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Abstract

Good tools can bring mechanical verification to programs written in mainstream functional lan-
guages. We use hs-to-coq to translate significant portions of Haskell’s containers library into
Coq, and verify it against specifications that we derive from a variety of sources including type class
laws, the library’s test suite, and interfaces from Coq’s standard library. Our work shows that it is
feasible to verify mature, widely used, highly optimized, and unmodified Haskell code. We also learn
more about the theory of weight-balanced trees, extend hs-to-coq to handle partiality, and – since
we found no bugs – attest to the superb quality of well-tested functional code.

1 Introduction

What would it take to tempt functional programmers to verify their code?
Certainly, better tools would help. We see that functional programmers who use depen-

dently typed languages or proof assistants, such as Coq (The Coq development team,
2016), Agda (Bove et al., 2009), Idris (Brady, 2017), and Isabelle (Nipkow et al., 2002),
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2 J. Breitner et al.

do verify their code, since their tools allow it. However, adopting these platforms means
rewriting everything from scratch. What about the verification of existing code, such as
libraries written in mature languages like Haskell?

Haskell programmers can reach for LiquidHaskell (Vazou et al., 2014) which smoothly
integrates the expressive power of refinement types with Haskell, using SMT solvers for
fully automatic verification. But some verification endeavors require the full strength of a
mature interactive proof assistant like Coq. The hs-to-coq tool, developed by Spector-
Zabusky et al. (2018), translates Haskell types, functions, and type classes into equivalent
Coq code – a form of shallow embedding – which can be verified just like normal Coq
definitions.

But can this approach be used for more than the small, textbook-sized examples it has
been applied to so far? Yes, it can! In this work, we use hs-to-coq to translate and ver-
ify the two set data structures from Haskell’s containers package.1 This codebase is
not a toy. It is decades old, highly tuned for performance, type-class polymorphic, and
implemented in terms of low-level features like bit manipulation operators and raw pointer
equality. It is also an integral part of the Haskell ecosystem. We make the following
contributions:

• We demonstrate that hs-to-coq is suitable for the verification of unmodified,
real-world Haskell libraries. By “real-world”, we mean code that is up-to-date,
in common use, and optimized for performance. In Section 2, we describe the
containers library in more detail and discuss why it fits this description.

• We present a case study not just of verifying a popular Haskell library, but also of
developing a good specification of that library. This process is worth consideration
because it is not at all obvious what we mean when we say that we have “verified”
a library. Section 4 discusses the techniques that we have used to construct a rich,
two-sided specification; one that draws from diverse, cross-validated sources and yet
is suitable for verification.

• We extend hs-to-coq and its associated standard libraries to support our verifi-
cation goal. In particular, in Section 5, we describe the challenges that arise when
translating the Data.Set and Data.IntSet modules, and our solutions. Notably, we
drop the restriction in previous work (Spector-Zabusky et al., 2018) that the input
of the translation must be intrinsically total. Instead, we show how to safely defer
reasoning about incomplete pattern matching and potential nontermination to later
stages of the verification process.

• We increase confidence in the translation done of hs-to-coq. In one direction, prop-
erties of the Haskell test suite turn into Coq theorems that we prove. In the other
direction, the translated code, when extracted back to Haskell, passes the original
test suite.

• We provide new implementation-agnostic insight into the verification of the weight-
balanced tree data structure, as we describe in Section 6. In particular, we find the
right precondition for the central balancing operations needed to verify the particular
variant used in Data.Set.

1 Specifically, we target version 0.5.11.0, which was released on January 22, 2018 and was the most
recent release of this library at the time of publication; it is available at https://github.com/haskell/
containers/tree/v0.5.11.0.
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Our work provides a rich specification for Haskell’s finite set libraries that is directly and
mechanically connected to the current implementation. As a result, Haskell programmers
can be assured that these libraries behave as expected. Of course, there is a limit to the
assurances that we can provide through this sort of effort. We discuss the verification gap
and other limitations of our approach in Section 7.

We would like to have been able to claim the contribution of finding bugs in
containers, but there simply were none. Still, our efforts resulted in improvements to
the containers library. First, an insight during the verification process led to an opti-
mization that makes the Data.Set.union function 4% faster. Second, we discovered an
incompleteness in the specification of the validity checker used in the test suite.

The tangible artifacts of this work have been incorporated into the hs-to-coq distribu-
tion and are available as open source tools and libraries.2

2 The containers library

We selected the containers library for our verification efforts because it is a critical
component of the Haskell ecosystem. With over 4000 publicly available Haskell pack-
ages using containers, it is the third-most depended-on package of the Haskell package
repository Hackage, after base and bytestring.3

The containers library is both mature and highly optimized. It has existed for over a
decade and has undergone many significant revisions in order to improve its performance.
It contains seven container data structures, covering support for finite sets (Data.Set and
Data.IntSet), finite maps (Data.Map and Data.IntMap), sequences (Data.Sequence),
graphs (Data.Graph), and trees (Data.Tree). However, most users of the containers

library only use the map and set modules;4 moreover, the map modules are essentially
analogues of the set modules. Therefore, we focus on the verification of Data.Set and
Data.IntSet in the majority of this work. Furthermore, we used our experience verifying
Data.Set to also verify Data.Map.Strict, as we describe in Section 5.9.

2.1 Weight-balanced trees

The Data.Set module implements finite sets using weight-balanced binary search trees.
The definition of the Set datatype in this module, along with its membership function, is
given in Figure 1.5

These sets and operations are polymorphic over the element type and require only that
this type is linearly ordered, as expressed by the Ord constraint on the member function.
The member function descends the ordered search tree to determine whether it contains a
particular element.

2 The full repository for hs-to-coq is at https://github.com/antalsz/hs-to-coq; for the version con-
nected to this work, see the JFP-containers tag, which can be accessed at https://github.com/
antalsz/hs-to-coq/tree/JFP-containers. The examples/containers directory contains the verification of
containers; consult examples/containers/README.md for a guide to the relevant portions of the code.

3 http://packdeps.haskellers.com/reverse
4 We calculated that 78% of the packages on Hackage that depend on containers use only sets and maps.
5 All code listings in this paper are manually reformatted and may omit module names from fully qualified

names.
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----------------------------------------------
--Sets are size balanced trees
----------------------------------------------
data Set a = Bin {-# UNPACK #-} !Size !a !(Set a) !(Set a)

| Tip

type Size = Int

--| O(log n). Is the element in the set?
member :: Ord a => a -> Set a -> Bool
member = go

where go !_ Tip = False
go x (Bin _ y l r) = case compare x y of

LT -> go x l
GT -> go x r
EQ -> True

Fig. 1. The Set data type and its membership function, from http://hackage.haskell.org/
package/containers-0.5.11.0/docs/src/Data.Set.Internal.html#Set.

The Size component stored with the Bin constructor is used by the operations in the
library to ensure that the tree stays balanced. The implementation maintains the balancing
invariant

s1 + s2 ≤ 1 ∨ (s1 ≤ 3s2 ∧ s2 ≤ 3s1),

where s1 and s2 are the sizes of the left and right subtrees of a Bin constructor. This
definition is based on the description by Adams (1992), who modified the original weight-
balanced tree proposed by Nievergelt & Reingold (1972). Thanks to this balancing,
operations such as insertion, membership testing, and deletion take time logarithmic in
the size of the tree.

This type definition has been tweaked to improve the performance of the library. The
! annotations indicate that all components should be strictly-evaluated; whenever a value
constructed by Bin is evaluated, so are all of its strictly evaluated fields. Because the Size
field is strict, it can be unpacked; this is a size and speed optimization that stores the
machine word directly with the constructor, rather than storing a pointer to a boxed heap
representation thereof.

2.2 Big-endian Patricia trees

The Data.IntSet module also provides search trees, but these are specialized to values
of type Int to provide more efficient operations, especially union. This implementation is
based on big-endian Patricia trees, as proposed in Morrison’s work on PATRICIA (1968)
and described in a pure functional setting by Okasaki & Gill (1998).

The definition of this data structure is shown in Figure 2. The core idea is to use the
bits of the stored values to decide in which subtree of a node they should be placed. In a
node Bin p m s1 s2, the mask m has exactly one bit set. All bits higher than the mask bit
are equal in all elements of that node; they form the prefix p. The mask bit is the highest
bit that is not shared by all elements. In particular, all elements in s1 have this bit cleared,
while all elements in s2 have it set. When looking up a value x, the mask bit of x tells us
into which branch to descend.
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Fig. 2. The IntSet data type and its membership function, from http://hackage.haskell.org/
package/containers-0.5.11.0/docs/src/Data.IntSet.Internal.html#IntSet.

Instead of storing a single value at the leaf of the tree, the implementation in
containers improves time and space performance by storing the membership information
of consecutive numbers as the bits of a machine-word-sized bitmap in the Tip constructor.6

The Nil constructor is the only way to represent an empty tree, and will never occur as
the child of a Bin constructor. Every well-formed IntSet is either made of Bins and Tips,
or a single Nil.

2.3 A history of performance tuning

The history of the Data.Set module can be traced back to 2004, when a number of com-
peting search tree implementations were debated in the “Tree Wars” thread on the Haskell
libraries mailing list. Benchmarks showed that Daan Leijen’s implementation had the best
performance, and it was added to containers in 2005 as Data.Set.7

In 2010, Milan Straka thoroughly evaluated the performance of the containers library
and implemented a number of performance tweaks (Straka, 2010). For example:

When balancing a node, the function balance checked the balancing condition and
called one of the four rotating functions, which rebuilt the tree using smart con-
structors. This resulted in a repeated pattern matching, which was unnecessary.

6 Although this feature was contributed in 2011 by the first author, he certainly did this without having an
eventual formal verification in mind.

7 https://github.com/haskell/containers/commit/bbbba97c
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We rewrote the balance function to contain all the logic and to use as few pat-
tern matches as possible. That resulted in significant performance improvements in
all Set methods that modify a given set.

This change8 replaced a fairly readable balance and several small and descriptive helper
functions with a single dense block of code. A later change9 by Straka created two copies
of this dense, complicated balance function, each specialized and optimized for different
preconditions.

Adams (1992) describes two algorithms for union, intersection, and difference:
“hedge union” and “divide and conquer”. Originally containers used the former, but in
2016 its maintainers switched to the latter,10 again based on performance measurement.

The module Data.IntSet (and Data.IntMap) has been around even longer. Okasaki &
Gill mention in their 1998 paper (Okasaki & Gill, 1998) that GHC had already made use
of IntSet and IntMap for several years. In 2011, the Data.IntSet module was rewrit-
ten to use machine words as bit maps in the leaves of the tree, as discussed at the end
of Section 2.2.11 This moved the containers library further away from the literature
on Patricia trees and introduced a fair amount of low-level bit-twiddling operations (e.g.,
highestBitMask, lowestBitMask, and revNat).

2.4 The test suite of containers

The first tests were added to containers in 2007,12 in the form of a few regression
tests for observed bugs. Three years later, Don Stewart added a comprehensive test suite
using QuickCheck (Claessen & Hughes, 2000) with 91% code coverage, and reported
that “[n]o bugs were found”.13 This test suite helped to maintain a consistently high
quality and very few bugs crept into released versions of the library. In fact, the only
serious bug mentioned in the library’s changelog – a completely broken implementation of
Data.IntMap.restrictKeys – only occurred because the tests for restrictKeys were
accidentally not run as part of the test suite.14

3 Overview of our verification approach

In order to verify Set, IntSet, and Map, we use hs-to-coq to translate the unmodified
Haskell modules to Gallina and then use Coq to verify the translated code. For example,
consider the excerpt of the implementation of Set in Figure 1. The hs-to-coq tool
translates this input to the following Coq definitions.15 The type name Set is renamed to
Set_ to avoid clashing with the Coq keyword.

