SECOND-ORDER EVOLUTION EQUATIONS ASSOCIATED WITH CONVEX HAMILTONIANS⁽¹⁾

J. P. AUBIN⁽²⁾ AND I. EKELAND⁽³⁾

§0. **Introduction.** Many problems in mathematical physics can be formulated as differential equations of second order in time:

$$\ddot{x} = -\operatorname{grad} V(x)$$

with V a convex functional. This is the Euler equation for the Lagrangian

$$\frac{1}{2}|\dot{x}|^2 - V(x) = \wedge(x, \dot{x})$$

which is convex with respect to \dot{x} , and concave with respect to x. On the other hand, the associated Hamiltonian, by the Legendre transform, is seen to be:

$$\frac{1}{2}|p|^2 + V(x) = \Gamma(x, p)$$

It is convex in both variables. It is the purpose of this paper to show how the convexity of the Hamiltonian can be systematically used in the study of equations (\mathscr{C}). In the first part, we shall show that the solutions of (\mathscr{C}), although they are only extremal for the original Lagrangian \wedge , are actually minimizing for another, more complex, Lagrangian K. In the second part, we shall show how this characterization can be used to prove the existence of solutions to (\mathscr{C}) satisfying various initial or boundary conditions.

§I. **Characterization.** Let H be some Hilbert space; for the sake of convenience, it will be assumed to contain a countable dense subset. Denote by $H^1(0, T; H)$ the Sobolev space of all functions x in $L^2(0, T; H)$ with derivative $\dot{x} = dx/dt$ also in $L^2(0, T; H)$. When the simpler notations H^1 and L^2 are used, they will always refer to these particular spaces.

Let Γ be a lower semi-continuous (l.s.c.) function on $L^2 \times L^2$, with values in $R \cup \{+\infty\}$. It will be assumed to be jointly convex in the variables (x, p), and to be proper (i.e. there exists (x_0, p_0) such that $\Gamma(x_0, p_0) < \infty$). We shall refer to Γ as the Hamiltonian.

Received by the editors July 31, 1978.

⁽¹⁾ Research supported by NRC Grants #67-9082 and 67-3990.

⁽²⁾ J. P. Aubin, CEREMADE, University of Paris-Dauphine, 75775 Paris 16.

⁽³⁾ I. Ekeland, Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1W5 Canada; and CEREMADE, University of Paris-Dauphine.

We define the Lagrangian \land from the Hamiltonian by taking the Fenchel conjugate with respect to the second variable:

(1)
$$\wedge (x, v) = \sup_{p \in L^2} \{ p \cdot v - \Gamma(x, p) \}$$

It is a function on $L^2 \times L^2$ with values in $R \cup \{\pm \infty\}$ (note that the value $-\infty$ is now allowed). For any $x \in L^2$, it is a convex l.s.c. function of v in L^2 ; indeed, formula (1) shows that it is the pointwise supremum of a family of l.s.c. functions. For any $v \in L^2$, it is a concave function of x in L^2 , as the following lemma shows (note that it need not be u.s.c.).

LEMMA. Take v in L^2 , x_1 and x_2 in L^2 with $\wedge(x_1, v) < +\infty$ and $\wedge(x_2, v) < +\infty$, α_1 and α_2 non-negative with $\alpha_1 + \alpha_2 = 1$. Then:

$$\wedge (\alpha_1 x_1 + \alpha_2 x_2, v) \ge \alpha_1 \wedge (x_1, v) + \alpha_2 \wedge (x_2, v).$$

Proof. Clear if either $\wedge(x_1, v)$ or $\wedge(x_2, v)$ are equal to $-\infty$. If both are finite, take $\varepsilon > 0$, and pick p_1 and p_2 in L^2 such that:

$$p_1 \cdot v - H(x_1, p_1) \ge \wedge (x_1, v) - \varepsilon$$
$$p_2 \cdot v - H(x_2, p_2) \ge \wedge (x_2, v) - \varepsilon$$

Multiplying these inequalities by α_1 and α_2 , and adding them, we get (set $\alpha_1 p_1 + \alpha_2 p_2 = p$):

$$p \cdot v - [\alpha_1 H(x_1, p_1) + \alpha_2 H(x_2, p_2)] \ge \alpha_1 \wedge (x_1, v) + \alpha_2 \wedge (x_2, v) - \varepsilon$$

It follows from the definition of \wedge that:

$$\wedge (\alpha_1 x_1 + \alpha_2 x_2, v) \geq p \cdot v - H(\alpha_1 x_1 + \alpha_2 x_2, \alpha_1 p_1 + \alpha_2 p_2).$$

Since H is convex, we have:

$$-H(\alpha_1x_1 + \alpha_2x_2, \alpha_1p_1 + \alpha_2p_2) \ge -[\alpha_1H(x_1, p_1) + \alpha_2H(x_2, p_2)].$$

Comparing the last three inequalities, and using the fact that ε is arbitrarily small, we get the desired result./

As usual, we denote by $\partial \Gamma(x, p)$ the subgradient of Γ at (x, p), i.e. the (closed convex) set of all $(x', p') \in L^2 \times L^2$ such that:

$$(y-x)\cdot x'+(q-p)\cdot p' \leq \Gamma(y,q)-\Gamma(x,p), \ \forall (y,q)\in L^2\times L^2.$$

