THE SYNTACTIC NEAR-RING OF A LINEAR SEQUENTIAL MACHINE

by MICHAEL HOLCOMBE

(Received 5th March 1981)

1. Linear sequential machines

Let R be a ring, a linear sequential machine over R is a quintuple $\mathcal{M} = (Q, A, B, F, G)$ where

Q, A, B are R-modules,

 $F: Q \times A \rightarrow Q$ and $G: Q \times A \rightarrow B$ are *R*-homomorphisms.

We call Q the set of states, A the input alphabet and B the output alphabet. Let A^*, B^* be the free monoids generated by the sets A, B respectively. The empty word Λ will be regarded as a member of both A^* and B^* . Let $x \in A^*$ we define a function $F_x: Q \to Q$ by

$$qF_{\Lambda} = q$$

$$qF_{xa} = F(qF_{x}, a) \quad \text{for } x \in A^{*}, \quad a \in A. \tag{1.1}$$

The function F_x will be called the next state function induced by x.

Now let $q \in Q$, we define a function

$$f_q: A^* \to B^* \quad \text{by}$$

$$f_q(\Lambda) = \Lambda$$

$$f_q(xa) = f_q(x) f_{qF_x}(a) \quad \text{for} \quad x \in A^*, \qquad a \in A. \quad (1.2)$$

The function f_q is the sequential function defined by q. (When q=0 we have the result, $f_0 = f_{\mathcal{M}}$, of the machine as in Eilenberg [1]).

Now let $a \in A$, then for $q \in Q$

$$F(q, a) = F(q, 0) + F(0, a)$$

= qF₀ + 0F_a. (1.3)

The function $F_0: Q \to Q$ is an R-endomorphism of Q and we will write $0F_a$ as $q_a \in Q$.

15

Each state function $F_a: Q \to Q$ can thus be regarded as a sum of an *R*-endorphism F_0 and a constant function $\bar{q}_a: Q \to \{q_a\}$. The function F_a is thus an affine function of Q. Now let $a, a' \in A$ then

$$qF_{aa'} = qF_{a}F_{a'} = (qF_{0} + q_{a})F_{a'}$$
$$= (qF_{0} + q_{a})F_{0} + q_{a'}$$
$$= qF_{0}F_{0} + q_{a}F_{0} + q_{a}$$

which again is an affine function. Generally for $x \in A^*$ the function F_x is an affine function of Q.

The set of all affine functions of Q, denoted by $\mathbf{M}_{aff}(Q)$, is a near-ring under the operation of addition and composition of functions (see Pilz [2]). It is natural to consider the syntactic monoid of \mathcal{M} , which is essentially the *distinct* state functions $F_x(x \in A^*)$, as a submonoid of $\mathbf{M}_{aff}(Q)$. This submonoid then generates, additively, a subnear-ring of $\mathbf{M}_{aff}(Q)$ and this will be called the *syntactic near-ring* of \mathcal{M} .

Before we proceed with our investigations we will consider some general properties of this type of near-ring.

2. Affinely generated near-rings

Let $(\Gamma, +)$ be any additive group and denote by End Γ the semigroup of all endomorphisms of Γ . Let $\mathbf{M}(\Gamma)$ denote the set of all functions $f:\Gamma \to \Gamma$, and note that $\mathbf{M}(\Gamma)$ is a near-ring under the operations of mapping addition and composition. We may generate a near-ring $\mathbf{E}(\Gamma)$ which is the subnear-ring of $\mathbf{M}(\Gamma)$ generated by End (Γ) and it is seen that a typical element of $\mathbf{E}(\Gamma)$ is of the form $\sum_{i=1}^{n} \sigma_i e_i$ where $e_i \in \text{End}(\Gamma)$ and $\sigma_i = \pm 1$. Such a near-ring, $\mathbf{E}(\Gamma)$ is called a *distributively generated* near-ring since the elements $e_i \in \text{End}(\Gamma)$ are distributive elements of $\mathbf{M}(\Gamma)$ that generate $\mathbf{E}(\Gamma)$. This construction can be generalised by replacing End (Γ) by any subsemigroup of End (Γ) .

