ON THE PERMANENT OF A DOUBLY STOCHASTIC MATRIX

HERBERT S. WILF

If $A=\left(a_{i j}\right)_{i, j=1}^{n}$ is an $n \times n$ matrix, the permanent of $A, \operatorname{Per} A$, is defined by

$$
\begin{equation*}
\operatorname{Per} A=\sum a_{1 i_{1}} \ldots a_{n i_{n}} \tag{1}
\end{equation*}
$$

where the sum is over all permutations. If A is doubly stochastic (i.e., nonnegative with row and column sums all equal to 1), then it has been conjectured that $\operatorname{Per} A \geqslant n!/ n^{n}$. When confronted with a vaguely similar problem about determinants, M. Kac (1) observed that the computation of minima can often be aided by knowledge of various averages. In this spirit we calculate here the average permanent of a class of doubly stochastic matrices and thereby obtain upper bounds for the minima. These turn out to be surprisingly sharp.

Let n and s be fixed positive integers. By the class $K_{n s}$ we mean the set of $n!^{s}$ matrices (not all different) that result from calculating

$$
\begin{equation*}
A=s^{-1}\left(P_{1}+\ldots+P_{s}\right) \tag{2}
\end{equation*}
$$

as P_{1}, \ldots, P_{s} run independently over the $n \times n$ permutation matrices. Evidently the matrices of $K_{n s}$ are doubly stochastic. The average permanent of these matrices is

$$
\begin{aligned}
\gamma_{n s} & =n!^{-s} \sum_{P_{1}, \ldots, P_{s}} \operatorname{Per}\left(\frac{P_{1}+\ldots+P_{s}}{s}\right) \\
& =s^{-n} n!^{-s} \sum_{P_{1}, \ldots, P_{s}} \operatorname{Per}\left(P_{1}+\ldots+P_{s}\right) \\
& =s^{-n} n!^{-s} \sum_{P_{1}, \ldots, P_{s}} \sum_{S_{n}}\left(P_{1}+\ldots+P_{s}\right)_{1 i_{1}} \ldots\left(P_{1}+\ldots+P_{s}\right)_{n i_{n}} \\
& =s^{-n} n!^{-s} \sum_{S_{n}} \sum_{P_{1}, \ldots, P_{s}}\left(P_{1}+\ldots+P_{s}\right)_{1 i_{1}} \ldots\left(P_{1}+\ldots+P_{s}\right)_{n i_{n}} \\
& =s^{-n} n!^{1-s} \sum_{P_{1}, \ldots, P_{s}}\left(P_{1}+\ldots+P_{s}\right)_{11} \ldots\left(P_{1}+\ldots+P_{s}\right)_{n n} .
\end{aligned}
$$

In this last sum we select one of the P 's from each set of parentheses, and then do the sum for that particular selection. Suppose P_{1} is selected r_{1} times, \ldots, P_{s} is selected r_{s} times, where, of course, $r_{1}+\ldots+r_{s}=n$. The number of non-zero contributions to the sum (each non-zero contribution is 1) would then be

$$
\left(n-r_{1}\right) \ldots\left(n-r_{s}\right)!
$$

Received June 11, 1965.

The number of ways of selecting $P_{1} r_{1}$ times, $\ldots, P_{s} r_{s}$ times is

$$
\binom{n}{r_{1}}\binom{n-r_{1}}{r_{2}} \ldots\binom{n-r_{1}-\ldots-r_{s-1}}{r_{s}}=\frac{n!}{r_{1}!\ldots r_{s}!}
$$

Consequently the average permanent of the matrices in $K_{n s}$ is

$$
\begin{equation*}
\gamma_{n s}=s^{-n} n!^{2-s} \sum_{r_{1}+\ldots+r_{s}=n} \frac{\left(n-r_{1}\right)!\ldots\left(n-r_{s}\right)!}{r_{1}!\ldots r_{s}!} . \tag{3}
\end{equation*}
$$