We shall also denote by $\partial_v \wedge (x, w)$ the subgradient at w of the convex l.s.c. function $v \to \wedge (x, v)$, and by $\partial_x (-\wedge)(y, v)$ the subgradient at y of the convex function $x \to -\wedge (x, v)$. Note that all these subgradients can very well be empty. Note also that we can get Γ from \wedge :

(2)
$$\Gamma(x, p) = \sup_{v \in L^2} \{ p \cdot v - \wedge (x, v) \}.$$

Our interest lies in studying the Hamiltonian equation $(-p, x) \in \partial \Gamma(x, p)$. We must first define some boundary conditions; as is usual in convex analysis, we shall do so by using two l.s.c. convex proper functions ϕ_0 and ϕ_1 from H to $R \cup \{+\infty\}$. We can now state in two equivalent forms the equations we wish to study:

PROPOSITION 1. The pair $(x, p) \in H^1 \times H^1$ satisfies the Euler-Lagrange equations:

$$p \in \partial_{v} \wedge (x, \dot{x})$$

$$\frac{dp}{dt} + \partial_{x} (-\wedge)(x, \dot{x})$$

$$p(0) + \partial \phi_{0}(x(0)) \ni 0$$

$$p(T) - \partial \phi_{1}(x(T)) \ni 0$$

if and only if it satisfies Hamilton's equations:

$$\left(-\frac{dp}{dt}, \frac{dx}{dt}\right) \in \partial \Gamma(x, p)$$

$$(\mathcal{H}) \qquad p(0) + \partial \phi_0(x(0)) \ni 0$$

$$p(T) - \partial \phi_1(x(T)) \ni 0$$

Proof. The boundary conditions are the same. From the definition of \wedge , it follows that:

(3)
$$p \in \partial_v \wedge (x, \dot{x}) \Leftrightarrow \dot{x} \in \partial_p \Gamma(x, p)$$

There only remains to show the equivalence of relations $-\dot{p} \in \partial_x(-\wedge)(x, \dot{x})$ and $-\dot{p} \in \partial_x \Gamma(x, p)$. The first one means that:

$$(-\dot{p})\cdot(y-x)\geq \wedge(x,\dot{x})-\wedge(y,\dot{x}) \qquad \forall y\in L^2$$

Since relations (3) hold, we have:

$$\wedge (x, \dot{x}) = p \cdot \dot{x} - \Gamma(x, p).$$

Writing that into the preceding inequality, we get:

$$(-\dot{p})\cdot(y-x)\geq p\cdot\dot{x}-\Gamma(x,p)-\wedge(y,\dot{x})$$

Using formula (1) yields:

$$(-\dot{p})\cdot(y-x)\geq -\Gamma(x,p)+\Gamma(y,p)$$

which means precisely that $-\dot{p} \in \partial_x \Gamma(x, p)$. We can retrace our steps, and get the first relation from the second one. The equivalence is thus proved./

For instance, if the Lagrangian happens to be differentiable, the Euler-Lagrange equations can be written in classical form:

$$\frac{d}{dt}\frac{\partial \wedge}{\partial \dot{x}}(x,\dot{x}) - \frac{\partial \wedge}{\partial x}(x,\dot{x}) = 0.$$

As another example, take $\Gamma(x, p) = \frac{1}{2} ||p||_{L^2}^2 + V(x)$. Then $\wedge(x, v) = \frac{1}{2} ||v||_{L^2}^2 - V(x)$; the Lagrangian and Hamiltonian systems are:

(
$$\mathscr{E}$$
) $\ddot{x} \in -\partial V(x), \quad x(0) \in -\partial \phi_0(x(0)), \quad x(T) \in \partial \phi_1(x(T))$

$$(\mathcal{H}) \qquad -\dot{p} \in \partial V(x), \qquad \dot{x} = p, \qquad p(0) \in -\partial \phi_0(x(0)), \quad p(T) \in \partial \phi_1(x(T))$$

We now shall formulate equations (\mathcal{E}) and (\mathcal{H}) as variational problems. Briefly, there is a non-negative functional K(x, p) on $H^1 \times H^1$ which the solutions of (\mathcal{E}) and (\mathcal{H}) minimize; moreover, this minimum has to be zero.

PROPOSITION 3. Solutions of problems (\mathscr{E}) and/or (\mathscr{H}) are exactly the pairs (x, p) which satisfy:

$$(\mathcal{P}) \qquad 0 = K(x, p) \le K(y, q) \qquad \forall y \in H^1 \qquad \forall q \in H^1$$

with $K(y, q) = \Gamma(y, q) + \Gamma^*(-\dot{q}, \dot{y}) - 2q \cdot \dot{y} + \phi_0(y(0)) + \phi_0^*(-q(0)) + \phi_1(y(T)) + \phi_1^*(q(T)).$

Proof. By Fenchel's inequality:

$$\Gamma(y, q) + \Gamma^*(-\dot{q}, \dot{y}) \ge q \cdot \dot{y} - y \cdot \dot{q}$$

$$\phi_0(y(0)) + \phi_0^*(-q(0)) \ge -y(0)q(0)$$

$$\phi_1(y(T)) + \phi_1^*(q(T)) \ge y(T)q(T)$$

equality holding if and only if $(-\dot{q}, \dot{y}) \in \partial \Gamma(y, q), -q(0) \in \partial \phi_0(y(0)), q(T) \in \partial \phi_1(y(T))$, i.e. if (y, q) solves problem (\mathcal{X}) . Adding up these inequalities:

$$K(y,q) \ge -\int_0^T (y(t)\dot{q}(t) + q(t)\dot{y}(t)) dt - y(0)q(0) + y(T)q(T)$$

Integrating by part, we get $K(y, q) \ge 0$. Equality will hold for solutions of problem (\mathcal{H}) only, which is the desired result.

