5),
We give a proof of Theorem 1 in section 3. Section 2 contains preliminaries

needed for the proof,
I would like to thank Professor Cassels for suggesting this problem to me,

and for making available his unpublished proof of (2).

2. Preliminaries

Before proving the theorem, we need some more notation, and two lemmas
relating to convex bodies.

First of all, since Theorem 1 is trivial when s = 1, we always assume that
s ^ 2. We let 0, = 7ts/2/r(s/2 + 1) be the volume of the unit s-ball, and Br(y) be
the closed ball with centre y, radius r. Denote by xy the characteristic function of
BrO0(= 1 if xeBr(y), = 0 if not).

Let C be any convex set. For any r > 0 we denote by C the set

(9) C = {x + y\xeC,\y\Zr}

and by Cr the set of points of C, distant greater than r from every point outside C.
Clearly Cf s C s C. We have an expression for the volume of C, given by

LEMMA 1. For any convex set C,

(10) F(C) = F(C) + A^Qr + A2(Qr2 + - + X/Or5,

where AUA2, •••,AS are constants {"mixed volumes") depending only on C, with
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the property that if C £ C C convex, then

(11) AHQ

The coefficient AX(C) is the (s — l)-dimens:onal area of the boundary of C. Fur-
thermore, if also C £ Q, then

(12) F(<7) - V(C) S 2sr(l + 2r) i"1.

PROOF. Equations (10) and (11) are special cases of Theorems 41 and 42
respectively in Eggleston's Cambridge Tract [ l j , and the expression for /4,(C) as
as the surface are of C is on p. 88 of [ l j . It therefore remains only to deduce the
inequality (12). Now C £ Q, so

by (11). Hence from (10),

V(C) - V(Q £ V(Q') - V(Q) = V{g\Q)
But

V(& \ Q) ^ (1+ 2rf - 1 ^ 2rs(l + 2r)s"1

by the mean value theorem. This completes the proof of Lemma 1.
Also, for Cr, we have

LEMMA 2. For any convex set C £ Q,

(13) K(C) - V(C.) ^ rAt(Q £ 2rs.

PROOF. For a convex polytope P, the first inequality becomes clear by mounting
a cylinder of height r, facing inwards, on each face of P. We now consider the
case of a general convex body C. By [1J (Theorem 33), for each e > 0 there is a
convex polytope P such that

P <=C S:P'.
So

V{C\Cr)< V(P\Pr)+V(P'\P)
£ M1(P) + 2se(l+2e)J-1

by (13) for p and (12)

by (11). Hence on letting e-»0, we obtain the first part of (13).
The second part of (13) follows from the fact that A^C) <; A^Q) = 2s.

This proves the lemma.

3. Proof of Theorem 1

We are now ready to prove Theoreiri 1. We take a convex body C £ g,
which we can assume has <5(C) # 0. We must produce a ball B with
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The method of the proof is to use Cassels' idea of averaging the discrepancies
of circles of fixed radius, as the centre varies throughout the given body C.

We first show (equation (14)) that, apart from the boundary effects, the integral
of S(Br(y)) over y e C is roughly 0sr

sd(C). Ignoring boundary effects, we then have

for some ye C.It is then only a question of choosing r as large as one can, without
the boundary effects becoming too significant, and we obtain Theorem 1.1 now
give the details.

We first show that for any r > 0,

(14) f <5(BrO0 O Cr)dy = 6sr*5{Cr).
Jc

Now as 8 is a signed measure,

f 6(BXy)nCr)dy= f f d5(x)dy
JC Jc J (Br(y)nCr)

= f f Xy(x)d8(x)dy
JC JCr

= f f X*(y)dS(x)dy
JC JCr

= f f lx{y)dyd5(x)
Jc-Jc

= f V(Br(x)nC)d8(x)
JCr

= Qf \ db{x) = OfKCr)
JCr

as B£x) £ C for x e Cr. This proves (14).
We now separate the three cases I: <5(C) > 0, II: <5(Q < 0, C2r £ Q, III:

<5(C) < 0, Cir $ Q, where in II and III r = -c5(C)/16s.

CASE I. <5(C) > 0. For yeC2r, we have Br(y) £ C, and hence

Using (14), we obtain
f f
I 5(B£y))dy = fl^^C,.) — $(Br(y) O Cr)^y

JC2r •'(CVCzr)
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" : , ) - f S(BXy)nC,)dy
J(C\C2r)

?,)- f V(BXy)nCr)dy

as <5(S) ^ F(S) for any set 5,

- V(C \ Cr) - V(C \ C2r)}

- 6rs)

by Lemma 2. So we choose r = <5(C)/12s. Then

L ' 2 (12s)s *

Hence there is some y e C2r such that

Since V(C2r) ^ F(C) ^ 1, we now have Theorem 1 as required.

CASEII. <5(C) < 0,C2r £ Q, where r = (-5(C))/16s. We writers) = -<5(S).
Firstly, it is clear that the convex subset of C with 5 maximal is the convex

hull of some subset of the points pup2,---,pN. Hence, replacing C by this set if
necessary, we can assume that, both for cases II and III,

(15) ' 5 ( C ' ) ^ ( Q

for all convex subsets C of C.

Now it is easy to verify that (C)r = C, and so we have, from (14),

(16) f 5(Br

Further, for y e C we have B,(y) £ C2r s Q. and hence Br(y) = Br(y) n C2r. So
we can calculate

f S(Br(y))dy = esr*5(C) + f %B
Jcr J c

f S(B
J(C-\C)
f
(C-\C)

(17) >0f5(Q

- V(C\ C) - V(C \ C,)}
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£ Osr*{5(C) - 2rs(l + 2r)s - 2rs}

by Lemmas 1 and 2. Now, on substituting for r, we obtain

So for some j> e C',

Since K(C') <; 1, we therefore have the theorem with 4>x = 0,/2(16)s.

CASE III: S(Q < 0, C2r $ Q, r = S(C)/16s. Now if

then by (15),

r' = 5(C nQ2r)/16s g 5(C)/16s = r,

and so (C n g2r)
2>" £ Q. We could therefore apply case II to C n Q2r instead of

C, and obtain

Thus the theorem would still be true, but with

We can therefore assume that

But now

2r) = Kc n (Q \ Q2r)) + %G \ Q2r) \ Q

^ | ( ) - 2s • 2r
by Lemma 2,

= 5(O/4.

Hence, as $(A) + 5(Q\A) = 0 for any 4̂ s Q, we have
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Thus we are reduced to case I, with the convex set Q2r replacing C. So we again
obtain the required result, but with constant

(18) , , _ * - ' - « •
2(12s)s 4 S + 1 8(48s)s"

This last constant is the smallest obtained in any of the cases, so the theorem is
true with </>l given by (18).
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