8 https://github.com/haskell/containers/commit/3535fcbe
9 https://github.com/haskell/containers/commit/d17d7182

10 https://github.com/haskell/containers/commit/c3083cfc
11 https://github.com/haskell/containers/pull/3
12 https://github.com/haskell/containers/commit/9d6c49b5
13 https://github.com/haskell/containers/commit/38743e39
14 https://github.com/haskell/containers/issues/392
15 In the file examples/containers/lib/Data/Set/Internal.v.
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Definition Size := GHC.Num.Int%type.

Inductive Set_ a : Type
:= Bin : Size -> a -> (Set_ a) -> (Set_ a) -> Set_ a
| Tip : Set_ a.

Definition member {a} �{GHC.Base.Ord a} : a -> Set_ a -> bool :=
let fix go arg_0__ arg_1__

:= match arg_0__, arg_1__ with
| _, Tip => false
| x, Bin _ y l r => match GHC.Base.compare x y with

| Lt => go x l
| Gt => go x r
| Eq => true

end
end

in go.

The unpacking and strictness annotations were ignored, as they do not make sense in Coq:
unpacking only controls memory layout, and not the semantics of the type; and strictness
annotations control evaluation order, which is immaterial in a total language. While in
Haskell, the strictness annotations further rule out the use of infinite data structures,
hs-to-coq already assumes that all data types are inductive (Spector-Zabusky et al.,
2018), so they add nothing.

These definitions also depend on hs-to-coq’s preexisting translated version of GHC’s
standard library base. Here, we use the existing translation of Haskell’s Int type, the Ord

type class, and Ord’s compare method.
We carry out this translation for the Set, IntSet, and Map along with their attendant

functions, and then verify the resulting Gallina code. In Section 4, we discuss the prop-
erties that we prove about these data structures, focusing on the details of the two set
data structures. Naturally, this translation process means that these proofs comes with an
attendant formalization gap, which we discuss in Section 7.1.

To further test the translation from Haskell to Coq, we also used Coq’s extraction mech-
anism to translate the generated Gallina code, like that seen above, back to Haskell. This
process converts the implicitly passed type-class dictionaries to ordinary explicitly passed
function arguments, but otherwise preserves the structure of the code. For example, the
member function above is extracted back to Haskell as the following code:

member :: (Base.Eq_ a1) -> (Base.Ord a1) -> a1 -> (Set_ a1) -> Prelude.Bool
member h h0 arg_0__ arg_1__ =

case arg_1__ of {
Bin _ y l r ->

case Base.compare h h0 arg_0__ y of {
Prelude.EQ -> Prelude.True;
Prelude.LT -> member h h0 arg_0__ l;
Prelude.GT -> member h h0 arg_0__ r};

Tip -> Prelude.False}

By providing an interface that restores the type-class-based types, we can run the orig-
inal containers test suite against this code. This process helps us check that hs-to-coq
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Fig. 3. A quantitative overview of the Haskell code, its translation into Coq and our proofs.

preserves the semantics of the original Haskell program during the translation process. Our
handwritten shim module imports the extracted definitions above and then re-exports these
definitions with their original types by using Haskell’s type-class resolution to provide the
explicit dictionaries.

--Create dictionary from an Eq type class constraint
eq_a :: Eq a => Base.Eq_ a
eq_a _ f = f (Base.Eq___Dict_Build (==) (/=))

--Create dictionary from an Ord type class constraint
ord_a :: Prelude.Ord a => Base.Ord a
ord_a _ = Base.ord_default Prelude.compare eq_a

--Restore the original type of the extracted member function
--by providing explicit dictionaries
member :: Prelude.Ord a => a -> Set a -> Bool
member = S2.member eq_a ord_a

Figure 3 provides an overview of the Haskell code that we target, the Gallina code that
we translate it into, and the Coq proofs that we wrote. For ease of comparison (Map is
quite different and much larger), the bar chart focuses on the two different set modules,
but our numbers include Map. The relevant modules of the containers library contain 325
functions and 41 type class instances, written in 4096 lines of code (excluding comments
and blank lines). Out of these, 36 functions and 20 type class instances (509 loc) were
deemed “out of scope” and not translated. (We discuss untranslated definitions in more
detail in Sections 5.3 and 7.2.) Our translation produces 4812 lines of Gallina code.

The Set, IntSet, and Map data structures come with extensive APIs. We specify and
verify a representative subset of commonly used functions (listed in Figure 4), covering
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Set: API: delete, deleteMax, deleteMin, difference, disjoint, drop, elems,
empty, filter, foldl, foldl’, foldr, foldr’, fromAscList, fromDescList,
fromDistinctAscList, fromDistinctDescList, fromList, insert,
intersection, isSubsetOf, lookupMax, lookupMin, map, mapMonotonic,
maxView, member, minView, notMember, null, partition, singleton, size,
split, splitAt, splitMember, take, toAscList, toDescList, toList, union,
unions

Instances: Eq, Eq1, Monoid, Ord, Ord1, Semigroup
Internal functions: balanceL, balanceR, combineEq, glue, insertMax,
insertMin, insertR, link, maxViewSure, merge, minViewSure, valid

IntSet: API: delete, difference, disjoint, elems, empty, filter, foldl,
foldr, fromList, insert, intersection, isProperSubsetOf, isSubsetOf, map,
member, notMember, null, partition, singleton, size, split, splitMember,
toAscList, toDescList, toList, union, unions
Instances: Eq, Monoid, Ord, Semigroup
Internal functions: branchMask, equal, highestBitMask, mask, nequal,
nomatch, revNat, shorter, valid, zero

Map: API: adjust, alter, assocs, balance, balanceL, balanceR, delete,
deleteMax, deleteMin, difference, drop, elems, empty, filter, findIndex,
findWithDefault, foldl, foldl’, foldlWithKey’, foldr, foldr’,
foldrWithKey, fromAscList, fromDescList, fromDistinctAscList,
fromDistinctDescList, fromList, fromSet, glue, insert,
insertLookupWithKey, insertMax, insertWith, insertWithKey,
intersection, keys, keysSet, link, link2, lookup, lookupLE, lookupLT,
lookupMax, lookupMin, mapEither, mapEitherWithKey, mapMaybe,
mapMaybeWithKey, mapWithKey, maxView, member, minView, notMember, null,
partition, restrictKeys, singleton, size, split, splitAt, splitLookup,
splitRoot, take, toAscList, toDescList, toList, union, unionWithKey,
unions, unionsWith, update, updateLookupWithKey, updateWithKey,
withoutKeys

Instances: Eq, Eq1, Monoid, Semigroup
Internal functions: insertMin, insertR, insertWithKeyR, insertWithR,
isProperSubmapOfBy, maxViewSure, minViewSure, splitMember

Fig. 4. The verified subset of functions and type classes in Data.Set, Data.IntSet, and
Data.Map.Strict.

68% of the Set API, 49% of the IntSet API, and 44% of the Map API. This verified API
is complete enough to instantiate Coq’s specification of finite sets and maps, along with
many other specifications at varying levels of abstraction; for more details, see Section 4.

As Coq is not an automated theorem prover, verification of these complex data structures
requires significant effort. In total, we verified 2331 lines of Haskell; the verification of
Set, IntSet, and Map required 8.9 lines of proof per lines of code. This factor is noticeably
higher for IntSet (9.9×) than for Set (7.4×), as the latter is conceptually simpler to reason
about and allowed us to achieve a higher degree of automation using Coq tactics.
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Inductive Bounded : Set_ e -> option e -> option e -> Prop :=
| BoundedTip : forall lb ub,
Bounded Tip lb ub

| BoundedBin : forall lb ub s1 s2 x sz,
Bounded s1 lb (Some x) ->
Bounded s2 (Some x) ub ->
isLB lb x = true -> (* If lb is defined, it is less than x *)
isUB ub x = true -> (* If ub is defined, it is greater than x *)
sz = (1 + size s1 + size s2) ->
balance_prop (size s1) (size s2) -> (* weights of tree are balanced *)
Bounded (Bin sz x s1 s2) lb ub.

(** Any set that has bounds is well-formed *)
Definition WF (s : Set_ e) : Prop := Bounded s None None.

Fig. 5. Well-formed weight-balanced sets.

Our proofs also require the formalization of several background theories (not counted in
the proof-to-code ratio above), including integer arithmetic and bits (1265 loc): lists and
sortedness (1500 loc); dyadic intervals, which are used for verifying IntSet (1169 loc);
and support for working with lawful Ord instances (488 loc), including a complete decision
procedure,16 a port of Coq’s Coq.Structures.OrdersTac to a setting using type classes
instead of modules.

4 Specifying Set and IntSet

The phrase “we have verified this piece of software” on its own is meaningless: the
particular specification that a piece of software is verified against matters. Good speci-
fications are rich, two-sided, formal, and live (Appel et al., 2017). A specification is rich
if it “describ[es] complex behaviors in detail”. It is two-sided if it is “connected to both
implementations and clients”. It is formal if it is “written in a mathematical notation with
clear semantics”. And it is live if it is “connected via machine-checkable proofs to the
implementation”.

All specifications of Set and IntSet that we use are formal and live by definition. They
are formal because we express the desired properties using Gallina, the language of the
Coq proof assistant; and they are live because we use hs-to-coq to automatically convert
containers to Coq where we develop and check our proofs.17 But how can we ensure that
our specifications of Set and IntSet are two-sided and rich? How do we know that the
specifications are not just facts that happen to be true, but are useful for the verification of
larger systems? What complex behaviors of the data structures should we specify?

To ensure that our specifications are two-sided, we use specifications that we did not
invent ourselves. Instead, we draw our specifications from a variety of diverse sources:

16 In the file examples/containers/theories/OrdTactic.v.
17 “Liveness” here solely refers to the fact that the specification and the Haskell source are automatically con-

nected; it does not guarantee that the semantics of the two are identical. We discuss the formalization gap
further in Section 7.1.

https://doi.org/10.1017/S0956796820000283 Published online by Cambridge University Press

https://github.com/antalsz/hs-to-coq/blob/JFP-containers/examples/containers/theories/OrdTactic.v
https://doi.org/10.1017/S0956796820000283


Ready, Set, Verify! 11

from several parts of the containers codebase (Sections 4.1 to 4.4), from Haskell
type class laws (Section 4.5), from preexisting Coq theories (Section 4.6), and from a
mathematical description of sets (Section 4.7). This way, we also ensure that our specifica-
tions are rich because they describe the complex Set and IntSet data structures at varying
levels of abstraction. Finally, by verifying the code against these disparate specifications,
we not only increase the assurance that we captured all the important behaviors of Set and
IntSet, but we also cross-validate the specifications against each other.

While we focus here on Set and IntSet, these techniques are all more general – in
Section 5.9, we discuss how we were able to take the techniques presented here and extend
them directly to verify the related Map data structure.

4.1 Specifying implementation invariants

Set and IntSet are two examples of abstract types whose correctness depend on
invariants. Therefore, we define well-formedness predicates WF: Set_ e -> Prop and WF :

IntSet -> Prop and show that the operations preserve these properties. The definition
of well-formedness differs between the two types, but specifications of both are already
present within containers.

Well-formed weight-balanced trees. Our definition of WF for Set is derived from the
valid function defined in the containers library. This function checks whether the input
(1) is a balanced tree, (2) is an ordered tree, and (3) has the correct values in its size fields.
It is not part of the normal, user-facing API of containers (since all exported functions
preserve well-formedness), but is used internally by the developers for debugging and
testing. For us, it is valuable as an executable specification, with less room for ambiguity
and interpretation than comments and documentation.