We can reformulate problem (\mathcal{P}) as a variational inequality:

PROPOSITION 4. Solutions of problem (\mathscr{E}) and/or (\mathscr{H}) are exactly the pairs $(x, p) \in H^1 \times H^1$ which satisfy:

(2)
$$A(x, p; y, q) \le 0 \qquad y \in H^1, \qquad q \in H^1$$

with
$$A(x, p; y, q) = \Gamma^*(-\dot{p}, \dot{x}) - \Gamma^*(-\dot{q}, \dot{y}) + \phi_0(x(0)) - \phi_0(y(0)) + \phi_1^*(p(T)) - \phi_1^*(q(T)) - p \cdot (\dot{x} - \dot{y}) + x \cdot (\dot{p} - \dot{q}) + p(0)(x(0) - y(0)) - x(T)(p(T) - q(T)).$$

Proof. By Proposition 3, the solutions of problems (\mathscr{E}) and (\mathscr{H}) are the pairs $(x, p) \in H^1 \times H^1$ which satisfy:

$$K(x, p) \leq 0$$

By the definition of Fenchel conjugates:

$$\Gamma(x, p) = \sup_{\dot{q}, \dot{y}} \{ -\dot{q} \cdot x + \dot{y} \cdot p - \Gamma^*(-\dot{q}, \dot{y}) \}$$

$$\phi_0^*(-p(0)) = \sup_{y(0)} \{ -p(0)y(0) - \phi_0(y(0)) \}$$

$$\phi_1(x(T)) = \sup_{q(T)} \{ q(T)x(T) - \phi_1^*(q(T)) \}$$

Writing these formulas into K(x, p), and noting that \dot{q} , \dot{y} , y(0) and q(T) can be specified independently, we get:

$$K(x, p) = \sup_{y, q} A(x, p; y, q) - [p \cdot \dot{x} + x \cdot \dot{p} + p(0)x(0) - p(T)x(T)]$$

Integrating by parts, we see that the bracket is identically zero. Clearly, $K(x, p) \le 0$ if and only if the pair (x, p) solves the variational inequality (2)./

We will now give some examples.

Example 1. Newton's equation, Neumann boundary conditions.

Let f be a convex l.s.c. proper function on H. Let p_0 and p_1 be two points in H. Consider the problem:

(5)
$$\ddot{x}(t) \in -\partial f(x, (t)) \quad \text{a.e.}$$

$$\dot{x}(0) = p_0, \quad \dot{x}(T) = p_1$$

These are equations (\mathscr{E}) , for:

$$\Gamma(x, p) = \frac{1}{2} \int_0^T |p(t)|^2 dt + \int_0^T f(x(t)) dt$$
$$\phi_0(\xi) = -p_0 \xi, \qquad \phi_1(\xi) = p_1 \xi$$

Indeed, it is a standard result in convex analysis (see [2], [5]) that the subdifferential at $x \in L^2$ of the map $y \to \int_0^T f(y(t)) dt$ is just the set of all $z \in L^2$ such that $z(t) \in \partial f(x(t))$ almost everywhere. Proposition 3 now tells us that x solves equations (5) if and only if it belongs to $H^1(0, T; H)$, and there exists $p \in H^1$ such that:

(6)
$$0 = K(x, p) \le K(y, q)$$
 $(y, q) \in H^1 \times H^1$

with $K(y,q) = \int_0^T [f(y(t)) + f^*(-\dot{q}(T)) + \frac{1}{2}|q(t)|^2 + \frac{1}{2}|\dot{y}(t)|^2 - 2q(t)\dot{y}(t)] dt - p_0 y(0) + p_1 y(T)$ if $q(0) = p_0$ and $q(T) = p_1$, $+\infty$ otherwise. It then follows that $p = \dot{x}$.

