Direction-Cosines of the Axes of the Conicoid

$$
a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=1 .
$$

In Mathematical Notes, No. 20 (April 1916), there is a note on the above; I add a form of the equations of these axes which I have not seen in a text-book, and which is perhaps worth recording.

If on transformation of axes

$$
a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y \equiv a^{\prime} X^{2}+b^{\prime} Y^{2}+c^{\prime} Z^{2}
$$

then

$$
\begin{gathered}
(a-\lambda) x^{2}+(b-\lambda) y^{2}+(c-\lambda) z^{2}+2 f y z+2 g z x+2 h x y \\
\equiv\left(a^{\prime}-\lambda\right) X^{2}+\left(b^{\prime}-\lambda\right) Y^{2}+\left(c^{\prime}-\lambda\right) Z^{2}
\end{gathered}
$$

The right-hand side resolves into factors if $\lambda=a^{\prime}$ or b^{\prime} or c^{\prime},
\therefore the left-hand side does the same for $\lambda=a^{\prime}$ or b^{\prime} or c^{\prime},
$\therefore a^{\prime}, b^{\prime}, c^{\prime}$ are the roots of
$(a-\lambda)(b-\lambda)(c-\lambda)+2 f g h-f^{2}(a-\lambda)-g^{2}(b-\lambda)-h^{2}(c-\lambda)=0$.
When $\lambda=a^{\prime}, a^{\prime} X^{2}+b^{\prime} Y^{2}+c^{\prime} Z^{2}=0$ is the equation of two planes which intersect in the X-axis, on which the conicoid intercepts a length $\frac{2}{\sqrt{a^{\prime}}}$.
$\therefore \phi(x, y, z) \equiv\left(a-a^{\prime}\right) x^{2}+\left(b-a^{\prime}\right) y^{2}+\left(c-a^{\prime}\right) z^{2}+2 f y z+2 g z x+2 h x y=0$ is the equation of two planes intersecting in the axis of length $\frac{2}{\sqrt{a^{\prime}}}$.

The intersection of these planes is given by any two of the equations

$$
\begin{gathered}
\frac{\partial \phi}{\partial x}=0, \frac{\partial \phi}{\partial y}=0 \text { and } \frac{\partial \phi}{\partial z}=0, \\
\text { i.e. } \quad\left(a-a^{\prime}\right) x+h y+g z=0, \quad h x+\left(b-a^{\prime}\right) y+f z=0, \\
g x+f y+\left(c-a^{\prime}\right) z=0 .
\end{gathered}
$$

From the first and second, any point on the axis satisfies

$$
\frac{x}{h f-b g+g a^{\prime}}=\frac{y}{g h-a f+f a^{\prime}},
$$

and from the first and third, the point satisfies

$$
\overline{f g-c h+h a^{\prime}}=\frac{z}{g h-a f+f a^{\prime}}
$$

i.e. $\quad \frac{x}{G+g a^{\prime}}=\frac{y}{F+f a^{\prime}} \quad$ and $\quad \frac{x}{H+h a^{\prime}}=\frac{z}{F+f a^{\prime}}$,
where F, G, H are the customary minors.

Therefore the equations of this axis are

$$
x\left(F+f a^{\prime}\right)=y\left(G+g a^{\prime}\right)=\approx\left(H+h a^{\prime}\right)
$$

Similar equations hold for the other axes, with b^{\prime} and c^{\prime} instead of a^{\prime}.

Lawrence Crawford.

Proofs of some Inequalities and Limits.

In his article in No. 20, Professor Gibson gives proofs of the inequalities $1-n a<(1-a)^{n}<\frac{1}{1+n a}$ with certain restrictions as to the values of n and a. The mode of proof, avoiding as it does the use of the Binomial Theorem, is comparatively short and simple. The following mode of proof is, I think, still simpler, as it does not involve the use of Mathematical Induction.

If n is a positive integer and a positive, we have

$$
\begin{align*}
& \frac{(1+a)^{n}-1}{(1+a)-1}=(1+a)^{n-1}+(1+a)^{n-2}+(1+a)^{n-3}+\ldots+(1+a)+1 \\
& >n, \\
& \quad \therefore \quad(1+a)^{n}-1>n a, \\
& \tag{1}\\
& \left.\quad \therefore \quad(1+a)^{n}>1+n a . \quad \ldots \ldots \ldots \ldots \ldots \ldots\right)(1)
\end{align*}
$$

Again, n being a positive integer and a a positive proper fraction, we have

$$
\begin{align*}
& \frac{1-(1-a)^{n}}{1-(1-a)}=1+(1-a)+(1-a)^{2}+\ldots+(1-a)^{n-1} \\
&<n, \\
& \therefore \quad 1-(1-a)^{n}<n a \\
& \therefore \quad(1-a)^{n}>1-n a . \ldots \ldots \ldots \ldots \ldots \tag{2}
\end{align*}
$$

Then, since $(1-a)(1+a)=1-a^{2}$
<1,
$\therefore \quad 1-a<\frac{1}{1+a}$,

$$
\therefore \quad(1-a)^{n}<\frac{1}{(1+a)^{n}},
$$

$$
\begin{equation*}
\therefore \quad \text { by }(1),<\frac{1}{1+n a} \tag{3}
\end{equation*}
$$

(243)