We now establish two features of the asymptotic behaviour of $\gamma_{n s}$. First we claim that for each fixed n

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \gamma_{n s}=n!n^{-n} \tag{4}
\end{equation*}
$$

To see this, notice that the sum in (3) is the coefficient of x^{n} in

$$
\left(\sum_{j=0}^{n} \frac{(n-j)!}{j!} x^{j}\right)^{s}
$$

and so

$$
\begin{aligned}
\gamma_{n s} & =s^{-n} n!^{2-s} \frac{1}{2 \pi i} \oint\left(\sum_{j=0}^{n} \frac{(n-j)!}{j!} z^{j}\right)^{s} z^{-n-1} d z \\
& =n!^{2} \frac{1}{2 \pi i} \oint\left\{\sum_{j=0}^{n} \frac{(n-j)!}{j!n!}\left(\frac{w}{s}\right)^{j}\right\}^{s} w^{-n-1} d w \\
& =n!^{2} \frac{1}{2 \pi i} \oint e^{w / n}\left\{1+\frac{w^{2}}{2 n^{2}(n-1) s}+O\left(s^{-2}\right)\right\} w^{-n-1} d w \\
& =\frac{n!}{n^{n}}\left[1+\frac{n}{2 s}+O\left(s^{-2}\right)\right] \quad(s \rightarrow \infty) .
\end{aligned}
$$

To investigate $\gamma_{n s}$ for fixed s as $n \rightarrow \infty$, we need a different integral representation. Since

$$
\left(x_{1}+x_{2}+\ldots+x_{s}\right)^{n}=\sum_{r_{1}+\ldots+r_{s}=n} \frac{n!}{r_{1}!\ldots r_{s}!} x_{1}^{r_{1}} \ldots x_{s}^{r_{s}},
$$

we have

$$
\left(x_{2} \ldots x_{s}+\ldots+x_{1} \ldots x_{s-1}\right)^{n}=\sum_{r_{1}+\ldots+r_{s}=n} \frac{n!}{r_{1}!\ldots r_{s}!} x_{1}^{n-r_{1}} x_{2}{ }^{n-r_{2}} \ldots x_{s}^{n-r_{s}}
$$

It follows that

$$
\begin{aligned}
& \gamma_{n s}=s^{-n} n!^{1-s} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left[\left(x_{1} \ldots x_{s}\right)\left(\frac{1}{x_{1}}+\ldots+\frac{1}{x_{s}}\right)\right]^{n} e^{-\left(x_{1}+\ldots+x_{s}\right)} \\
& \times d x_{1} \ldots d x_{s}
\end{aligned}
$$

The unique maximum of the integrand occurs at

$$
x_{1}{ }^{0}=\ldots=x_{s}{ }^{0}=n(1-1 / s) .
$$

Hence we put

$$
x_{i}=n u_{i}+n(1-1 / s) \quad(i=1, \ldots, s)
$$

in the integral, and obtain

$$
\begin{align*}
\gamma_{n s} \sim & s^{-n} \sqrt{2 n \pi}\left(\frac{n}{2 \pi}\right)^{\frac{1}{2} s} \int_{-\alpha}^{\infty} \ldots \int_{-\alpha}^{\infty}\left\{\left(u_{1}+\alpha\right) \ldots\left(u_{s}+\alpha\right)\right. \tag{5}\\
& \left.\times\left(\frac{1}{u_{1}+\alpha}+\ldots+\frac{1}{u_{s}+\alpha}\right) e^{-\left(u_{1}+\ldots+u_{s}\right)}\right\}^{n} d u_{1} \ldots d u_{s} \quad(n \rightarrow \infty)
\end{align*}
$$

where we have written $\alpha=\left(1-s^{-1}\right)$. The maximum of the integrand now occurs at the origin and so by standard asymptotic methods