However, rather than using valid directly, we define well-formedness as an inductive
predicate, because we find it more useful from a proof engineering perspective. In partic-
ular, our definition of WF, as shown in Figure 5, relies on the Bounded inductive family.
Its indices express lower and upper bounds of the elements stored in the tree; None means
unbounded. At the same time, the property also checks that the sizes of the two subtrees
are balanced in the Bin case.18 Nevertheless, we can relate the WF predicate to the valid

function found in containers:

Lemma Bounded_iff_valid : forall s, WF s <-> valid s = true.

Well-formed Patricia trees. Our well-formedness definition for IntSet is derived from
the comments in the IntSet data type, shown in Figure 2, where the type declaration
almost disappears beneath a large swath of comments describing its invariants.

In this case, the documentation-derived well-formedness predicate is stronger than the
corresponding valid function from the implementation – the Haskell function was missing
some necessary conditions. We reported this to the library authors,19 who have since fixed
valid.

18 In the file examples/containers/theories/SetProofs.v.
19 https://github.com/haskell/containers/issues/522
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This fix to valid is an example of how verification allows us to cross-validate specifi-
cations and ensure that the invariants written in the comments are adequately reflected by
the code. On the other hand, sometimes we discover that it is the comments in the code
that are incomplete. For example, the comment describing the precondition for balanceL
in the Data.Set module was misleading and too vague; for more details, see Section 6.1.

4.2 Property-based testing

At the next level of verification, we would like to show that the implementations of Set and
IntSet are correct according to the implementors of the module. We specify correctness
by deriving a definition directly from the test suite that is distributed with the containers
library.

Thanks to the popularity of property-based testing within the Haskell community, this
test suite contains a wealth of precisely specified general properties expressed using Quick-
Check (Claessen & Hughes, 2000). For example, one such property states that the union

operation is associative, in terms of the Haskell-level equality function ==:

prop_UnionAssoc :: IntSet -> IntSet -> IntSet -> Bool
prop_UnionAssoc t1 t2 t3 = union t1 (union t2 t3) == union (union t1 t2) t3

which we can interpret as a theorem about union:20

Theorem thm_UnionAssoc:
forall t1, WF t1 -> forall t2, WF t2 -> forall t3, WF t3 ->
union t1 (union t2 t3) == union (union t1 t2) t3 = true.

We do not have to write these theorems by hand: as we describe in Section 5.8, we use
hs-to-coq in a nonstandard way to automatically turn these executable tests into Gallina
propositions (i.e., types). We have translated IntSet’s test suite in this manner and have
used our other specifications to prove that all QuickCheck properties about verified IntSet

functions are theorems (with one exception due to our choice of integer representation –
see Section 5.5).

4.3 Numeric overflow in Set

There is one way in which we have diverged from the specification of correctness given
by the comments of the containers library. The Data.Set module states:21

Warning: The size of the set must not exceed maxBound::Int. Violation of this
condition is not detected and if the size limit is exceeded, its behavior is undefined.

In practice, it makes no difference whether Int is bounded or not, as a valid set with
(263 − 1) elements would require at least 368 exabytes of storage. What does this imply for
our specification of Set? Should we use fixed-width integers to represent Int? This choice
would closely match the implementation, but we would have to carefully add preconditions
to all our lemmas to avoid integer overflow, greatly complicating the proofs, with little

20 In the file examples/containers/theories/IntSetPropertyProofs.v.
21 http://hackage.haskell.org/package/containers-0.5.11.0/docs/Data-Set.html
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verification insight to be gained. Furthermore, such a specification would be difficult to
use by clients, who themselves would need to prove that they satisfy such preconditions.

Instead, we translate Haskell’s Int type to Coq’s type of unbounded integers (called Z).
This mapping avoids the problem of integer overflow altogether and is arguably consistent
with the comment, as this choice replaces undefined behavior with concrete behavior. (The
situation is slightly different for IntSet; see Section 5.5.)

4.4 Rewrite rules

So far, we have only been concerned with specifying the correctness of the data structures
using the definition of correctness that is present in the original source code; the comments,
the valid functions and the QuickCheck properties. However, to be able to claim that our
specifications are two-sided, we need to show that the properties that we prove are useful
to clients of the module.

One source of such properties are the rewrite rules (Peyton Jones et al., 2001) that
enable library-specific compiler optimization. The containers library includes a small
number of such rules. These annotations instruct the compiler to replace any occurrence of
the pattern on the left-hand side in the rule by the expression on the right-hand side. The
standard example is

{-# RULES "map/map" forall f g xs. map f (map g xs) = map (f . g) xs #-}

which fuses two adjacent calls to map into one, eliminating the intermediate list.
The program transformation list fusion (Peyton Jones et al., 2001) is implemented com-

pletely in terms of rewrite rules, and the rules in the containers library set up its functions
for fusion; an example is

{-# RULES "Set.toAscList"
forall s. toAscList s = build (\c n -> foldrFB c n s) #-}

which transforms the toAscList function into an equivalent representation in terms of
build.

We can view these rewrite rules as a direct specification of properties that the compiler
assumes are true during compilation. Rewrite rules are used by GHC during optimization;
if any of these properties are actually false, GHC will silently produce incorrect code.
Therefore, any proof about the correctness of GHC’s compilation of these files depends
on a proof of these properties. We have manually translated all the rules into Coq – there
are only few of them, so manual translation is viable – and have proved that the translated
operations satisfy this specification.22

4.5 Type classes with laws

Many Haskell type classes come with laws that all instances of the type class should satisfy,
which provides another source of external specification that we can use. For example, an
instance of Eq is expected to implement an equivalence relation, an instance of Ord should
describe a linear order, and an instance of Monoid should be, well, a monoid.

22 In the files examples/containers/theories/SetProofs.v and examples/containers/theories/IntSetProofs.v.
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Class OrdLaws (t : Type) {HEq : Eq_ t} {HOrd : Ord t} {HEqLaw : EqLaws t} := {
(* The axioms *)
Ord_antisym : forall a b, a <= b = true -> b <= a = true -> a == b = true;
Ord_trans_le : forall a b c, a <= b = true -> b <= c = true -> a <= c = true;
Ord_total : forall a b, a <= b = true \/ b <= a = true;
(* The other operations, in terms of <= or == *)
Ord_compare_Lt : forall a b, compare a b = Lt <-> b <= a = false;
Ord_compare_Eq : forall a b, compare a b = Eq <-> a == b = true;
Ord_compare_Gt : forall a b, compare a b = Gt <-> a <= b = false;
Ord_lt_le : forall a b, a < b = negb (b <= a);
Ord_ge_le : forall a b, a >= b = (b <= a);
Ord_gt_le : forall a b, a > b = negb (a <= b)}.

Fig. 6. Our codification of the Ord type class laws.

We reflect these laws using type classes whose members are the required properties. For
example, we have defined EqLaws, OrdLaws (shown in Figure 6), and MonoidLaws. These
classes can only be instantiated if the corresponding instance is lawful.

Even though we have defined these laws ourselves, using our understanding of what they
mean for the Haskell standard library, we argue that they form a two-sided specification. In
particular, we have been clients to the Ord laws in our verification of the Set data structure.
Almost all theorems about Set must constrain the element type to one that is an instance
of OrdLaws. Therefore, we know our specification of these laws is sufficiently strong to
verify this library.

At the same time, we have also shown that multiple type class instances satisfy these
laws including both set modules23 and other types such as Z, unit, tuples, option, and
list.24 Because we successfully instantiated these type classes for many types, we also
know that they are not too strong.

That said, nailing down the precise form of the type class laws can be tricky. Consider
the case of a Monoid instance for a type T. The associativity law can be stated as “for all
elements x, y and z of T, we have that x <> (y <> z) is equal to (x <> y) <> z,” where <>

is the monoid operation (i.e., mappend in Haskell). But in order to write this down as part
of MonoidLaws in Coq, we need to make two decisions:

1. What do we mean by “equal”? The first option is to use Coq’s propositional equal-
ity and require that x <> (y <> z) = (x <> y) <> z. This would, however, prevent
us from making Set_, with (<>) = union, a member of MonoidLaws: two exten-
sionally equal sets may be represented by differently structured trees. Therefore, we
instead require that the two expressions are equal according to their Eq instance:(x
<> (y <> z) == (x <> y) <> z) = true. The tradeoff with this approach is that it pre-
cludes instances like MonoidLaws b -> MonoidLaws (a -> b), since functions have
no instance of Eq (and indeed, in general cannot have decidable equality).

For many types, however, this distinction is moot, since Haskell’s equality coin-
cides with structural equality; for example, this is the case for Bool, for Integer, and

23 In the files examples/containers/theories/SetProofs.v and examples/containers/theories/IntSetProofs.v.
24 In the file base-thy/GHC/Base.v.
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for IntSet itself (although not for Set, as mentioned above). To facilitate reasoning
about such types, we provide the type class EqExact, which states that

forall {a} �{EqExact a}, x == y = true <-> x = y

2. What do we mean by “For all elements of T”? The obvious choice is universal
quantification over all elements of T:

forall (x y z : T), x <> (y <> z) == (x <> y) <> z = true

But again, this collides with common practice in Haskell. Once again, consider Set:
union only works correctly on well-formed sets. Therefore, our approach is to define
an instance of this and other classes not for the type Set_ e, but for the type of
well-formed sets, {s : Set_ e | WF s}, where type class laws hold universally. This
instance reflects the “external view” of the data structure – clients should only have
access to well-formed sets.

An alternative could be to instead constrain MonoidLaws’s theorems to hold only
on members of T that are well-formed in some general way (e.g., according to an
IsWF type class that could be instantiated at different types). In this way, we could
instantiate MonoidLaws directly with types that require well-formedness, without the
need for subset types.

4.6 Specifications from the Coq standard library

Because we are working in Coq, we have access to a standard library of specifications
for finite sets, which we know are two-sided because they have already appeared in larger
Coq developments. The Coq.FSets.FSetInterface module25 provides module types that
cover many common operations and their properties. The module types come in two vari-
eties: one that specifies sets of elements that merely have decidable equality (WSfun, WS),
and one that specifies sets of elements that can be linearly ordered (Sfun, S). The WSfun

and Sfun modules are presented as module functors that take an OrderedType module,
containing the linearly ordered element type, as an input; the WS and S modules are the
same, but they inline this information.

For example, the parameterized module type WSfun provides one specification of a finite
set type, called t in the excerpt from this interface below. The element type of this set, E.t,
is required to have decidable equality.

Module Type WSfun (E : DecidableType).

Definition elt := E.t.

Parameter t : Type. (* Set type *)
Parameter In : elt -> t -> Prop. (* Characteristic function

for a Set *)

Parameter mem : elt -> t -> bool. (* Membership function *)

25 https://coq.inria.fr/library/Coq.FSets.FSetInterface.html
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(* Specification of mem *)
Parameter mem_1 : forall x s, In x s -> mem x s = true.
Parameter mem_2 : forall x s, mem x s = true -> In x s.

. . .
End WSFun.

Every operation in this interface, such as mem above, is accompanied by a small number of
properties that specify the behavior of the operation.

We instantiate all four interfaces for Set and IntSet.26 For example, the instance for
Set starts out:

Module SetFSet (E : OrderedType) <: WSfun(E) <: WS <: Sfun(E) <: S.

Definition t := {s : Set_ elt | WF s}.

Program Definition In (x :elt) (s : t) : Prop := . . . .

Program Definition mem : elt -> t -> bool := member.

Lemma mem_1 : forall (s : t) (x : elt), In x s -> mem x s = true.
Proof. . . . (* Proof may assume that s is well-formed *) . . . Qed.

. . .
End SetFSet.

Instantiating these interfaces runs into two small hiccups. The first is that they talk about
all sets, not simply all well-formed sets. Therefore, as in the previous section, we instantiate
these interfaces with the subset type {s : Set_ e | WF s}. The second is that Coq’s module
system does not interact with type classes, and Set_ is defined such that its element type
must be an instance of the Ord type class. This impedance mismatch requires us to write a
module which can generate an Ord instance from a Coq OrderedType module.