Another subset of $\mathbf{M}[\Gamma]$ is the set $\mathbf{Con}(\Gamma)$ of all constant functions $f:\Gamma \to \Gamma$, these are functions that satisfy $\gamma f = \gamma_0$ for all $\gamma \in \Gamma$, where γ_0 is a fixed element of Γ . The set $\mathbf{Con}(\Gamma)$ is also a semigroup (under composition) in fact it is a near-ring. Furthermore, the following facts are immediate.

$$\mathbf{M}(\Gamma) \cdot \mathbf{Con} \ \Gamma = \mathbf{Con} \ \Gamma \cdot \mathbf{M}(\Gamma). \tag{2.1}$$

End
$$\Gamma$$
 + Con Γ is a subsemigroup of M(Γ). (2.2)

Now we consider forming the near-ring generated by the semigroup End Γ + Con Γ . It is fairly clear that a typical element of this near-ring, EC(Γ), is of the form

$$\sum_{i=1}^{n} \sigma_{i}(e_{i}+c_{i}) \quad \text{where} \quad \sigma_{i}=\pm 1, \quad e_{i} \in \operatorname{End} \Gamma, \quad c_{i} \in \operatorname{Con} \Gamma.$$

Furthermore in the case of Γ an abelian group $\mathbf{M}_{aff}(\Gamma) = \mathbf{EC}(\Gamma)$. We will call $\mathbf{EC}(\Gamma)$ the

16

affinely generated near-ring generated by $\operatorname{End} \Gamma + \operatorname{Con} \Gamma$. We can generalise this construction to a certain extent, e.g. by considering a subsemigroup of $\operatorname{End} \Gamma + \operatorname{Con} \Gamma$, or by looking at the situation in general near-rings.

Let N be a near-ring, define

$$N_0 = \{ n \in N \mid 0n = 0 \}$$
(2.3)

$$N_{c} = \{ n \in N \mid 0n = n \}$$
(2.4)

$$N_{d} = \{ n \in N \mid (n_{1} + n_{2})n = n_{1}n + n_{2}n, \forall n_{1}, n_{2} \in N \}.$$

$$(2.5)$$

Then immediately $N_c = \{n \mid n_1 n = n \forall n_1 \in N\}$ since

$$0n = n \Rightarrow n_1 n = n_1 0n = 0n = n$$
 for $n_1 \in N$.

Both N_0 and N_c are near-rings and N_d is a semigroup. Also $N \cdot N_c = N_c \cdot N$. The set $N_d + N_c$ is a semigroup. Suppose that S is a subsemigroup of $N_d + N_c$. Define the set

$$N_{S} = \left\{ \sum_{i=1}^{n} \sigma_{i} s_{i} \middle| \sigma_{i} = \pm 1, s_{i} \in S \right\},\$$

if $0 \in S$, we show that N_s is a near-ring which clearly contains the semigroup S. Let $\sum_{i=1}^{n} \sigma_i s_i, \sum_{j=1}^{m} \sigma'_j s'_j \in N_s$ then clearly

$$\sum_{i=1}^n \sigma_i s_i - \sum_{j=1}^m \sigma'_j s'_j \in N_S$$

and

$$\left(\sum_{i=1}^n \sigma_i s_i\right) \cdot \left(\sum_{j=1}^m \sigma_j' s_j'\right) = \sum_{j=1}^m \left(\sum_{i=1}^n \sigma_i s_i\right) \sigma_j' s_j' \in N_S.$$

Thus N_s is the near-ring generated by S and we call it the affinely generated (a.g.) nearring generated by S. N_s is also a near-ring under other conditions on S.

Using a semigroup $S \subseteq N_d$ we see that the a.g. near-ring generated by S is the d.g. near-ring generated by S and so a.g. near-rings are generalisations of d.g. near-rings. We state some elementary consequences of the definition.

Proposition 1. Let N be an a.g. near-ring generated by S where S is a subsemigroup of $N_d + N_c$.