EXAMPLE 2. Newton's equation, Dirichlet boundary conditions Consider the problem:

(7)
$$\ddot{p}(t) \in -\partial f(p(t)) \quad \text{a.e.}$$

$$p(0) = p_0, \quad p(T) = p_1$$

These are equations (\mathcal{H}) for:

$$\Gamma(x, p) = \frac{1}{2} \int_0^T |x(t)|^2 + \int_0^T f(p(t)) dt$$

$$\phi_0(\xi) = -p_0 \xi, \qquad \phi_1(\xi) = p_1 \xi.$$

Indeed, the relation $(-\dot{p}, \dot{x}) \in \partial \Gamma(x, p)$ decomposes as $-\dot{p} = x$ and $\dot{x}(t) \in \partial f(p(t))$ a.e., which is equivalent to the differential equation (7). It follows that p solves problem (7) if and only if it belongs to $H^1(0, T; H)$, satisfies the boundary conditions, and there exists $x \in H^1$ such that:

(8)
$$0 = K(x, p) \le K(y, q) \ \forall (y, q) \in H^1 \times H^1$$

with $K(y, q) = \int_0^T \left[\frac{1}{2}|y(t)|^2 + \frac{1}{2}|\dot{q}(t)| + f(q(t)) + f^*(\dot{y}(t)) - 2q(t)\dot{y}(t)\right] dt - p_0 y(0) + p_1 y(T)$ if $q(0) = p_0$ and $q(T) = p_1$, $+\infty$ otherwise. It then follows that $x = -\dot{p}$.

Example 3. The wave equation, prescribed initial and final state.

Let Ω be an open bounded domain in R^n . We set $H = L^2(\Omega)$, and we define a convex l.s.c. proper function f on H by:

$$f(\xi) = \frac{1}{2} \int_{\Omega} |\operatorname{grad} \xi(w)|^2 dw \quad \text{if} \quad \xi \in H_0^1(\Omega)$$
$$f(\xi) = +\infty \quad \text{otherwise.}$$

We then consider the Hamiltonian:

$$\Gamma(x, p) = \frac{1}{2} \int_0^T |x(t)|^2 + \int_0^T f(p(t)) dt$$

and we prescribe boundary conditions in time by $\phi_0(\xi) = -p_0 \xi$, and $\phi_1(\xi) = p_1 \xi$, with p_0 and p_1 given in $L^2(\Omega)$. Equations (\mathcal{H}) then become: (see [2])

(9)
$$p(t) \in H_0^1(\Omega) \cap H^2(\Omega) \quad \text{a.e.}$$

$$\frac{d^2 p}{dt^2}(t) = \Delta p(t) \quad \text{a.e.}$$

$$p(0) = p_0, \quad p(T) = p_1$$

which is the wave equation, with homogeneous Dirichlet conditions in the space variables $(p(t)|_{\partial\Omega} = 0)$. By Proposition 3, p will solve problem (9) if and only if it belongs to $H^1(0, T; L^2(\Omega))$, and there exists $x \in H^1(0, T; L^2(\Omega))$ such that:

$$(10) 0 = K(x, p) \le K(y, q)$$

with

$$K(y, q) = \int_0^T \int_{\Omega} \left[\frac{1}{2} y(t, w)^2 + \frac{1}{2} \frac{\partial q}{\partial t} (t, w)^2 + \frac{1}{2} \sum_{i=1}^n \frac{\partial q}{\partial w_i} (t, w)^2 + \frac{1}{2} \sum_{i=1}^n \frac{\partial z}{\partial w_i} (t, w)^2 - 2q(t, w) \dot{y}(t, w) \right] dt dw - p_0 y(0) + p_1 y(T)$$

if $q(0) = p_0$ $q(T) = p_1$ and $q(t) \in H_0^1(\Omega)$ a.e. Here the function z(t) is defined as the solution of the homogeneous Laplace equation:

$$\forall t, \dot{y}(t) = -\Delta z(t), \qquad z(t) \in H_0^1(\Omega).$$

Finally, we will show how to treat initial-value problems, such as:

$$(\mathcal{H}') \qquad (-\dot{p}, \dot{x}) \in \partial \Gamma(x, p)$$

$$x(0) = x_{0'} \qquad p(0) = p_0$$

PROPOSITION 5. Solutions of problem (\mathcal{H}') on the time interval [0, T] are exactly the pairs (x, p) which satisfy:

$$(\mathcal{P}') \qquad 0 = K'(x, p) \le K'(y, q)$$

for $(y, q) \in H^1 \times H^1$, $y(0) = x_0$, $q(0) = p_0$. Here:

$$K'(y, q) = \Gamma(y, q) + \Gamma^*(-\dot{q}, \dot{y}) - 2q \cdot \dot{y} + y(T)q(T) - x_0p_0.$$

Proof. By Fenchel's inequality:

$$\Gamma(y, q) + \Gamma^*(-\dot{q}, \dot{y}) \ge q \cdot \dot{y} - y \cdot \dot{q}$$

equality holding if and only if $(-\dot{q}, \dot{y}) \in \partial \Gamma(y, q)$. It follows that:

$$K'(y,q) \ge -\int_0^T (y(t)\dot{q}(t) + q(t)\dot{y}(t)) dt - x_0p_0 + y(T)q(T).$$

Integrating by parts, we get $K'(y, q) \ge 0$. Equality holds for solutions of problem (\mathcal{H}') only, which is the desired result.