By successfully instantiating this module interface, we obtain two benefits. First, we
must prove theorems that cover many of the main functions provided by containers;
these theorems are particularly valuable, as the interface itself is heavily used by Coq
users. Second, by instantiating this interface, we connect our injected Haskell code to the
Coq ecosystem, enabling Coq users to easily use the containers-derived data structures
in their developments, should they so desire.

4.7 Abstract models as specifications

Tests, type classes, and the other sources of specifications do not fully describe the intended
behavior of all functions. We, therefore, have to also come up with specifications on our
own. We do this by relating a concrete search tree to the abstract set that it represents; that
is, we provide a denotational semantics. We denote a set with elements of type e as its
indicator function of type e -> bool; for Set e, we provide a denotation function sem :

forall {e} �{Eq_ e}, Set_ e -> (e -> bool), and for IntSet, we provide a denotation
relation Sem : IntSet -> (N -> bool) -> Prop.

26 In the files examples/containers/theories/SetProofs.v and examples/containers/theories/IntSetProofs.v.
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This approach allows us to abstractly describe the meaning of operations like insert.
For Set_, we do this by providing a theorem like

Theorem insert_sem:
forall {a} �{OrdLaws a} (s : Set_ a) (x : a), WF s ->
forall (i : a), sem (insert x s) i = (i == x) || sem s i.

(For IntSet, some technical details differ.) However, there is more we need to know about
insert than just its denotation. We also need to know that it preserves well-formedness
and bounds, and – to reason about balancing – its size. To avoid having to prove these
properties independently, we define a relation Desc that completely describes a set, by
asserting that it is well-formed and relating it to its bounds, its size and its denotation:

Definition Desc (s : Set _e) (lb ub : option e) (sz : Z) (f : e -> bool) :=
Bounded s lb ub /\ size s = sz /\ (forall i, sem s i = f i).

This allows us to state a single theorem about insert, namely

Lemma insert_Desc: forall x s lb ub,
Bounded s lb ub ->
isLB lb x = true -> (* If lb is defined, it is less than x *)
isUB ub x = true -> (* If ub is defined, it is greater than x *)
Desc (insert x s) lb ub

(if sem s y then size s else (1 + size s))
(fun i => (i == x) || sem s i).

and prove everything we need to know about insert in one single inductive proof. This
theorem describes insert completely: it describes its bounds, its size, its semantics, as
well as its well-formedness. 27

The theorem also introduces a layer of abstraction that we can build upon. In fact,
we specify all functions this way, and use these specifications, rather than the concrete
implementation, to prove the other specifications. (We have an analogous Desc relation
for IntSet that describes the properties of Patricia trees.)

An alternative abstract model for finite sets is the sorted list of their elements, i.e. the
result of toAscList. The meaning of certain operations, like foldr, take or size, can
naturally be expressed in terms of toAscList, but would be very convoluted to state in
terms of the indicator function, and we use this denotation – or both – where appropriate.

5 Producing verifiable code with hs-to-coq

Identifying what to prove about the code is only half of the challenge – we also need to
get the Haskell code into Coq. Ideally, the translation of Haskell code into Gallina using
hs-to-coq would be completely automatic and produce code that can be verified as easily
as code written directly in Coq – and for textbook-level examples, that is the case (Spector-
Zabusky et al., 2018). However, working with real-world code requires adjustments to the
translation process to make sure that the output is both accepted by Coq and amenable to
verification.

27 In the file examples/containers/theories/SetProofs.v.
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A core principle of our approach is that the Haskell source code does not need to be
modified in order to be verified. This principle ensures that we verify “the” containers

library (not a “verified fork”) and that the verification can be ported to a newer version of
the library.

The crucial feature of hs-to-coq that enables this approach is the support for edits:
instructions to treat some code differently during translation. Edits are specified in plain
text files, which also serve as a concise summary of our interventions. The hs-to-coq

tool already supported many forms of edits; for example, specifying when names need to
be changed, when parts of the module should be ignored or replaced by some other term,
when we want to map Haskell types to existing Coq types, or when a recursive function
definition needs an explicit termination proof. In the course of this work, we added new
features to hs-to-coq – such as the ability to apply rewrite rules, to handle partiality and to
defer termination proofs to the verification stage – and extended the provided base library.

In this section we demonstrate some of the challenges posed by translating real-world
code, and show how hs-to-coq’s flexibility allowed us to not only to overcome them, but
also to facilitate subsequently proving the input correct.

5.1 Unsafe pointer equality

An example of a Haskell feature that we cannot expect to translate without interven-
tion is unsafe pointer equality. GHC’s runtime provides the scarily named function
reallyUnsafePtrEquality#, which the containers library wraps as ptrEq :: a -> a

-> Bool. If this function returns True, then both arguments are represented in memory by
the same pointer. If this function returns False, we know nothing – this function is under-
specified and may return False even if the two pointers are equal. In fact, if containers
is compiled with a non-GHC compiler, it will define ptrEq to always return False.

The ptrEq operation is used, for example, in Set.insert x s: If ptrEq indicates that the
subtree with x inserted is just the original subtree, function skips the redundant rebalancing
step – which enhances performance – and returns the original set rather than constructing a
semantically equivalent copy – which increases sharing. Because ptrEq is only ever used
for optimization such as this, its weak specification is safe – the worst that could happen if
it returns False overzealously is that some extra work is done.

Coq does not provide any way of reasoning about memory, so when we use hs-to-coq,
we must replace ptrEq with something else. But what?

One option is to replace ptrEq with a definition that always returns False, using the
following edit:

replace Definition ptrEq : forall {a}, a -> a -> bool := fun _ _ _ => false.

This allows us to proceed with translation and verification. However, the code in the True

branch of an unsafe pointer equality test would be dead code in Coq, and our verification
would miss bugs possibly lurking there.

The next option would be to keep ptrEq completey abstract, for example by defining it
as an Axiom. This would indeed force us to consider both branches. Unfortunately, we will
likey fail to conclude the True branch, as that code is written under the assumption that the
pointers are indeed equal, and thus the values structurally equal.
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This leads us to the chosen solution, where we leave ptrEq unspecified, to force us to
consider both branches, but in the True branch we obtain the additional assumption that
the values are structurally equal, by assuming the implication ptrEq x y = true -> x = y.

Instead of using the dreaded Axiom to state this, we can achieve the same by way of an
opaque and partially defined definition of ptrEq:28

Definition ptrEq_spec :
{ ptrEq : forall a, a -> a -> bool
| forall a (x y : a), ptrEq _ x y = true -> x = y }.

Proof. apply (exist _ (fun _ _ _ => false)). intros; congruence. Qed.

Definition ptrEq : forall {a}, a -> a -> bool := proj1_sig ptrEq_spec.
Lemma ptrEq_eq : forall {a} (x:a)(y:a), ptrEq x y = true -> x = y.
Proof. exact (proj2_sig ptrEq_spec). Qed.

The Qed at the end of the definition of ptrEq_spec hides the concrete witness (which
simply always returns false and thus satisfies the specification vacuously) and forces
verification to proceed down both paths.

For idiomatic uses of ptrEq, where the True branch is some optimized variant of the
False case, this solution is entirely satisfactory. But obviously this does not capture the
behavior GHC’s reallyUnsafePtrEquality# completely, and creative use of ptrEq can
exploit this gap. For example, the expression x == y && ptrEq y z && not (ptrEq x z)

evaluates to True in Haskell when x and z are the same pointers and y is structurally
equal but a different pointer, but can be proven to be always False in Coq, becuase in Coq
ptrEq respects structural equality.

5.2 Evaluation order

A shallow embedding of Haskell into Coq makes the difference between strict and lazy
code vanish, because Gallina is a total language and does not care about evaluation order.

Haskell has “magic” functions like seq that allow the programmer to explicitly control
strictness, and the containers library uses it to improve performance. Its effect is irrel-
evant in Coq, and we instruct hs-to-coq to use this simple, magic-free implementation
for it:

Definition seq {a} {b} (x : a) (y : b) := y.

5.3 Eliminating unwanted parts of the code

Figure 7 lists the untranslated portions of the Set, IntSet, and Map modules. This makes
up 15% of the code, as can also be seen in Figure 3, and is smaller than the parts that were
verified (see Figure 4).

Many of these operations are functions that we choose to ignore for the sake of verifi-
cation – for example, the function showTree in Data.Set prints the internal structure of

28 In the file examples/containers/lib/Utils/Containers/Internal/PtrEquality.v.
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Set: API: deleteAt, deleteFindMax, deleteFindMin, elemAt, findIndex,
findMax, findMin
Instances: Data, IsList, NFData, Read, Show, Show1
Internal functions: showTree

IntSet: API: deleteFindMax, deleteFindMin, findMax, findMin,
fromAscList, fromDistinctAscList
Instances: Data, IsList, NFData, Read, Show
Internal functions: showTree

Map: API: alterF, atKeyImpl, deleteFindMax, deleteFindMin,
differenceWith, differenceWithKey, elemAt, findMax, findMin
Instances: Data, IsList, NFData, Ord1, Read, Read1, Show, Show1, Show2
Internal functions: , alterFCutoff, alterFFallback, alterFYoneda, bogus,
deleteAlong, filterGt, filterLt, find, insertAlong, lookupTrace,
replaceAlong

Fig. 7. Untranslated functions and type classes in Data.Set, Data.IntSet, and Data.Map.Strict.

such a set as an ASCII-art tree. This function is not used elsewhere in the module. In the
interest of a tidier and smaller output, we skip this function using an edit:

skip showTree

Similarly, we skip functionality related to serialization (the Show and Show1 type classes),
deserialization (the Read type class), generic programming (the Data type class), and
overloaded list notation (the IsList type class).

Furthermore, we skip some operations whose public API is partial. For example, eval-
uating findMax empty will call error and throw an exception, as the empty set has no
maximum element. We cannot model this exception in Coq (see Section 5.4 for how we
handle calls to error within total functions), so we skip findMax and similar functions
(findMin, deleteFindMax, deleteFindMin, findIndex, elemAt and deleteAt). This
elision is not significant because the containers API provides total equivalents for many
of these functions (e.g., lookupIndex, which returns Nothing when the index is out of
bounds).

Finally, we skip the two functions that use mutual recursion as this feature is not yet sup-
ported by hs-to-coq (fromAscList and fromDistinctAscList). While basic structural
mutual recursion is supported by Coq, the existing facilities for nonstructural recursion
(such as Program Fixpoint; see Section 5.7) do not support mutual recursion.

5.4 Partiality in total functions

In contrast to the skipped functions above, some functions use partiality in their implemen-
tation in ways that cannot be triggered by a user of the public API. In particular, they may
use calls to Haskell’s error function when an invariant is violated.

For example, the central balancing functions for Sets, balanceL and balanceR,
may call error when passed an ill-formed Set. Because our proofs only reason about
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well-formed sets, this code is actually dead. It does not matter how we translate error –
any term that is accepted by Coq is good enough. However, error in Haskell has the type

error :: String -> a

which means that a call to error can inhabit any type. We cannot define such a function in
Coq, and adding it as an axiom would be glaringly unsound.

Therefore, we extended hs-to-coq to use the following definition for error:

Class Default (a :Type) := { default : a }.
Definition error {a} �{Default a} : String -> a.
Proof. exact (fun _ => default). Qed.

The type class enforces that we use error only at non-empty types, ensuring logical con-
sistency. Yet we will notice that something is wrong when we have to prove something
about it. Just as with ptrEq (Section 5.1), by making the definition of error opaque
using Qed, we are prevented from accidentally or intentionally using the concrete default
value of a given type in a proof about error. Furthermore, when we extract the Coq code
back to Haskell for testing, we translate this definition back to Haskell’s error function,
preserving the original semantics.