(i) Each element of N can be expressed in the form

$$\sum_{i=1}^{n} (\sigma_i e_i + \sigma'_i c_i) \quad \text{where} \quad \sigma_i, \sigma'_i = \pm 1, \quad e_i \in N_d, \quad c_i \in N_c.$$

- (ii) If $K \subseteq N$ and $KN \subseteq K$ then $K(S \cap N_d) + (S \cap N_c) \subseteq K$, thus $S \cap N_c \subseteq K$.
- (iii) A normal subgroup $K \subseteq N$ is a right ideal if $KN \subseteq K$.

3. The syntactic near-ring

Returning to the linear sequential machine $\mathcal{M} = (Q, A, B, F, G)$ defined with respect to the ring R, we notice that the presence of an abelian group as the set Q of states means that $\mathbf{M}_{aff}(Q)$ is an a.g. near-ring. The syntactic near-ring generated by the syntactic monoid of \mathcal{M} in the near-ring $\mathbf{M}_{aff}(Q)$ is an a.g. near-ring. Writing this as $N(\mathcal{M})$ we have $N(\mathcal{M}) = N_S$ where S is the syntactic monoid of M.

If we consider some of the properties of the transformation monoid (Q, S) defined by the machine \mathcal{M} we will obtain some indications about the kind of constructions that will be natural to consider for a.g. near-rings. The interplay between \mathcal{M} and $N(\mathcal{M})$ may also be interesting. For example, Q is naturally an $N(\mathcal{M})$ -module since Q is an abelian group and we may define

$$q \cdot \sum_{i=1}^{n} \sigma_i s_i = \sum_{i=1}^{n} \sigma_i (qs_i) \in Q, \qquad \sigma_i = \pm 1, \quad s_i \in S.$$

$$(3.1)$$

Furthermore for $x = a_1 \dots a_k \in A^*$ we have

$$qF_{x} = qF_{0}^{k} + \sum_{i=1}^{k} q_{a_{i}}F_{0}^{k-i} = q\left(F_{0}^{k} + \sum_{i=1}^{k} \bar{q}_{a_{i}}F_{0}^{k-i}\right).$$
(3.2)

Let Z denote the ring of integers and let $\bar{Q}_A = \{\bar{q}_a | a \in A\}$ then \bar{Q}_A is a subsemigroup of $M_{aff}(Q)$.

Recall that A is an abelian group and for $a, a' \in A$ we have

$$\bar{q}_a + \bar{q}_{a'} = \bar{q}_{a+a'}.$$
 (3.3)

It can be easily established that \bar{Q}_A is a near-ring.

Each F_x corresponds to a type of polynomial and the syntactic near-ring N_s may be considered to be the set of all polynomials of the form:

$$f(\mathbf{x}) + g(\mathbf{x})$$
 where $f(\mathbf{x}) \in \mathbf{Z}(\mathbf{x}), g(\mathbf{x}) \in \overline{Q}_A(\mathbf{x}).$

The correspondence is defined by noting that

$$F_{x} = F_{0}^{k} + \sum_{i=1}^{k} \bar{q}_{a_{i}} F_{0}^{k-i} \leftrightarrow \mathbf{x}^{k} + \sum_{i=1}^{k} \bar{q}_{a_{i}} \mathbf{x}^{k-i}.$$
(3.4)

The near-ring $N(\mathcal{M})$ can thus be described as

$$N(\mathcal{M}) = \mathbf{Z}(\mathbf{x}) + \bar{Q}_{A}(\mathbf{x}).$$

Multiplication in $Z(x) + \bar{Q}_A(x)$ is given by

$$(f(\mathbf{x}) + g(\mathbf{x})) \cdot (f'(\mathbf{x}) + g'(\mathbf{x})) = f(\mathbf{x}) \cdot f'(\mathbf{x}) + g(\mathbf{x}) \cdot f'(\mathbf{x}) + g'(\mathbf{x})$$
(3.5)

where $f(\mathbf{x}) \cdot f'(\mathbf{x})$ is the usual product in $\mathbf{Z}(\mathbf{x})$ and