PROPOSITION 6. Solutions of problem (\mathcal{H}') on the time interval [0, T] are exactly the pairs (x, p) such that $x(0) = x_0$, $p(0) = p_0$, and

$$(2') A'(x, p; y, q) \leq 0$$

for $(y, q) \in H^1 \times H^1$, $y(0) = x_0$, $q(0) = p_0$. Here:

$$A'(x, p; y, q) = \Gamma^*(-\dot{p}, \dot{x}) - \Gamma^*(-\dot{q}, \dot{y}) - p \cdot (\dot{x} - \dot{y}) + x \cdot (\dot{p} - \dot{q})$$

Proof. By definition of the Fenchel conjugate:

$$\Gamma(x, p) = \sup_{\dot{q}, \dot{y}} \{ -\dot{q} \cdot x + \dot{y} \cdot p - \Gamma^*(-\dot{q}, \dot{y}) \}$$

Writing this into K'(x, p), and noting that \dot{q} and \dot{y} can be specified arbitrarily, we get:

$$K'(x, p) = \sup A'(x, p; y, q) - [p \cdot \dot{x} + x \cdot \dot{p} + p_0 x_0 - p(T)x(T)]$$

the supremum being taken over all pairs $(y, q) \in H^1 \times H^1$ and that $y(0) = x_0$ and $q(0) = p_0$. The bracket vanishes, so that $K'(x, p) \le 0$ if and only if (2') is satisfied./

Of course, we can apply the same trick to $\Gamma^*(-\dot{p}, \dot{x})$ instead of $\Gamma(x, p)$. In this way, we get statements equivalent to propositions 6 and 4 (we leave the proof to the reader):

Proposition 6 Bis. Solutions of problem (\mathcal{H}') on the time interval [0, T] are exactly the pairs (x, p) such that $x(0) = x_0$, $p(0) = p_0$ and:

$$(\mathcal{R}') \quad B'(x, p; y, q) \le 0 \qquad \forall (y, q) \in H^1 \times H^1, \qquad y(0) = y_0, \qquad x(0) = x_0.$$
 where $B'(x, p; y, q) = \Gamma(x, p) - \Gamma(y, q) + \dot{p}(x - y) - \dot{x}(q - y).$

PROPOSITION 4 BIS. Solutions of problem (\mathcal{H}) are exactly the pairs $(x, p) \in H^1 \times H^1$ which satisfy:

$$(\mathcal{R}) B(x, p; y, q) \le 0 \forall (y, q) \in H^1 \times H^1$$

with
$$B(x, p; y, q) = \Gamma(x, p) - \Gamma(y, q) + \dot{p}(x - y) - \dot{x}(q - y) + \phi_0(x(0)) - \phi_0(y(0)) + p(0)(x(0) - y(0)) + \phi_1(y(T)) - \phi_1(x(T)) + p(T)(x(T) - y(T)).$$

We can now give some more examples:

Example 4. Newton's equation, Cauchy problem.

Let f be a convex l.s.c. proper function on H, and x_0p_0 two points of H. Consider the problem:

(11)
$$\ddot{x}(t) \in -\partial f(x(t)) \quad \text{a.e.}$$

$$x(0) = x_0, \quad x(0) = p_0$$

A function $x \in H^1(0, T; H \text{ solves problem } (11) \text{ on the time interval } [0, T] \text{ if and only if } x(0) = x_0, \text{ and there exists } p \in H^1 \text{ such that } p(0) = p_0 \text{ and:}$

(12)
$$A'(x, p; y, q) \le 0 \quad \forall (y, q) \in H^1 \times H^1, \quad y(0) = x_0, \quad p(0) = p_0.$$

Here $A'(x, p; y, q) = \int_0^T \left[\frac{1}{2} |\dot{p}(t)|^2 + f^*(x(t)) - \frac{1}{2} |\dot{q}(t)|^2 - f^*(\dot{y}(t)) - p(t)\dot{x}(t) - y(t)\right] + x(t)(p(t) - \dot{q}(t)) dt$. It then follows that $p = \dot{x}$.

We can also state this variational inequality as:

(13)
$$B'(x, p; y, q) \le 0 \quad \forall (y, q) \in H^1 \times H^1, \quad y(0) = x_0, \quad p(0) = p_0$$

with $B'(x, p; y, q) = \int_0^T \left[\frac{1}{2} |p(t)|^2 + f(x(t))^2 - \frac{1}{2} |q(t)|^2 - f(y(t))^2 + \dot{p}(t)(x(t) - y(t)) - \dot{x}(t)(q(t) - y(t)) \right] dt$. It also follows that $p = \dot{x}$

Example 5. The wave equation, Cauchy problem.

Consider, as before, the problem:

(14)
$$p(t) \in H_0^1(\Omega) \cap H^2(\Omega) \quad \text{a.e.}$$

$$\frac{d^2 p}{dt^2}(t) = \Delta p(t) \quad \text{a.e.}$$

$$p(0) = p_0, \quad \dot{p}(0) = -x_0$$

The function $p \in H^1(0, T; L^2(\Omega))$ will solve problem (14) on the time interval [0, T] if and only if $p(0) = p_0$, and there exists $x \in H^1(0, T; L^2(\Omega))$ such that $x(0) = x_0$ and:

$$A'(x, p; y, q) \le 0$$
 $\forall (y, q) \in H^1 \times H^1, \quad y(0) = x_0,$
 $p(0) = p_0, \quad q(t) \in H_0^1(\Omega) \quad \text{a.e.}$

with

$$A'(x, p; y, q) = \int_0^T \int_{\Omega} \left[\frac{1}{2} \frac{\partial p}{\partial t} (t, w)^2 - \frac{1}{2} \frac{\partial q}{\partial t} (t, w)^2 + \frac{1}{2} \sum_{i=1}^n \frac{\partial u}{\partial w_i} (t, w)^2 - \frac{1}{2} \sum_{i=1}^n \frac{\partial z}{\partial w_i} (t, w)^2 - p(t, w) \left(\frac{\partial x}{\partial t} (t, w) - \frac{\partial y}{\partial t} (t, w) \right) \right] dt dw$$

$$+ x(t, w) \left(\frac{\partial p}{\partial t} (t, w) - \frac{\partial q}{\partial t} (t, w) \right) dt dw$$