This encoding is inspired by Isabelle, where all types are inhabited and there is a
polymorphic term undefined :: a that denotes an unspecified element of any type.

5.5 Translating the Int in IntSet

As discussed in Section 4.1, we map Haskell’s finite-width integer type Int to Coq’s
unbounded integer type Z in the translation of Data.Set in order to match the specification
that integer overflow is outside the scope of the specified behavior.

For IntSet, however, this choice would cause problems. Big-endian Patricia trees
require that two different elements have a highest differing bit. This is not the case for
Z, where negative numbers have an infinite number of bits set to 1; for instance, -1 is
effectively an infinite sequence of set bits. Fortunately, hs-to-coq is flexible enough to
allow us to make a different choice when translating IntSet; we can pick any suitable type
where all elements have a finite number of bits set, such as the natural numbers (N) or a
fixed width integer type.

Given that Coq’s standard library provides a fairly comprehensive library of lemmas
about N and decision procedures (omega and lia) that work with it, we chose to use N for
now, with the intention to eventually switch to a 64-bit integer type. This is the appropriate
generalization of IntSet to an infinite domain. In Haskell, the domain is 64-bit words,
which happen to be interpretable as negative numbers. When we generalize to an infinite
domain, we generalize to bit strings of unbounded but finite length, which we can most
simply interpret as nonnegative.

The IntSet code uses bit-level operations, like complement and negate, that do not
exist for N. To deal with this we extended hs-to-coq with support for rewrite edits like

rewrite forall x y, (x .&. complement y) = (xor x (x .&. y))

which instruct it to replace any expression that matches the left-hand side by the right-
hand side. For signed or bounded integer types, both sides are equivalent. For unbounded
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unsigned types, like Coq’s type N, the left hand side is undefined (values in N have no
complement in N), while the right-hand side is perfectly fine. When we switch to bounded
integers in the IntSet code, we can remove these edits.

5.6 Low-level bit twiddling

The containers library uses highly tuned bit-twiddling algorithms to operate on IntSets.
For example, the function revNat reverses the order of the bits in a 64-bit number:

revNat :: Nat -> Nat
revNat x1 = case ((x1 �shiftRL� 1) .&. 5555555555555555) .|.

((x1 .&. 5555555555555555) �shiftLL� 1) of x2 ->
case ((x2 �shiftRL� 2) .&. 3333333333333333) .|.

((x2 .&. 3333333333333333) �shiftLL� 2) of x3 ->
case ((x3 �shiftRL� 4) .&. 0F0F0F0F0F0F0F0F) .|.

((x3 .&. 0F0F0F0F0F0F0F0F) �shiftLL� 4) of x4 ->
case ((x4 �shiftRL� 8) .&. 00FF00FF00FF00FF) .|.

((x4 .&. 00FF00FF00FF00FF) �shiftLL� 8) of x5 ->
case ((x5 �shiftRL� 16) .&. 0000FFFF0000FFFF) .|.

((x5 .&. 0000FFFF0000FFFF) �shiftLL� 16) of x6 ->
(x6 �shiftRL� 32) .|. (x6 �shiftLL� 32)

Though complicated, this code is within the scope of what hs-to-coq can translate, and
we can verify its correctness.29

However, we can’t keep up with all their tricks. For example, indexOfTheOnlyBit,
which was contributed by Edward Kmett,30 takes a number with exactly one bit set and
calculates the index of said bit. It does so by unboxing31 the input, multiplying it by a
magic constant, and using the upper 6 bits of the product as an index into a table stored in
an unboxed array literal. This manifests as the following scary-looking code:

indexOfTheOnlyBit :: Nat -> Int
indexOfTheOnlyBit bitmask = I# (lsbArray �indexInt8OffAddr#� unboxInt

(intFromNat ((bitmask * magic) �shiftRL� offset)))
where

unboxInt (I# i) = i
magic = 0x07EDD5E59A4E28C2
offset = 58
!lsbArray = "\63\0\58\1\5. . . 15\8\23\7\6\5"#

We currently cannot translate this code because hs-to-coq does not yet support
unboxed arrays or unboxed integers. Even if we could (such as by treating the unboxed
values as ordinary boxed values), the algorithm it uses depends crucially on the finite
width of machine words, relying on both a finite lookup table (lsbArray) as well as on
unsigned integer overflow in the multiplication. We therefore replace it with a simpler but

29 In the file examples/containers/theories/RevNatSlowProofs.v.
30 https://github.com/haskell/containers/commit/e076b33f
31 Unboxing is analogous to the {-# UNPACK #-} pragma mentioned in Section 2.2; unpacking a field stores an

unboxed value there. Unboxed values are always fully evaluated, bypassing the uniform, lazy representation
common to all other Haskell values. For example, unboxed Ints are machine words and may be stored in
registers.
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more general definition based on a integer logarithm function provided by Coq’s standard
library:

redefine Definition indexOfTheOnlyBit := fun x => N.log2 x.

Similarly, we provide simpler definitions for the four low-level bit-twiddling functions
branchMask, mask, zero and suffixBitMask.

5.7 Nontrivial recursion

In order to prove the correctness of Set and IntSet, we must deal with termination. There
are two reasons for this. First, we intrinsically want to prove that none of the functions
provided by containers go into an infinite loop. Second, Coq requires that all defined
functions are terminating, as unrestricted recursion would lead to logical inconsistencies.
Depending on how involved the termination argument for a given function is, we use one
of the following four approaches.

5.7.1 Obvious structural recursion

By default, hs-to-coq implements recursive functions directly using Coq’s fix keyword.
This works smoothly for primitive structural recursion; indeed, a majority of the recursive
functions that we encountered, such as member in Figure 1, were of this form and required
no further attention.

5.7.2 Almost-structural recursion

Another common recursion pattern can be found in binary operations such as link in
Figure 8. Here, every recursive call shrinks either or both of its arguments to immediate
subterms of the originals, leaving the others unchanged. This almost-structural recursion
is already beyond the capabilities of Coq’s termination checker. We, therefore, instruct
hs-to-coq to use Coq’s Program Fixpoint command to translate these functions in terms
of well-founded recursion by adding the edits

termination link {measure (size_nat arg_0__ + size_nat arg_1__)}
obligations link termination_by_omega

This specifies both:

1. The termination measure, which is the sum of the sizes of the arguments (we defined
the function size_nat : IntSet -> nat).

2. The termination proof that the measure decreases on every call. This is represented
as the Coq tactic termination_by_omega, which is a thin wrapper we defined
around omega, a Coq tactic to decide linear integer arithmetic.

We can use these edits (with size_nat and termination_by_omega) to get Coq accepts
such recursive definitions without the need for any further proofs or manual intervention.

5.7.3 Well-founded recursion

A small number of functions recurse in a nonstructural way, such as foldlBits in
Figure 8, which recurses on the input after clearing the least-significant set bit (bm �xor�
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--Less obvious structural recursion
link :: a -> Set a -> Set a -> Set a
link x Tip r = insertMin x r
link x l Tip = insertMax x l
link x l@(Bin sizeL y ly ry) r@(Bin sizeR z lz rz)

| delta*sizeL < sizeR = balanceL z (link x l lz) rz
| delta*sizeR < sizeL = balanceR y ly (link x ry r)
| otherwise = bin x l r

--Well-founded recursion
foldlBits :: Int -> (a -> Int -> a) -> a -> Nat -> a
foldlBits prefix f z bitmap = go bitmap z

where go 0 acc = acc
go bm acc = go (xor bm bitmask) ((f acc) $! (prefix+bi))

where !bitmask = lowestBitMask bm
!bi = indexOfTheOnlyBit bitmask

--Deferred recursion
fromDistinctAscList :: [a] -> Set a
fromDistinctAscList [] = Tip
fromDistinctAscList (x0 : xs0) = go (1::Int) (Bin 1 x0 Tip Tip) xs0

where go !_ t [] = t
go s l (x : xs) = case create s xs of (r :*: ys) ->

let !t' = link x l r in go (s �shiftL� 1) t' ys

create !_ [] = (Tip :*: [])
create s xs@(x : xs')

| s == 1 = (Bin 1 x Tip Tip :*: xs')
| otherwise = case create (s �shiftR� 1) xs of

res@(_ :*: []) -> res
(l :*: (y:ys)) -> case create (s �shiftR� 1) ys of

(r :*: zs) -> (link y l r :*: zs)

Fig. 8. Recursion styles.

(lowestBitMask bm)). We can handle this sort of logic using the same machinery as
before, but now we have to write a specialized termination tactic and declare it in the
obligations hint. To do so, we need to prove necessary lemmas before translating the
Haskell module in question. In particular, our lemmas cannot mention functions that are
defined in the translated Haskell module. We can do that by exploiting the fact that Coq’s
value definitions are not generative: since the function lowestBitMask is defined else-
where to be lowestBitMask (bm : N) = 2 ^ N_ctz bm, we can still use lemmas such as
foldlBits_proof to reason about lowestBitMask:

Lemma foldlBits_proof: forall a,
N.eqb a 0 = false -> N.to_nat (N.lxor a (2 ^ N_ctz a)) < N.to_nat a.

Coq’s Program Fixpoint only supports top-level functions, but we frequently
encounter local recursive functions – the go idiom, as seen here. To support this, we
extended hs-to-coq to offer some of the convenience provided by Program Fixpoint
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by translating local recursive functions using the same well-founded-recursion-based
fixed-point combinator as Program Fixpoint.

5.7.4 Deferred recursion

Finally, we encounter some functions that require elaborate termination arguments, such
as fromDistinctAscList in Figure 8. It has two local recursive functions, go and create,
and to convince ourselves that fromDistinctAscList is indeed terminating, we have to
reason as follows:

The function create bitshifts its first argument to the right upon each recursive
call, until the argument is 1. Ergo, it is terminating, but only for positive input – it
clearly loops if x is 0. The function go recurses on smaller lists as its third argument,
but to see that, we first have to convince ourselves that the list in the tuple returned
by create is never larger than the list passed to create. Also, go calls create,
so we need to ensure that the s passed to it is positive. The go function bitshifts s to
the left at every call, so if go is called with a positive s, then s will remain positive
in recursive calls. Finally, we see that fromDistinctAscList calls go with s
equal to 1, which is positive, so we can conclude that fromDistinctAscList
terminates.

If we wanted to convince Coq of this termination pattern, we would have to turn create

and go into top-level definitions, change their types to rule out invalid (nonpositive) inputs,
define create using Program Fixpoint, and provide an explicit termination argument by
well-founded recursion. Then we could prove that create preserves the list lengths, which
we need to define go, again using Program Fixpoint. This is certainly possible, but it is
not simple, especially in an automatic translation.

For hard cases like these we resort to deferred termination checking, a feature that we
added to hs-to-coq. We can instruct it to use the following axiom as a very permis-
sive fixed-point combinator and translate the code of fromDistinctAscList essentially
unchanged:

Axiom deferredFix :
forall {a r} �{Default r}, ((a -> r) -> (a -> r)) -> a -> r.

On its own, deferredFix does not do anything; it merely sits in the translated code applied
to the original function body. It is consistent, since its type could be implemented by a
function that always returns default (see Section 5.4). And it does not prevent the user
from running extracted code – we can extract this axiom to the target language’s unre-
stricted fixpoint operator (e.g., Data.Function.fix in Haskell), although this costs us the
guarantee that the extracted code is terminating.

When it comes time to verifying something about a function that is defined using
deferredFix, we need to give deferredFix meaning. We do so using a second axiom,
deferredFix_eq_on, which states that for any well-founded relation R (well_founded
R), if the recursive calls in f are always at values that are strictly R-smaller than the input
(recurses_on R), then we may unroll the fixpoint of f:

Definition recurses_on {a b}
(P : a -> Prop) (R : a -> a -> Prop) (f : (a -> b) -> (a -> b))
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:= forall g h x, P x -> (forall y, P y -> R y x -> g y = h y) -> f g x = f h x.