$$g(\mathbf{x}) \cdot f'(\mathbf{x}) = \sum_{i=0}^{k} \sum_{j=0}^{l} n_{i}r_{j}\mathbf{x}^{j+1} \quad \text{where} \quad g(\mathbf{x}) = \sum_{i=0}^{k} n_{i}x^{i} \in \bar{Q}_{A}(\mathbf{x}),$$

$$f'(\mathbf{x}) = \sum_{j=0}^{l} r_{j}\mathbf{x}^{j} \in \mathbf{Z}(\mathbf{x}), \quad f(\mathbf{x}) \in \mathbf{Z}(\mathbf{x}), \quad g'(\mathbf{x}) \in \bar{Q}_{A}(\mathbf{x}).$$
(3.6)

Polynomials in $N(\mathcal{M})$ will be called *syntactic polynomials*. They are examples of more general polynomial constructions. For example let R be a ring with identity, N an abelian near-ring which is also an R-module.

If $R(\mathbf{x})$ is the usual polynomial ring and $N(\mathbf{x})$ is the near-ring of polynomials in \mathbf{x} over N under the multiplication

$$g(\mathbf{x}) \cdot g'(\mathbf{x}) = g'(\mathbf{x})$$
 for $g(\mathbf{x}), g'(\mathbf{x}) \in N(\mathbf{x})$.

The set $R(\mathbf{x}) + N(\mathbf{x})$ is a near-ring under the operations

$$f(\mathbf{x}) + g(\mathbf{x}) + f'(\mathbf{x}) + g'(\mathbf{x}) = f(\mathbf{x}) + f'(\mathbf{x}) + g(\mathbf{x}) + g'(\mathbf{x})$$
$$(f(\mathbf{x}) + g(\mathbf{x})) \cdot (f'(\mathbf{x}) + g'(\mathbf{x})) = f(\mathbf{x}) \cdot f'(\mathbf{x}) + g(\mathbf{x}) \cdot f'(\mathbf{x}) + g'(\mathbf{x})$$

with $g(\mathbf{x}) \cdot f'(\mathbf{x})$ defined as in (3.6).

Let us denote this near-ring by [R, N](x) and note that

$$([R, N](\mathbf{x})_d = R(\mathbf{x})$$

and

 $([R, N](\mathbf{x}))_c = N(\mathbf{x}).$

Then $[R, N](\mathbf{x})$ is an a.g. near-ring.

Now we examine the output function $G: Q \times A \rightarrow B$. As before we have

$$f_a(a) = qG_a = G(q, a) = qG_0 + 0G_a \tag{3.7}$$

and

$$f_{q}(aa') = qG_{a} \cdot qF_{a}G_{a'}$$

= (qG_{0} + 0G_{a})(qF_{0}G_{0} + q_{a}G_{0} + 0G_{a'}) (3.8)

and so

$$f_{q}(aa') = f_{q}(a) \cdot f_{qF_{a}}(a')$$

= $(f_{q}(0) + f_{0}(a)) \cdot (f_{qF_{0}}(0) + f_{q_{a}}(0) + f_{0}(a') \cdot)$
= $f_{q}(a) \cdot (qF_{0}G_{0} + q_{a}G_{0} + 0G_{a})$ (3.9)

and generally for $x = a_1 \dots a_k \in A^*$,

$$f_q(xa) = f_q(x) \left(qF_0^k G_0 + \sum_{i=1}^k q_{a_i} F^{k-i} G_0 + 0G_a \right).$$

4. Interrelations between $N(\mathcal{M})$ and \mathcal{M}

Let $\mathcal{M} = (Q, A, B, F, G)$ and $\mathcal{M}' = (Q', A, B, F', G')$ be linear sequential machines and consider a state function $\phi: Q \to Q'$ satisfying

 ϕ is an *R*-module homomorphism, (4.1)

and for $q \in Q$, $a \in A$,

$$\phi(qF_a) = \phi(q)F'_a,\tag{4.2}$$

$$\phi(q)G_a' = qG_a. \tag{4.3}$$

Theorem 4.2. If ϕ is a surjective state mapping then a near-ring homomorphism $\beta: N(\mathcal{M}) \rightarrow N(\mathcal{M}')$ exists such that, for $q \in Q$, $n \in N(\mathcal{M})$

$$\phi(qn) = \phi(q)\beta(n). \tag{4.4}$$

Furthermore for $q \in Q$, $x \in A^*$, $f_q(x) = f'_{\phi(q)}(x)$.