Here u(t) and z(t) are the solutions of the Laplace equations:

$$\forall t, \, \dot{x}(t) = -\Delta u(t), \qquad u(t) \in H_0^1(\Omega)$$

$$\forall t, \, \dot{y}(t) = -\Delta z(t), \qquad z(t) \in H_0^1(\Omega)$$

This will also be written as:

$$A'(x, p; y, q) = \int_0^T \left[\frac{1}{2} \|\dot{p}(t)\|^2 - \frac{1}{2} \|\dot{q}(t)\|^2 + \frac{1}{2} \|\operatorname{grad}(-\Delta)^{-1}\dot{x}(t)\|^2 - \frac{1}{2} \|\operatorname{grad}(-\Delta)^{-1}\dot{y}(t)\|^2 - p(t)(\dot{x}(t) - \dot{y}(t)) + x(t)(\dot{p}(t) - \dot{q}(t)) \right] dt,$$

all norms to be taken in $H = L^2(\Omega)$.

§2. **Existence.** The question now is whether these characterizations can actually be used to solve problems (\mathscr{E}) and/or (\mathscr{H}). We shall show that, in some cases, they can. Our main tool will be a refined version of Ky Fan's inequality (see [2]):

PROPOSITION 1. Let \mathcal{H} be a closed subspace of $H^1(0, T; H)^2$, and \mathcal{B} its unit ball. Let Φ be a real function on $\mathcal{H} \times \mathcal{H}$. Assume that, for any $(x, p) \in \mathcal{H}$:

- (1) the function $(y, q) \rightarrow \Phi(x, p; y, q)$ is concave
- (2) $\Phi(x, p; x, p) = 0$

and that, for any $(y, q) \in \mathcal{H}$, and any $n \in N$:

(3) the function $(x, p) \rightarrow \Phi(x, p; y, q)$ is weakly l.s.c. on $n\mathcal{B}$

Assume moreover that:

 $(4) \exists m \in N : \{(x, p) \mid \Phi(x, p; y, q) \leq 0 \quad \forall (y, q) \in \mathcal{B}\} \subset m\mathcal{B}.$

Then there exists $(\bar{x}, \bar{p}) \in \mathcal{H}$ such that:

(5) $\Phi(\bar{x}, \bar{p}; y, q) \leq 0 \quad \forall (y, q) \in H^1 \times H^1.$

Proof. Let $n \in N$ be given. By the usual Ky Fan inequality ([6]), applied to Φ on the set $n\mathcal{B} \times n\mathcal{B}$, there exists (x_n, p_n) in $n\mathcal{B}$ such that:

$$\Phi(x_n, p_n; y, q) \leq 0 \quad \forall (y, q) \in n\mathcal{B}.$$

Let $n \to \infty$. By assumption (4), the sequence (x_n, p_n) is bounded, and therefore we can extract a subsequence converging weakly to some (\bar{x}, \bar{p}) . Take any $(y, q) \in H^1 \times H^1$; it belongs to $n\mathcal{B}$ for n large enough, and by assumption (3):

$$\Phi(\bar{x}, \bar{p}; y, q) \le \lim_{n \to \infty} \Phi(x_n, p_n; y, q) \le 0/$$

As a particular case, conclusion (5) will still hold if (4) is replaced by the stronger assumption (see [4]):

(6)
$$\exists m \in \mathbb{N}$$
, $(y_0, q_0) \in H^1 \times H^1 : \{(x, p) \mid \Phi(x, p; y_0, q_0) \le 0\} \subset m\mathcal{B}$.

We shall apply these results to the variational inequalities in Propositions 4 and 6; the subspace \mathcal{H} being defined by appropriate boundary conditions. Example 2 and 4 will be taken up again.

EXAMPLE 2. Newton's equation, Dirichlet boundary condition. Consider, as before, the problem (with prescribed T > 0):

(7)
$$p(t) \in -\partial f(p(t)) \quad \text{a.e.}$$

$$p(0) = p_0, \quad p(T) = p_1$$

By Proposition 4, p solves that problem if and only if it belongs to $H^1(0, T; H)$, satisfies the boundary conditions and there exists $x \in H^1$ such

that:

$$A(Hx, p; y, q) \le 0$$
 whenever $q(0) = p_0$, $q(T) = p_1$

with $A(x, p; y, q) = \int_0^T \left[\frac{1}{2} |\dot{p}(t)|^2 + f^*(\dot{x}(t)) - \frac{1}{2} |\dot{q}(t)|^2 - f^*(\dot{y}(t)) - p(t)(\dot{x}(t) - \dot{y}(t)) + x(t)(\dot{p}(t) - \dot{q}(t)) \right] dt$

Note that if a constant is added to x, and another one to y, the value of A is unchanged. Indeed:

$$A(x+x_0, p; y+y_0, q) - A(x, p; y, q) = \int_0^T x_0(\dot{p}(t) - \dot{q}(t)) dt$$

= 0 since $p(0) = q(0)$ and $p(T) = q(T)$.