Axiom deferredFix_eq_on : forall {a b} �{Default b}
(f : (a -> b) -> (a -> b)) (P : a -> Prop) (R : a -> a -> Prop),
well_founded R -> recurses_on P R f ->
forall x, P x -> deferredFix f x = f (deferredFix f) x.

The predicate P : a -> Prop allows us to restrict the domain to inputs for which the
function is actually terminating – crucial for go and create.

The predicate recurses_on P R f characterizes the recursion pattern of f, but does so in
a very extensional way and only considers recursive calls that can actually affect the result
of the function. For instance, it would consider a recursive function defined by f n = if f

n then true else true to be terminating.
We can use this nontrivial axiom without losing too much sleep, because we we have an

implementation of deferredFix and deferredFix_eq_on in terms of classical logic and
the axiom of choice (as provided by the Coq module Coq.Logic.Epsilon).32 This means
that both axioms are consistent with plain Coq. We do not know if deferredFix_eq_on
is strictly weaker than classical choice, so users of hs-to-coq who want to combine the
output of hs-to-coq with developments known to be inconsistent with classical choice
(e.g., homotopy type theory) should be cautious.

Pragmatically, working with deferredFix is quite convenient, as we can prove termi-
nation together with the other specifications about these functions. The actual termination
proofs themselves are not fundamentally different from the proof obligations that Program
Fixpoint would generate for us and – although not needed in this example – can be carried
out even for nested recursion through higher order functions like map.

This approach to defining recursive functions via extensionality was inspired by
Isabelle’s function package (Krauss, 2006). It is also an instance of the recursion schemes
described by Charguéraud (2010a).

5.8 Translating Haskell tests to Coq types

When we translate code, we usually want to preserve the semantics of the code as much
as possible. Things are very different when we translate the QuickCheck tests defined
in the containers test suite, as we discussed in Section 4.2: whereas, the semantics of
the test suite in Haskell is a program that creates random input to use as input to test
executable properties, we want to reinterpret these properties as logical propositions in
Coq. Put differently, we are turning executable code into types.

Recall the example QuickCheck property that we saw Section 4.2, which specifies that
set union is associative in terms of the Haskell-level equality function ==:

prop_UnionAssoc :: IntSet -> IntSet -> IntSet -> Bool
prop_UnionAssoc t1 t2 t3 = union t1 (union t2 t3) == union (union t1 t2) t3

How does QuickCheck work with this?
QuickCheck’s API provides types and type classes for writing property-based tests. In

particular, it defines an opaque type Property that describes properties that can be checked

32 In the file base/GHC/DeferredFixImpl.v.
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using randomized testing, a type class Testable that converts various testable types into
a Property, and a type constructor Gen that describes how to generate a random value.
These are combined, for instance, in the QuickCheck combinator

forAll :: (Show a, Testable prop) => Gen a -> (a -> prop) -> Property

which tests the result of a function on inputs generated by the given generator. The
Testable instance for functions, for example, uses forAll to generate an input and then
tests the output; testing prop_UnionAssoc thus involves, essentially, evaluating

forAll (arbitrary :: Gen IntSet) $ \t1 ->
forAll (arbitrary :: Gen IntSet) $ \t2 ->

forAll (arbitrary :: Gen IntSet) $ \t3 ->
toProp $ union t1 (union t2 t3) == union (union t1 t2) t3

Since we want to prove, not test, these properties, we do not convert the QuickCheck
implementation to Coq. Instead, we write a small Coq module that provides the necessary
pieces of the interface of Test.QuickCheck, but interprets these types and functions in
terms of Coq propositions. In particular:

• We use Coq’s non-computational type of propositions, Prop, instead of using Quick-
Check’s computational type of results Property;

• Gen a is simply a wrapper around a logical predicate on a; and
• forAll quantifies (using Coq’s forall) over the type a, and ensures that the given

function – now a predicate – holds for all members of a that satisfy the given
“generator”.

Concretely, this leads to the following adapted Coq code:

Record Gen a := MkGen { unGen : a -> Prop }.
Class Testable (a : Type) := { toProp : a -> Prop }.
Definition forAll {a prop} �{Testable prop}

(g : Gen a) (p : a -> prop) : Prop :=
forall (x : a), unGen g x -> toProp (p x).

We provide similar translations for QuickCheck’s operators ===, ==>, .&&. and .||.,
and we replace generators such as choose :: Random a => (a, a) -> Gen a with their
corresponding predicates.

With this module in place, hs-to-coq translates the test suite into a “proof suite”. As we
saw in Section 4.2, a test like prop_UnionAssoc is now a definition of a Coq proposition,
that is to say a type, and can be used as the type of a theorem:

Theorem thm_UnionAssoc : toProp prop_UnionAssoc.

If we evaluate toProp, we get that this theorem equivalent to the following expanded form
(which we saw back in Section 4.2):

Theorem thm_UnionAssoc:
forall t1, WF t1 -> forall t2, WF t2 -> forall t3, WF t3 ->
union t1 (union t2 t3) == union (union t1 t2) t3 = true.

Here, the WF constraints correspond to the arbitrary generators in Haskell, which were
constrained to only generate well-formed IntSets.
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API: adjust, alter, assocs, balance, balanceL, balanceR, delete, deleteMax,
deleteMin, difference, drop, elems, empty, filter, findIndex, findWithDefault,
foldl, foldl’, foldlWithKey’, foldr, foldr’, foldrWithKey, fromAscList,
fromDescList, fromDistinctAscList, fromDistinctDescList, fromList, fromSet,
glue, insert, insertLookupWithKey, insertMax, insertWith, insertWithKey,
intersection, keys, keysSet, link, link2, lookup, lookupLE, lookupLT, lookupMax,
lookupMin, mapEither, mapEitherWithKey, mapMaybe, mapMaybeWithKey,
mapWithKey, maxView, member, minView, notMember, null, partition, restrictKeys,
singleton, size, split, splitAt, splitLookup, splitRoot, take, toAscList,
toDescList, toList, union, unionWithKey, unions, unionsWith, update,
updateLookupWithKey, updateWithKey, withoutKeys
Instances: Eq, Eq1, Monoid, Semigroup
Internal functions: insertMin, insertR, insertWithKeyR, insertWithR,
isProperSubmapOfBy, maxViewSure, minViewSure, splitMember

Fig. 9. Verified functions from Data.Map.Strict.

5.9 Verifying Data.Map.Strict

We also used hs-to-coq to verify large parts of Data.Map.Strict, a finite map
implementation from the containers library.33 Since the underlying data structure – a
weight-balanced tree – is the same as that of Data.Set, many of the specifications and
proofs are broadly similar. As before, the specifications draw on type class laws, Coq’s
FMapInterface module, and an abstract definition similar to that of Section 4.7. The
verified functions from this module are listed in Figure 9.

We used the function sem: forall {e a} �{Eq_ e}, Map e a -> e -> option a as the
denotation for maps. This type introduces added complexity into the specification and
proofs relative to the indicator function for sets, as we use an option a instead of simply
a boolean value. When working with a Set, it is sufficient to prove that a given element
exists somewhere in the set; but when working with a Map, we must show that a given key
not only appears, but also is mapped to the correct value. For example, in fromList, the
description specifies that if a key appears multiple times in the pairs of an input list, the
last value in the list is the one that is used in the map.

Nevertheless, only slight modifications of the specifications and proofs developed for
Data.Set (such as the Desc relation described in Section 4.7) were required to be able to
handle this additional complexity. Furthermore, this machinery is also applicable to func-
tions in the Data.Map.Strict API that have no analogue in Data.Set. These extensions
provide further evidence for the utility and flexibility of the original specifications.

Our verification of Data.Map.Strict had one source of specification not available to
Data.Set. In other work, we have experimented with the use of hs-to-coq in order to
verify optimization passes in GHC’s intermediate language, Core.34 These optimizations
use finite maps to record variable sets and environments. Since we were verifying

33 The library comes in two varieties: Data.Map.Strict, which forces the evaluation of the values in the map;
and Data.Map.Lazy, which does not. As we do not preserve evaluation order (as discussed in Section 5.2, the
difference is not relevant to our work.

34 See the examples/ghc directory.
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these before we had verified Data.Map, during the verification process, we recorded the
properties of the maps that were required as a list of over thirty axioms. For example, one
axiom states that if a key-value pair is inserted in a map, then looking up the given key
should return the given value. This property was expressed as the following:

Lemma lookup_insert: forall key value (m: Map e a),
WF m ->
lookup key (insert key value m) = Some value.

In this work, we were able to prove all of these lemmas using our abstract Desc

specifications in a straightforward way.
Lastly, the vast majority of the Data.Map.Strict proofs were completed by the sixth

author, an undergraduate with limited Haskell and Coq experience. This both demonstrates
the utility of the hs-to-coq tool and suggests that producing verified code is a realistic task
even without significant expertise.

6 Contributions to containers: Theory and practice

We chose the Set, IntSet, and Map modules of the containers library as our target
because they nicely represent the kind of Haskell code that we want to see verified
in practice. Nevertheless, the deep understanding required to verify these modules led
to new insights into the algorithms themselves and to improvements to their Haskell
implementation.

6.1 New insight into the verification of weight-balanced trees

The data structure underlying Set and Map was originally presented by Nievergelt &
Reingold (1972). It is a binary search tree with the invariant that if s1 is the size of the
left subtree and s2 the size of the right subtree of a node, then

balNR(s1, s2) := (s1 + 1) ≤ δ · (s2 + 1) ∧ (s2 + 1) ≤ δ · (s1 + 1)

holds for a balancing tuning parameter δ. In 1992, Adams suggested a variant of the
balancing condition, namely

bal(s1, s2) := s1 + s2 ≤ 1 ∨ (s1 ≤ δ · s2 ∧ s2 ≤ δ · s1).

The conditions are very similar, but not equivalent: the former allows, for example, δ = 3,
s1 = 2 and s2 = 0, which the latter rejects.

Initially, the containers library used Adams’s balancing condition with the parameters
δ = 4 (for sets) or δ = 5 (for maps). Campbell (2010) found that these parameters are
actually invalid and exhibited a sequence of insertions and deletions that produced an
unbalanced tree. Subsequently, the containers library switched to δ = 3 in both modules.
Inspired by this bug report, Hirai & Yamamoto (2011) thoroughly analyzed this data
structure with the help of a Coq formalization, and identified the valid range for the
balancing parameter δ, albeit only for Nievergelt & Reingold’s variant – our proof seems
to be the first mechanical verification of Adam’s variant.
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Given such thorough analysis of the algorithms, we did not expect to learn anything
new about this data structure, and for the most part, this was true. Our proofs are free of
any manual calculations about tree sizes and the balancing condition. We just state the
proper preconditions for each lemma, and Coq’s automation for linear integer arithmetic,
lia (Besson, 2006), takes care of the rest.

One exception was the crucial function balanceL which is used, according to the doc-
umentation “when the left subtree might have been inserted to or when the right subtree
might have been deleted from”. This suggests the precondition

(bal(s1 − 1, s2) ∧ 0 < s1) ∨ bal(s1, s2) ∨ bal(s1, s2 + 1)

corresponding to the three cases: left tree inserted to, no change, and right tree deleted
from. This is also what Hirai and Yamamoto used in their formalization of Nievergelt
& Reingold’s variant. And indeed, this precondition is strong enough to verify that the
output of balanceL is balanced – but we found the precondition is too strong. The link

operation, shown in Figure 8, is supposed to balance two arbitrary trees using balanceL.
In the verification of link we were unable to satisfy this precondition. 35

We found a precondition for balanceL that is both strong enough for the verification of
balanceL and weak enough to allow the verification of link, namely

(bal∗(s1 − 1, s2) ∧ 0 < s1) ∨ bal(s1, s2) ∨ bal(s1, s2 + 1)

where we used the following modified balancing condition for the left tree (the one we
inserted into)

bal∗(s1, s2) := δ · s1 ≤ δ2 · s2 + δ · s2 + s2 ∧ s2 ≤ s1.