Proof. Let S and S' be the syntactic semigroups of \mathcal{M} and \mathcal{M}' respectively. By a standard result in automata theory there exists a semigroup homomorphism $\gamma: S \to S'$ such that $\phi(qs) = \phi(q)\gamma(s)$ for $q \in Q$, $s \in S$. Define $\beta: N(\mathcal{M}) \to N(\mathcal{M}')$ by

$$\beta\left(\sum_{i=1}^{k} \sigma_{i} s_{i}\right) = \sum_{i=1}^{n} \sigma_{i} \gamma(s_{i}), \quad \sigma_{i} = \pm 1, \quad s_{i} \in S,$$

then clearly β is a near-ring homomorphism. For $q \in Q$, $n = \sum_{i=1}^{k} \sigma_i s_i \in N(\mathcal{M})$ we have

$$\phi(qn) = \phi\left(\sum_{i=1}^{k} \sigma_i(qs_i)\right) = \sum_{i=1}^{k} \sigma_i\phi(qs_i) = \sum_{i=1}^{k} \sigma_i\phi(q)\gamma(s_i)$$
$$= \sum_{i=1}^{k} \phi(q)\sigma_i\gamma(s_i) = \phi(q)\sum_{i=1}^{k} \sigma_i\gamma(s_i) = \phi(q)\beta(n).$$

Now we show that $\phi: Q \rightarrow Q'$ satisfies the condition

$$f'_{\phi(q)} = f_q \quad \text{for} \quad q \in Q.$$

Since, for $a \in A$, $f_q(a) = qG_a = \phi(q)G'_a = f'_{\phi(q)}(a)$ by (4.3) we can easily check that an

20

inductive argument yields

$$\begin{aligned} f_q(xa) &= f_q(x) \cdot f_{qF_x}(x) \\ &= f'_{\phi(q)}(x) \cdot f'_{\phi(qF_x)}(a) \\ &= f'_{\phi(q)}(x) \cdot f'_{\phi(q)F'_x}(a) \qquad \text{by a generalisation of (4.2)} \\ &= f'_{\phi(q)}(xa) \qquad \text{where } x \in A^*, \quad a \in A. \end{aligned}$$

Thus $f_q(x) = f'_{\phi(q)}(x)$ for all $x \in A^*$.

Now we examine what happens when we consider the problem of minimising a machine \mathcal{M} .

Let $\mathcal{M} = (Q, A, B, F, G)$ be a linear sequential machine, we choose the zero of Q as an initial state, and we are principally interested in realising the sequential function $f_0: A^* \to B^*$.

Define the relation \sim on Q by

$$q \sim q' \quad \text{iff} \quad f_q = f_{q'} \qquad (q, q' \in Q) \tag{4.5}$$

Theorem 4.3 For $q, q' \in Q$

$$q \sim q'$$
 iff $qF_0^nG_0 = q'F_0^nG_0$ for all $n \ge 0$.

Proof. If $q \sim q'$ then $f_q(x) = f_{q'}(x)$ for all $x \in A^*$. Let $a \in A$ then $f_q(a) = qG_a = qG_0 + 0G_a = q'G_0 + 0G_a = q'G_0 + 0G_a$ and so $q'G_0 = qG_0$.