So we can always assume that x(0) = y(0) = 0.

PROPOSITION 2. Let the function $f: H \rightarrow R$ be convex, continuous, and satisfy the following growth condition:

(8)
$$\exists K > 0$$
, $\exists k > 0$: $f(\xi) \le K|\xi|^2 + k$, all $\xi \in H$.

Then there exists $T_K > 0$ such that problem (7) has at least one solution whenever $T \in]0, T_K[$. Moreover, $T_K \to \infty$ when $K \to 0$.

COROLLARY. Assume the growth of f is less than quadratic:

(9)
$$f(\xi)/|\xi|^2 \to 0$$
 uniformly as $|x| \to \infty$

Then problem (7) has a solution for all T.

Proof. The function A(x, p; y, q) satisfies all the assumptions of Proposition 1, where \mathcal{H} is taken to be the subspace of $H^1(0, T; H)$ defined by the boundary conditions x(0) = 0, $p(0) = p_0$ and $p(T) = p_1$. Indeed, (1) and (2) are obvious. As for (3), consider a bounded sequence (x_n, p_n) in \mathcal{H} converging weakly to (x, p). Then (x_n, p_n) converges weakly in $L^2(0, T; H)$, which implies that:

$$x_n(t) = 0 + \int_0^t \dot{x}_n(x) ds$$
$$p_n(t) = p_0 + \int_0^t \dot{p}_n(s) ds$$

converge to x(t) and p(t) for all t. Moreover, x_n and p_n are bounded, and hence they converge strongly in $L^2(0, T; H)$ by Lebesgue's theorem. It follows that $\dot{x}_n \cdot p_n$ and $x_n \cdot \dot{p}_n$ converge to $\dot{x} \cdot p$ and $x \cdot \dot{p}$. By Fatou's lemma, the function $x \rightarrow \int_0^T f^*(\dot{x}(t)) dt$ is strongly l.s.c. on $H^1(0, T; H)$; since it is convex, it is also weakly l.s.c. Taking everything into account, we see that the function $(x, p) \rightarrow A(x, p; y, q)$ is weakly l.s.c. on bounded sets.

There only remains to prove estimate (4), or (6). We shall use the well-known inequality $ab \le \frac{1}{2}ca^2 + \frac{1}{2}(b^2/c)$ for all non-negative a, b, c. We have:

$$A(x, p; y, q) = \int_0^T \left[\frac{1}{2} |\dot{p}(t)|^2 + f^*(\dot{x}(t)) - p(t)\dot{x}(t) + x(t)\dot{p}(t) \right] dt$$
$$+ \int_0^T \left[p(t)\dot{y}(t) - x(t)\dot{q}(t) \right] dt - \int_0^T \left[\frac{1}{2} |\dot{q}(t)|^2 + f^*(\dot{y}(t)) \right] dt$$

Once (y, q) is fixed, the last term on the right-hand side is a constant, the second one is a linear function of (p, q), and the first one, by the inequality just mentioned, is greater than or equal to:

$$\int_0^T \left[\frac{1}{2} |\dot{p}(t)|^2 + f^*(\dot{x}(t)) - \frac{c}{2} |\dot{x}(t)|^2 - \frac{1}{2c} |\dot{p}(t)|^2 - \frac{d}{2} |(t)|^2 - \frac{1}{2d} |x(t)|^2 \right] dt$$

the constants c>0 and d>0 to be chosen later. Taking into account the initial conditions x(0)=0 and $p(0)=p_0$, we easily get:

$$||x||_{L^2} \le T ||\dot{x}||_{L^2}$$
 and $||p - p_0||_{L^2} \le T ||\dot{p}||_{L^2}$

It follows that expression (10) is greater than or equal to:

$$\int_{0}^{T} \frac{1}{2} \left(1 - d - \frac{T^{2}}{c} \right) |\dot{p}(t)|^{2} dt + \int_{0}^{T} \left[f^{*}(\dot{x}(t)) - \frac{1}{2} \left(c + \frac{T^{2}}{d} \right) |\dot{x}(t)| \right] dt - \frac{T^{3/2}}{c} |p_{0}| \, ||\dot{p}||_{L^{2}} - T \, |p_{0}|^{2}$$

Now hypothesis (8) comes into play. Taking the Fenchel conjugate of both sides, we get $f^*(\xi) \ge (1/4K)|\xi|^2 - k$ for all $\xi \in H$. Taking that of into account, as well as the preceding inequalities, we get:

$$A(x, p; y, q) \ge \frac{1}{2} \left(1 - d - \frac{T}{c} \right) \|\dot{p}\|^2 + \frac{1}{2} \left(\frac{1}{2K} - c - \frac{T}{d} \right) \|\dot{x}\|^2 - kT$$

$$- \frac{T^{3/2}}{c} |p_0| \|\dot{p}\| - T |p_0|^2 - \|\dot{y}\| (|p_0| + T \|\dot{p}\|)$$

$$- T \|\dot{q}\| \|\dot{x}\| - \frac{1}{2} \|\dot{q}\|^2 - \int_0^T f^*(\dot{y}(t)) dt$$