No creativity was involved in coming up with this formula: In the proof of link, in the
case where we call balanceL with trees with sizes s1 and s2, the interactive proof system
conveniently gives us all available facts about the sizes of the tress. We put these into a
single formula, namely

∃ s sl sr, s1 = 1 + s + sl ∧ s2 = sr ∧ bal(sl, sr) ∧ δ · s < 1 + sl + sr ∧ 1 ≤ s ∧ 0 ≤ sl ∧ 0 ≤ sr,

and then (manually) eliminated the existential quantifiers to obtain bal∗(s1 − 1, s2).

6.2 Verification of big-endian Patricia trees

There is surprisingly little literature on the verification of big-endian Patricia trees. They
are sorted search trees, but as they exploit the additional structure of their keys being bit
strings, additional theory is required to verify them.

In particular, where the verification of regular search trees uses open intervals to describe
the range of possible values of a tree, Patricia trees build on dyadic intervals. These
intervals are of the form [p · 2b, . . . , (p + 1) · 2b − 1] =: d(p, b) for some prefix p ∈N and

35 Indeed, consider a left tree with a size of 5, and a right tree with a size of 17. And the right tree contains a left
subtree of size 12 and a right subtree of size 4. All the trees are balanced and they satisfy the precondition of
link. However, none of the three inequalities in balanceL’s precondition can be satisfied with this example.
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s1 :: r1 :: D1 s2 :: r2 :: D2

r1 ⊆ h1(d(p, b)) r2 ⊆ h2(d(p, b)) b > 0 p’= p · 2b m= 2b−1

Bin p’ m s1 s2 :: d(p, b) :: D1 ∪ D2

p’= p · w 0 < bm< 2w

Tip p’ bm :: d(p, log2 w) :: {p · w + j | bit j set in bm}
Fig. 10. The denotation of IntSet.

bit-width b ∈N, and have an interesting algebraic structure that plays a crucial role in the
verification. In particular:36

• A dyadic interval is non-empty.
• Either two dyadic intervals are disjoint, or one is contained in the other.
• A dyadic interval d(p, b) with b > 0 is the disjoint union of its two halves,

h1(d(p, b)) := d(p, b − 1) and h2(d(p, b)) := d(p + 1, b − 1).
• In particular, if another dyadic interval r overlaps with with both halves of d(p, b),

then d(p, b) ⊆ r.
• The dyadic intervals, ordered by inclusion, form a join semi-lattice: for any two

dyadic intervals r1, r2 there exists a least dyadic interval r1 
 r2 that contains the two.

The verification of the IntSet library37 revolves around the relation s :: r :: D, given in
Figure 10. This relation expresses that a non-empty tree s of type IntSet describes the set
D, which is contained in the dyadic interval r:

Lemma 1. If s :: r :: D, then

• ∅ ⊂ D ⊆ r and
• member x s == true iff x ∈ D.

We can now specify the operations on Patricia trees in terms of this relation, e.g.,
the specification for the union operator would be: “if s1 :: r1 :: D1 and s2 :: r2 :: D2, then
union s1 s2:: r1 
 r2 :: D1 ∪ D2”. By including the specification on the associated dyadic
interval in the statement of the lemma, a proof by induction has all necessary information
about the subterms to conclude.

This theory applies to natural numbers (bounded or unbounded). Negative numbers
require additional thought, as the nice algebraic structure of dyadic intervals breaks down:
A dyadic interval is either completely negative or completely nonnegative; the two dyadic
intervals r1 = d(−1, 1) = {−2, −1} and r2 = d(0, 1) = {0, 1} do not have a least upper
bound r1 
 r2. So in order to apply this theory to signed integers, we have to somehow
map them to unsigned integers:

36 The Coq formalization of this theory is in the file examples/containers/theories/DyadicIntervals.v
37 In the file examples/containers/theories/IntSetProofs.v.
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• For signed integers of a bounded bit-width w – as encountered in IntSet – the
usual encoding of negative numbers two’s complement, is suitable. It represents a
negative number i by negating all bits of its absolute value |i| and then adding 1 to the
result. This effectively maps the negative numbers {−2w−1, . . . , −1} onto the range
{2w−1, . . . 2w − 1}. Most operations only use bit-level operations and work just fine.
Operations related to order (e.g., toList, findMin) need to treat a Bin constructor
that branches on the highest bit specially, as in this case, the right subtree contains
the smaller numbers.

• For signed unbounded types, the two’s complement representation is unsuitable:
It represents −1 as a number with infinitely many bits set, which we cannot just
interpret as a unsigned number. In order to build a IntSet-like data structure for
signed unbounded types, one would either have to chose a different encoding of
natural numbers where all numbers are represented with finitely many bit set (such
as signed magnitude representation), or simply use a pair of sets of absolute values,
one for the negative and one for the positive numbers.

6.3 Improvements to containers

Although our verification did not find bugs in the code of the library, we were able to
improve containers: during the verification of Data.Set.union, we noticed that it was
using a nested pattern match to check if an argument is a singleton set, when it could
be testing if the size was 1 directly. This change turned out to provide a 4% speedup to
union, as measured by the benchmark suite i container, and has been released with
containers 0.6.38

Additionally, as we mention in Section 4.1, our well-formedness property for IntSet
uncovered a weakness in the valid function for IntSet and IntMap, which was used in
the test suite. The valid function failed to ensure that some of the invariants hold recur-
sively in the tree structure, which was necessary for the proof. We notified the containers
maintainers,39 who then made the valid function complete.

We also provide a package, containers-verified,40 which re-exports the types and
definitions we have verified from the precise version of containers we are working with.
This way, a developer who wants to use only the verified portion of the implementation can
replace their dependency on containers with a dependency on containers-verified.

7 Assumptions and limitations

We have shown a way to make mechanically checked, formal statements about existing
Haskell code, and have applied this technique to verify parts of the containers library.
But are the theorems that we prove actually true? And if they are, how useful is this
method?

38 https://github.com/haskell/containers/commit/b1a05c3a2
39 https://github.com/haskell/containers/issues/522
40 https://hackage.haskell.org/package/containers-verified
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7.1 The formalization gap

As always, when a theorem is stated about a object that does not purely exist within
mathematics, its validity depends on a number of assumptions.

• First and foremost, we have to assume that Coq behaves as documented and does
not allow us to prove false theorems. This is of particular relevance because we
rely on fine details of Coq’s machinery (e.g., the behavior of Qed, Section 5.4) and
optionally add consistent axioms (see Section 5.7.4). We also use the axiom of proof
irrelevance, which is consistent with Coq and a consequence of classical logic in the
Calculus of Inductive Constructions (Coquand, 1989).

• The biggest assumption is that the semantics of a Gallina program, as defined by
the Calculus of Constructions (Coquand & Huet, 1988), models the behavior of a
running Haskell program in a meaningful way. At this time, we cannot even attempt
to close this gap, as there are neither formal semantics nor verified compilers for
Haskell. While Haskell and Gallina are very similar (both are pure functional lan-
guages with algebraic data types), the significant differences between them (such as
Haskell’s partiality and laziness) mean that the gap is a real presence.

We can gain additional confidence by testing this connection: we extracted our
Gallina versions of Set and IntSet back to Haskell and successfully ran the original
test suite of containers against it. Every successful test is further evidence that
the corresponding theorem (see Section 4.2) is indeed a theorem about the Haskell
program.

• Furthermore, we rely on hs-to-coq translating Haskell code into the correct Gallina
code. The translator itself is a sizable piece of code, unverified (and such verifica-
tion is currently out of our reach, not least because there is no formal semantics
of Haskell) and therefore surely not free of bugs. We get some confidence into the
tool from manually inspecting its output and observing that it is indeed what we
would consider the “right” translation from Haskell into Gallina, and additional
confidence from the fact that we were actually able to prove the specifications,
which would not be possible if the translated code behaved differently than intended.
Moreover, extracting the translated code back to Haskell and running the test suite
also stress-tests the translation.

• The translation was not completely automatic and required manual edits. With
each edit, we add another assumption to the formalization gap: Does our
underspecification of pointer equality encompass the actual behavior of GHC’s
reallyUnsafePtrEquality#? Given our choice of using unbounded integers, does
the size field in a Set really never overflow in practice? Are our manually written
versions of low-level bit-twiddling functions correct? We list and justify our manual
interventions in Section 5.

The formalization gap of our work is relatively large compared to, say, the gap for the
verification of programs written in Gallina in the first place. But for the purpose of ensuring
the correctness of the Haskell code, that is less critical. Even if one of our assumptions is
flawed, it is much more likely that the flaw will get in the way of concluding the proofs,
rather than allowing us to conclude the proofs without noticing a bug. Incomplete proofs
can uncover bugs, too.
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7.2 Limitations of our approach

We proved multiple specifications about a large part of the code, but there are limits to
what theorems we can prove, and what we can prove them about.

Since we work with a shallow embedding of Haskell in Coq, we cannot make statements
about the performance of the Haskell code – which is a pity, given that the containers

library contains highly optimized code and provides clear specifications of the algorithmic
complexity of their operations. Similarly, we cannot verify that the operations are as strict
or lazy as documented.

We also cannot translate and verify all code in the containers library, because some
functions use language features not yet supported by hs-to-coq, such as mutual recursion
and unboxed arrays. When this affects a crucial utility function we can provide a man-
ual translation. This widens the formalization gap, but enables verification of code that
depends on it. When it affects less central code, e.g., the Data instances, we can simply
skip the translation (Section 5.3).

Partiality is a particularly interesting limit. Coq only allows total functions, but practical
Haskell code uses partiality, often in a benign way: Calls to error in code paths that
are unreachable as long as invariants are maintained, or recursive functions that terminate
on the actual arguments they are called with, but may diverge on other inputs. Whereas
Spector-Zabusky et al. (2018) considered such code out of scope, we have found ways to
deal with “internal partiality” (see Section 5.4 and 5.7.4).

Taking a step back, it might seem that our approach may see limited adoption in the
Haskell community because it requires expertise in Coq. But though tied to a Haskell
artifact, verification is isolated from the codebase. Haskell programmers can focus on their
domain, trying to get the best performance out of the code and without having to know
about verification, while proof engineers can work solely within Coq and do not have to
be fluent in Haskell.

In this paper we verify a specific version of the Haskell code, and do not discuss ongo-
ing maintenance of such a verification. It remains to be seen how resilient the proofs are
against changes in the Haskell code. Changes of syntactic nature, or changes to a function’s
strictness, might be swallowed by hs-to-coq. Other changes might affect the translated
code, but still allow the proofs to go through, if our proof tactics are flexible enough. In
general, though, we expect that changes in the code require changes in the proofs. Since
Coq is an interactive theorem prover, it will at least clearly point out which parts of our
development need to be updated.

8 Related work

8.1 Verification of purely functional data structures

Purely functional data structures, such as those found in Okasaki’s book (1999) are fre-
quent targets of mechanical verification. That said, we believe that we are the first to verify
the Patricia tree algorithms that underlie Data.IntSet.
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Verifying weight-balanced trees in Haskell. Similar to hs-to-coq, LiquidHaskell
(Vazou et al., 2014) can be used to verify existing Haskell code. Users of this tool anno-
tate their Haskell source files with refinement types and other annotations. LiquidHaskell
then uses an SMT solver to automatically discharge proof obligations described by the
refinements. This means that LiquidHaskell provides more automation than hs-to-coq;
however, the language of Coq is higher order and more expressive than the language of
SMT solvers. Vazou et al. (2017) compared the experiences of using LiquidHaskell as
apposed to plain Coq, and found that both have advantages.