Now assume that for words $x \in A^*$ of length less than n

$$f_q(x) = f_{q'}(x) \Rightarrow q F_0^k G_0 = q' F_0^k G_0, \qquad 0 \leq k < n.$$

Then

$$f_q(xa) = f_{q'}(xa) \Rightarrow f_{qF_s}(a) = f_{q'F_s}(a)$$

and so $qF_xG_a = q'F_xG_a$. Now

$$qF_{x}G_{a} = \left(qF_{0}^{n} + \sum_{i=1}^{n} q_{a_{i}}F_{0}^{n-i}\right)G_{a}^{`}$$
$$= \left(qF_{0}^{n} + \sum_{i=1}^{n} q_{a_{i}}F^{n-i}\right)G_{0} + 0G_{a} = qF_{0}^{n}G_{0} + \sum_{i=1}^{n} q_{a_{i}}F_{0}^{n-i}G_{0} + 0G_{a}$$

$$q'F_{x}G_{a} = \left(q'F_{0}^{n} + \sum_{i=1}^{n} q_{a_{i}}F_{0}^{n-i}\right)G_{0} + 0G_{a}$$
$$= q'F_{0}^{n}G_{0} + \sum_{i=1}^{n} q_{a_{i}}F_{0}^{n-i}G_{0} + 0G_{a}$$

where $x = a_1 \dots a_n$.

Thus $qF_0^nG_0 = q'F_0^nG_0$ and so we have established the first part of the theorem. The converse is proved similarly.

Theorem 4.4. Let $R = \{q \in Q | q \sim 0\}$ then R is an N-submodule of Q.

Proof. Clearly \sim is an equivalence relation. Now let $q \sim q'$, $q_1 \sim q'_1$ and consider f_{q-q_1} and $f_{q'-q'_1}$, then for $a \in A$,

$$f_{q-q_1}(a) = (q-q_1)G_a = (q-q_1)G_0 + 0G_a$$
$$= qG_0 - q_1G_0 + 0G_a = q'G_0 - q'_1G_0 + 0G_a$$
$$= f_{q'-q'_1}(a).$$

Assume that $f_{q-q_1}(x) = f_{q'-q'_1}(x)$ for all $x \in A^*$ of length less than or equal to n and consider

 $f_{q-q_1}(xa)$ where xa is of length n+1.

Then

$$f_{q-q_1}(xa) = f_{q-q_1}(x) \cdot f_{(q-q_1)F_x}(a) = f_{q'-q'_1}(x) \cdot f_{(q-q_1)F_x}(a).$$

Now

$$f_{(q-q_1)F_x}(a) = (q-q_1)F_xG_a$$

= $(q-q_1)\left(F_0^n + \sum_{i=1}^n q_{a_i}F_0^{n-i}\right)G_0 + 0G_a$
= $\left(qF_0^n - q_1F_0^n + \sum_{i=1}^n q_{a_i}F_0^{n-i}\right)G_0 + 0G_a$
= $qF_0^nG_0 - q_1F_0^nG_0 + \sum_{i=1}^n q_{a_i}F_0^{n-i}G_0 + 0G_a$
= $q'F_0^nG_0 - q'_1F_0^nG_0 + \sum_{i=1}^n q_{a_i}F_0^{n-i}G_0 + 0G_a$
= $f_{(q'-q'_1)F_x}(a)$, where $x = a_1 \dots a_n$ by Theorem 4.3.

Thus $q - q_1 \sim q' - q'_1$ and so R is a subgroup of Q.

Finally for $n \in N$ we have $n = \sum_{i=1}^{k} \sigma_i s_i$, $\sigma_i = \pm 1$, $s_i \in S$. Then if $q \sim q'$ we have $qn = \sum_{i=1}^{k} \sigma_i qs_i$, $q'n = \sum_{i=1}^{k} \sigma_i q's_i$ and we now show that $qn \sim q'n$. For this we note that if $qs_i \sim q's_i$ then $qn \sim q'n$. So we must establish that $x \in A^*$, $qF_x \sim q'F_x$. For $a \in A$,

$$f_q(xa) = f_q(x)f_{qF_x}(a) = f_{q'}(x)f_{q'F_x}(a) = f_q(x)f_{q'F_x}(a)$$

and so

$$f_{qF_x}(a) = f_{q'F_x}(a).$$

Now let $f_{qF_x}(y) = f_{q'F_x}(y)$ for all words $y \in A^*$ of length *n* or less. Let *y* be of length *n*, and consider

$$f_{qF_x}(ya) = f_{qF_x}(y)f_{qF_{xy}}(a) = f_{q'F_x}(y)f_{qF_{xy}}(a)$$
$$= f_{q'F_x}(y)f_{q'F_{xy}}(a) = f_{q'F_x}(ya).$$

Hence $qF_x \sim q'F_x$. This completes the proof (because of Proposition 1(iii)).