$$
\begin{aligned}
\gamma_{n s} & \sim \sqrt{2 n \pi}\left(\frac{n}{2 \pi}\right)^{\frac{1}{2} s}(2 \pi)^{\frac{1}{2} s}|D|^{-\frac{1}{2}} n^{-\frac{1}{2} s}(1-1 / s)^{n s-n} \\
& =\sqrt{\frac{2 \pi n}{|D|}}(1-1 / s)^{n s-n}
\end{aligned}
$$

where D is the determinant of the $s \times s$ matrix of second partial derivatives of the logarithm of the braces in (5), evaluated at the origin. This matrix is

$$
f_{\mu \nu}= \begin{cases}-1, & \mu=\nu \\ -1 /(s-1)^{2}, & \mu \neq \nu\end{cases}
$$

whence $|D|=\left(1-2 s^{-1}\right)^{s-1}\left(1-s^{-1}\right)^{1-2 s}$. We have finally

$$
\begin{equation*}
\gamma_{n s} \sim \sqrt{2 \pi n}(1-2 / s)^{-\frac{1}{2}(s-1)}(1-1 / s)^{n s-n+s-\frac{1}{2}} \quad(n \rightarrow \infty) . \tag{6}
\end{equation*}
$$

In particular

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \gamma_{n s}^{1 / n} & =(1-1 / s)^{s-1} \\
& =e^{-1}\left(1+1 / 2 s+O\left(s^{-2}\right)\right) \quad(s \rightarrow \infty)
\end{aligned}
$$

We conclude by showing that

$$
\begin{equation*}
\gamma_{n s} \geqslant n!n^{-n} \quad(n, s=1,2, \ldots) \tag{7}
\end{equation*}
$$

From (3), we have

$$
\begin{aligned}
\gamma_{n s} & =s^{-n} n!^{2} \sum_{r_{1}+\ldots+r_{s}=n}\left[\frac{\left(n-r_{1}\right)!}{r_{1}!n!}\right] \ldots\left[\frac{\left(n-r_{s}\right)!}{n!r_{s}!}\right] \\
& =s^{-n} n!^{2} \sum_{r_{1}+\ldots+r_{s}=n}\left[\frac{1}{r_{1}!n(n-1) \ldots\left(n-r_{1}+1\right)}\right] \\
& \ldots\left[\frac{1}{r_{s}!n(n-1) \ldots\left(n-r_{s}+1\right)}\right] \\
& \geqslant s^{-n} n!^{2} \sum_{r_{1}+\ldots+r_{s}=n}\left[\frac{1}{r_{1}!n^{r_{1}}}\right] \ldots\left[\frac{1}{r_{s}!n^{r_{s}}}\right] \\
& =n!n^{-n}
\end{aligned}
$$

as required.

As a numerical example, consider the set of all k-stochastic $n \times n$ matrices with non-negative integer elements. This set, aside from a factor of k, is our set $K_{n k}$. Hence the minimum permanent of matrices in this set is $\leqslant k^{n} \gamma_{n k}$. When $n=19, k=10$, for instance, $k^{n} \gamma_{n k}$, from (6), is about 16.6×10^{11}. The incidence matrix of a $19-10-5$ configuration (3) has a permanent of 9.53×10^{11} (2), and it has been suggested (3) that this may be minimal in the class.

For future research I would raise the question of computing the mean square permanent of matrices in the class (2). If the arithmetic mean and the mean square are both available, improved estimates of the minimum can be made. Another interesting question concerns the average permanent of (2) when the P_{i} are restricted to the cyclic permutations.

References

1. M. Kac, Probability and related topics in physical sciences, Seminar at Boulder, Colorado, Summer, 1957 (lecture notes).
2. P. J. Nikolai, Permanents of incidence matrices, MTAC(1960), 262-266.
3. H. J. Ryser, Matrices of zeros and ones, Bull. Amer. Math. Soc., 66 (1960), 442-464.

University of Pennsylvania