Vazou et al. (2013) also described the use of LiquidHaskell to verify the Data.Map mod-
ule of finite maps from containers. Although not the same as Data.Set, this code shares
the same underlying data structure (weight-balanced trees) and the implementations of the
two are similar. Their verification has similarities with our work; they also use unbounded
integers as the number representation and leave functions like showTree unspecified.
However, we develop a richer specification, which includes a semantic description of each
operation we verified, constraints about the tree balance, and the ordering of the elements
in the tree. In contrast, Vazou et al. limit their specifications to ordering only. For exam-
ple, in addition to showing that the insertion operation preserves the order of elements
of the tree, our work also shows that: (1) insertion preserves the balancing conditions of
the weight-balanced tree, (2) the size field at each node in the tree is maintained cor-
rectly (i.e., the size is equal to the number of its descendants), and (3) the tree returned
by this operation contains the inserted element, and all elements in the original tree, but
nothing more. Although it might be possible to replicate our specifications by using theo-
ries of finite sets and maps in SMT (Kröning et al., 2009) to encode these properties using
refinement types in LiquidHaskell, this approach has not been explored.

Furthermore, our specification also includes type class laws, and we are able to verify
that Set and IntSet have lawful instances of the Eq, Ord, Semigroup, and Monoid type
classes. When Vazou et al.’s original work was developed in 2013, LiquidHaskell did not
have the capability to state and prove these properties. Since then, there have been new
developments in LiquidHaskell, particularly refinement reflection (Vazou et al., 2018),
which could make it possible to specify and prove type class laws.

Both LiquidHaskell and hs-to-coq check for termination of Haskell functions. In
LiquidHaskell, the termination check is an option that can be deactivated, allowing the
sound verification of nonstrict, non-terminating functions (Vazou et al., 2014). In contrast,
a proof of termination is a requirement for verifying functions using hs-to-coq (Spector-
Zabusky et al., 2018). However, hs-to-coq is able to take advantage of many options
available in Coq for proving termination of nontrivial recursion, including structural
recursion, Program Fixpoint and our own approach based on deferredFix. This latter
approach allowed us to reason about fromDistinctAscList (see Section 5.7.4) and prove
that it is indeed terminating; on the other hand, Vazou et al. deactivate the termination
check for this function.

Verifying weight-balanced trees in other languages. Hirai & Yamamoto (2011) imple-
mented a weight-balanced tree similar to Haskell’s Data.Set library (albeit using the
balancing condition of Nievergelt & Reingold (1972)) and mechanically verified its bal-
ancing properties in Coq. More recently, Nipkow & Dirix (2018) extended this work
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to formalize similar weight-balanced trees in Isabelle and further verified the functional
correctness of insertions and deletions.

We verify more functions in the Data.Set library than prior work. Operations that are
unique to our development include foldl, isSubsetOf, and fromDistinctAscList. The
code verified both by Hirai & Yamamoto and by Nipkow & Dirix is also different from
the latest containers library; for example, it does not use pointer equality (Section 5.1).
Another difference is that Hirai & Yamamoto defined the union, intersection, and
difference functions based on the “hedge union” algorithm, but containers has since
changed to use the “divide and conquer” algorithm.

Hirai & Yamamoto specify only the balancing constraints, whereas we develop a richer
specification that also includes a semantic description of each operation we verified and
the ordering of the elements in the tree. We also gained new insights about the balancing
conditions of the weight-balanced tree through our verification effort (see Section 6.1).
Nipkow & Dirix’s specification contains the same properties as ours, but they only specify
the behavior of insert and delete; we have verified a significantly larger set of functions
(see Figure 4).

Other verifications of balanced trees. There are many existing works on mechanically
verifying purely functional balanced trees. We briefly mention a few here. Filliâtre &
Letouzey (2004) implemented AVL trees in Coq, and verified their functional correct-
ness as well as their balancing conditions. Appel (2011) did the same thing for red-black
trees. These implementations have now become parts of Coq standard library. Charguéraud
(2010b) translated OCaml implementations of Okasaki (1999)’s functional data structures
to characteristic formulae expressed as Coq axioms. Licata (2012) lectured on verify-
ing red-black trees in Agda at the Oregon Programming Languages Summer School.
McBride (2014) showed how to represent the ordering relationships in Agda for general
data structures, not just binary search trees. Nipkow (2016) showed how to automatically
verify the ordering properties of eight different binary search tree structures, by specifying
each in terms of the sorted list of their elements, a method he used again in his verifi-
cation of weight-balanced trees (Nipkow & Dirix, 2018). Ralston (2009) verified AVL
trees in ACL2.

8.2 Verification tools for Haskell

Previous work using hs-to-coq has only applied it to small examples. Spector-Zabusky
et al. (2018) describe three case studies, two of which require less than 20 lines of Haskell.
The longest example (the Bag module taken directly from the GHC compiler) is 247 lines
of code. Furthermore, none of the reasoning required for these examples is particularly
deep. Our work provides experience with more complex, externally sourced, industrial-
strength examples.

The coq-haskell library (Wiegley, 2017) is a handwritten Coq library designed to
make it easier for Haskell programmers to work in Coq. In addition to enabling easier
Coq programming, it also provides support for extracting Coq programs to Haskell.

The prototype contract checker halo (Vytiniotis et al., 2013) takes a Haskell program,
uses GHC to desugar it into the intermediate language Core, and translates the Core
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program into a first-order logic formula. It then invokes an SMT solver to prove this
formula; a successful proof implies that the original program is crash-free.

Haskabelle was hs-to-coq’s counterpart in Isabelle. It translated total Haskell code
into equivalent Isabelle function definitions. Similar to hs-to-coq, it parsed Haskell,
desugared syntactic constructs, and configurably adapted basic types and functions to their
counterparts in Isabelle’s standard library. It used to be bundled with the Isabelle release,
but it has not been updated recently and was dropped from the distribution.

Haskell has been used as a prototyping language for mechanically verified systems in
the past. The seL4 verified microkernel started with a Haskell prototype that was semi-
automatically translated to Isabelle/HOL (Klein et al., 2009; Derrin et al., 2006). The
authors found that the availability of the Haskell prototype provided a machine-checkable
formal executable specification of the system. They used this prototype to refine their
designs via testing, allowing them to make corrections before full verification.

The Programmatica project (Hallgren et al., 2004) included a tool that translates Haskell
code into the Alfa proof editor. Their tool only produces valid proofs for total functions
over finite data structures. The logic of the Alfa proof assistant is based on dependent
type theory, but without as many features as Coq. In particular, the Programmatica tool
compiles away type classes and nested pattern matching; both of these features are retained
by hs-to-coq.

Dybjer et al. developed a tool for automatically translating Haskell programs to the
Agda/Alfa proof assistant (2004). They explicitly note the interplay between testing and
theorem proving and show how to verify a tautology checker. Abel et al. (2005) translate
Haskell expressions into the logic of the Agda 2 proof assistant. Their tool works later in
the GHC pipeline than hs-to-coq and translates Core expressions.

8.3 Translating other higher order functional languages

There are many large and successful verification projects that demonstrate that func-
tional languages are well suited for verification. In contrast to our work, these projects
require either re-implementing the code in a new functional language, as is the case for
Cogent (O’Connor et al., 2016; Amani et al., 2016) and F* (Swamy et al., 2016); re-im-
plementing the code in a proof assistant, such as HOL4 in the case of CakeML (Myreen
& Owens, 2014; Kumar et al., 2014); or taking an SMT solver-based approach, as found
in Leon (Blanc et al., 2013). The CakeML and Cogent projects have a different focus than
ours, and they provide a higher assurance in their verified code. CakeML (Kumar et al.,
2014) has a verified compiler and Cogent has a certifying compiler (O’Connor et al., 2016;
Rizkallah et al., 2016). Both tools provide mechanically checked proofs that their shallow
embeddings correspond to the functional code being verified.

Cogent is a restricted higher order functional language (O’Connor et al., 2016) that was
used to verify filesystems (Amani et al., 2016). Its compiler produces C code, a high-
level specification in Isabelle/HOL, and an Isabelle/HOL refinement proof linking the
two (O’Connor et al., 2016; Rizkallah et al., 2016). Chen et al. (2017) integrated property-
based testing into the Cogent framework. The authors claim that property-based testing
enables an incremental approach to a fully verified system, as it allows for the replacement
of tests of properties stated in the specification by formal proofs. Our work substantiates
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this claim, as indeed one of the ways in which we obtain specifications is through the
QuickCheck properties provided by Haskell as discussed in Section 4.2.

CakeML is a large subset of ML with a verified compiler and runtime system (Kumar
et al., 2014). Users of CakeML can write pure functional programs in the HOL4 proof
assistant and verify them in HOL4. They can then extract an equivalent correct by
construction CakeML program. This method has been used to verify several data struc-
tures including red black trees, crypto protocols, and a CakeML version of the HOL light
theorem prover (Myreen & Owens, 2014).

F* is a general-purpose functional language that allows for a mixture of proving and
general-purpose programming (Swamy et al., 2016). Programs can be specified using
dependent and refinement types and automatically verified using one of F*’s backend SMT
solvers. Its subset Low* (Protzenko et al., 2017) has been used to verify high-assurance
optimized cryptographic libraries.

Leon is a verification tool for a pure subset of Scala that checks pre- and postconditions
for functions (Blanc et al., 2013). These contracts are given in terms of the requires and
ensures methods that are already present in the Scala standard library, so a sufficiently
well-annotated existing Scala program would need no further specification. Leon uses Z3
to ensure that the contracts are satisfied, and is complete – if a counterexample exists, it
will be found. It also supports extensions, allowing Leon to verify a larger subset of Scala
through translation into a simpler form.

8.4 Extraction

The semantic proximity of Haskell and Coq, which we rely on, is also used in the
other direction by Coq’s support for code extraction to Haskell (Letouzey, 2002). Several
projects use this feature to verify Haskell code (Chen et al., 2015; Joseph, 2014). However,
since extraction starts with Coq code and generates Haskell, it cannot be used to verify
preexisting Haskell. Although in a certain sense hs-to-coq and extraction are inverses,
round-tripping does not produce syntactically equivalent output in either direction. In one
direction, hs-to-coq extensively annotates the resulting Coq code; in the other, extraction
ignores many Haskell features and inserts unsafe type coercions. In this work, we use test-
ing to verify that round-tripping produces operationally equivalent output; this provides
assurance about the correctness of both hs-to-coq and extraction.

CertiCoq (Anand et al., 2017) and Œuf (Mullen et al., 2018) are verified compilers
from Gallina to assembly. CertiCoq can compile any Gallina program, while Œuf can only
compile a limited subset of Gallina. However, Œuf provides stronger guarantees about the
Gallina code that is in the limited subset it translates.

9 Conclusions and future work

We verified the two finite set modules that are part of the widely used and highly optimized
containers library. Our efforts provide the deepest specification and verification of this
code to date, covering more of the API and proving stronger, more descriptive properties
than prior work.
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In future work, there is yet more to verify in containers. For example, we plan to add
a version of IntSet that uses 64-bit ints as the element type in addition to our current
version with unbounded natural numbers. That way users could choose the treatment of
overflow that makes the most sense for their application. Furthermore, we hope to adapt
our existing proofs of IntSet to the analogous Data.IntMap module.

The fact that we did not find bugs says a lot about the tools that are already available to
Haskell programmers for producing correct code, such as a strong, expressive type system
and a mature property-based testing infrastructure. However, few would dare to extrapolate
from these results to say that all Haskell programs are bug free! Instead, we view verifi-
cation as a valuable opportunity for functional programmers and an activity that we hope
will become more commonplace.
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