Take for instance $d = \frac{1}{2}$ and c = 1/4K. Then

$$\frac{1}{2}\left(1-d-\frac{T}{c}\right) = \alpha$$
 and $\frac{1}{2}\left(\frac{1}{2K}-c-\frac{T}{d}\right) = \beta$

both are strictly positive whenever T < 1/8 K. If y, q, and T are fixed, we have

the inequality:

(10)
$$A(x, p; y, q) \ge \alpha \|\dot{p}\|^2 + \beta \|\dot{x}\|^2 - \gamma \|\dot{p}\| - \delta \|\dot{x}\| - \zeta$$

with α , β , γ , δ , ζ denoting various constants (depending on y, q, and T). If T < 1/8K, it is clear that assumption (6) is satisfied, so Proposition 2 is proved with $T_K = 1/8K$. The corollary immediately follows, since inequality (8) is seen to hold for any K./

The growth condition (8) is natural in this context. For instance, the one-dimensional problem $\ddot{p} = -p$, $p(0) = p_0$, $p(T) = p_1$, can be solved for all $(p_0, p_1) \in \mathbb{R}^2$ if and only if T < 1, since the solutions have to be 1-periodic.

Example 4. Newton's equation, Cauchy problem.

Consider the problem described in the preceding section:

(11)
$$\ddot{x}(t) \in -\partial f(x(t)) \quad \text{a.e.}$$

$$x(0) = x_0, \quad \dot{x}(0) = p_0$$

The variational inequality (12) characterizing (x, p) with $p = \dot{x}$, is exactly the same as the one in the preceding example; only the boundary conditions have changed $(y(0) = x_0, p(0) = p_0)$ instead of $y(0) = 0, p(0) = p_0, p(T) = p_1)$. The same arguments leads us to an analogous result:

PROPOSITION 3 (GLOBAL EXISTENCE). Let the function $f: H \rightarrow R$ be convex, continuous, and satisfy the growth condition (8). Then problem (11) has a solution on the time interval [-1/8K, 1/8K]. If growth condition (9) is satisfied, there is a solution for all times $t \in R$.

This can easily be transformed into a local existence result:

PROPOSITION 4 (LOCAL EXISTENCE). Let the function $f: H \to R \cup \{+\infty\}$ be l.s.c. convex. Let $x_0 \in H$ be a point of continuity for f. Then, for any $p_0 \in H$, problem (11) has a solution on some time interval [-T, T], with T > 0.

Proof. Since f is l.s.c. convex and continuous at x_0 , it is finite and continuous in some neighbourhood \mathcal{U} of x_0 . Moreover:

$$\exists M: (\eta \in \partial f(\xi), \ \eta \in \mathcal{U}) \Rightarrow |\eta| \leq M.$$

We then define a function $g: H \rightarrow R$ by the formula:

$$\forall \zeta \in H$$
, $g(\zeta) = \sup\{(\zeta - \xi)\eta + f(\xi) \mid \xi \in \mathcal{U}, \eta \in \partial f(\xi)\}$

The function g is easily seen to be convex, finite, and to coincide with f on

 \mathcal{U} , Moreover, it is lipschitzian with constant K:

$$\forall (\xi, \eta) \in H, \quad |g(\xi) - g(\eta)| \leq K |\xi - \eta|$$

so that it certainly satisfies condition (9).

The initial-value problem:

$$\ddot{x}(t) \in -\partial g(x(t)) \quad \text{a.e.}$$

$$x(0) = x_0, \qquad \dot{x}(0) = p_0$$

has a global solution, by Proposition 3. This solution x is also a solution of (11) as long as $x(t) \in \mathcal{U}$. Hence the result./

For sharper results on the Cauchy problem for Newton's equation, we refer to [7]. As for the wave equation, we did not succeed in proving existence by our method.

BIBLIOGRAPHY

- 1. J. P. Aubin, Mathematical methods of game and economic theory, North-Holland Elsevier (1978).
- 2. H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland.
- 3. H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques, Notes CRAS Paris t.282 (1976), pp. 971-974 and 1197-1198.
- 4. M. Brezis, H. Nirenberg, and G. Stampacchia, A remark on Ky Fan's minimax principle, Bol. Un. Mat. Ital. IV Ser. 6, 1972, pp. 293-300.
 - 5. I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland.
- 6. Ky Fan, A minimax inequality and applications, Inequalities III, Shishia ed., Academic Press (1972), pp. 103-113.
- 7. M. Schatzmann, Le système differentiel $\frac{d^2u}{dt^2} + \partial\phi(u) \ni f$ avec conditions initiales, Note CRAS Paris, t.284 (1976), pp. 603–606.

Centre de Recherches Mathematiques de la Decision Université Paris. Dauphine 75775 Paris cedex 16 France