A linear sequential machine $\mathcal{M} = (Q, A, B, F, G)$ is called *accessible* if given any $q \in Q$ there exists $x \in A^*$ such that $0F_x = q$. This clearly means that any state is reachable from the initial state 0. As far as the N-module Q goes this means that 0 is a generator, that is

$$0 \cdot N \supseteq 0 \cdot S = Q$$
 and so $Q = 0 \cdot N = 0 \cdot N_c$.

A machine \mathcal{M} is called *reduced* if the relation defined in (4.5) is trivial, that is $q \sim q' \Rightarrow q = q'$ for all $q, q' \in Q$.

An accessible, reduced linear machine \mathcal{M} is called *minimal*. Given a general linear machine $\mathcal{M} = (Q, A, B, F, G)$ we can obtain a minimal machine with the same behaviour by forming the *accessible part* of \mathcal{M} , this is the machine \mathcal{M}^a with state set $Q' = Q \cdot S$ replacing the set Q and the induced state and output maps. The accessible machine \mathcal{M}^a is reduced by forming the quotient machine \mathcal{M}^a/\sim in the usual way. Since Q' is an R-module it is clear that $Q' = Q \cdot N$. The minimal machines of \mathcal{M} are essentially unique, up to isomorphism. (Eilenberg [1] Chapter XVII.)

We now prove

Theorem 6.5. Let $\mathcal{M} = (Q, A, B, F, G)$ be a reduced machine. Then Q has no proper non-zero N-submodules K satisfying $KG_0 = \{0\}$.

Proof. Let $K \subseteq Q$ be an N-subgroup, then K is a subgroup of Q and $K \cdot N \subseteq K$. Let \sim_K be a relation defined on Q by

$$q \sim_{\kappa} q' \Leftrightarrow q - q' \in K, \qquad (q, q' \in Q).$$

Choose q, q' such that $q \sim {}_{K}q'$ then there exists a $k \in K$ with q' = q + k. Now, for $a \in A$,

$$f_{a'}(a) = f_{a+k}(a) = qG_0 + kG_0 + 0G_a = qG_0 + 0G_a = f_a(a).$$

Let $x \in A^*$ and suppose that $f_{q'}(x) = f_q(x)$ for all x of length less than or equal to n. Now let $xa \in A^*$ be of length n+1, then

$$f_{q'}(xa) = f_{q'}(x)f_{q'F_x}(a) = f_q(x)f_{(q+k)F_x}(a).$$

Now $(q+k)F_x - qF_x \in K$ and so $(q+k)F_x = qF_x + k'$ for some $k' \in K$. Then

$$f_{q'}(xa) = f_q(x)(qF_xG_0 + k'G_0 + 0G_a)$$

= $f_q(x)(qF_xG_0 + 0G_a)$
= $f_q(x)f_{qF_x}(a) = f_q(xa).$

Hence we have q = q' since M is reduced and $K = \{0\}$.

Finally we combine this last result with the accessibility condition to obtain:

Theorem 4.6. Let $\mathcal{M} = (Q, A, B, F, G)$ be a minimal linear sequential machine. Then the N-module Q satisfies:

(i) Q possesses no proper non-zero N-submodules K such that $KG_0 = \{0\}$

(ii) Q is generated by 0.

Further properties of the syntactic near-ring of a linear sequential machine will be examined in a forthcoming paper.

REFERENCES

1. S. EILENBERG, Automata, Languages and Machines, Vol. A (Academic Press, New York, 1974).

2. G. PILZ, Near-Rings (North-Holland, Amsterdam, 1977).

DEPARTMENT OF PURE MATHEMATICS QUEEN'S UNIVERSITY BELFAST BT7 1NN