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POLYNOMIAL INVARIANT THEORY AND TAYLOR SERIES 

To Tim Rooney on his 65th birthday. 

JOHN E. GILBERT 

1. Introduction. For any group K and finite-dimensional (right) AT-module V let 

(i. i) (*r(*y)(v) =/(v*) (v e v, * e *), 

be the right regular representation of K on the algebra (P(V) of polynomial functions on 
V. An Isotypic Component l/T of (P(V) is the sum of all Â'-submodules of (P(V) on which 
7T restricts to an irreducible representation T £ K\ each/ in &{V) can then be written 
a s / = Er/r with/- in 1^.. When K is compact this decomposition can be achieved by 
integral methods. Indeed, if { XT : r G K} is the set of characters of the irreducible 
unitary representations of K, normalized so that XT * XT = XT, then 

(1.2) /T - JKXAk)7T(k)fdk (/ G 2>(V)). 

On the other hand, without restriction on K, Taylor series expansions often exhibit such 
decompositions using infinitesimal methods. For instance, when V is regarded as a 
GL( V)-module, the usual Taylor series expansion 

<L3> /<*>=£_ 37 * NF / L e e 2w) 
m=0 ' 

a v 
ac^ lC=o 

is a precise expression of the fact that the isotypic components of the right regular repre­
sentation of GL(V) on !P(V) are the spaces (Pm(V) of polynomials homogeneous of degree 
m on which GL(V) acts irreducibly. Thus 

oo 

(i.4) <P(V) = e E VmW) 

identifies the isotypic components, while the mth-order homogeneous Taylor polynomial 
mapping 

1 / I d \m I 
(1.5) / — * - ; U hv ) / fcC^V), 

defines the GL(V)-equivariant projection of ^P(V) onto the isotypic component (Pm(V). 
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1244 JOHN E. GILBERT 

(1) wi > rri2 > • • • 

(ii) rtij — 0, j sufficiently large; 

(iii) £(T) = max{7 : ra7 ̂  0 }, 

(iv) 
7 

There are many other well-known examples where the isotypic components of (P( V) 
can be identified (cf., for instance [15]; [16]; [20]). By a partition we shall mean a finite 
or infinite sequence r = (mi, m^,...) of non-negative integers such that 

(1.6) 

we then set 

(1.7) 

The Cartan-Schur-Weyl theory establishes a 1-1 correspondence between partitions r , 
t(r) < A2, and irreducible polynomial representations of GLn, i.e., irreducible representa­
tions GLn —• GL(W) which extend to polynomial mappings Mn —• Hom(H^). If E, F are 
finite-dimensional vector spaces, let 1^(F), VT{F) be the respective irreducible GL(E)-
and GL(F)-modules corresponding to a partition r with£(r) < min(dimF,dimF). (Note 
that here, as well as elsewhere, we use r simultaneously as a partition (or highest weight), 
as a label for a representation space, and as a homomorphism.) The following very well-
known theorem has many proofs valid in varying degrees of generality (cf. [9]; [16]; 
[22],...). 

THEOREM 1.7. When E® F is regarded as a GL(E) x GL(F)-module, then 

(1.8) î P ( ^ F ) = © E ^ T ( £ ) 0 ^ ( n 
T 

the sum being taken over all partitions r, £ (r) < min(dim£', dimF). 

Theorem (1.7) thus identifies the isotypic components of (P(E <S) F), just as (1.4) did 
in the special case when E is one-dimensional. At an abstract level it is easy to set up 
differential operators which project ^{E (g) F) onto these isotypic components, but in 
practice it is important to have explicit expressions for them. Now, the symbol of the 
differential operator 

(1.9) /(C) —- [z I j | ) 7 ( 0 if É 2W), 

used to define the Taylor series ( 1.3) is the m-fold power of the dual pairing (• | •) on Vx V', 
and by the simplest case of the First Fundamental Theorem (FFT) of Invariant Theory, 
the set {(-| -)m • tfn > 0} of all such powers is a linear basis for the GL{V)-mvariants 
in *P(V x V). On the other hand, {z —• zm : m > 0} is the only set of characters of 
GLi(C) which extend to all of C. Consequently, in the more general case the operators 
in (1.9) will be replaced by differential operators whose symbol is a GL(E) x GL(F)-
invariant in ^(E <g) F, Ef (g) F*), and the series for/ in TiE 0 F) follows taking a lin­
ear basis for such invariants derived from the characters of the polynomial representa­
tions of GL(E). Such series expansions are valid whether the scalar field F = R or 
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C. As the action of GL(E) x GL(F) on ^(E ® F) is multiplicity-free this isotypic de­
composition is actually the irreducible decomposition. Actually, both Theorem 1.7 and 
the corresponding Taylor series version, Theorem 3.6, follow fairly quickly from well-
known identities ("character identities") for symmetric functions. Invariant theory does 
become important, however, in the use of Capelli operators instead of Euler's operator 
in deriving variants of the GL(E) x GL(F)-module theory for some GL(F)-modules of 
polynomial functions and GL(E) x O(F)- or 0(F)-modules of harmonic polynomial func­
tions. These variants will be fundamental in the on-going study of first-order systems of 
over-determined elliptic differential operators d (cf. [6], [7], [8]). The prototypical ex­
ample of d is the Cauchy-Riemann 3-operator, but examples including Hodge-deRham 
(d,d*)- and (3,3*)-systems, whered commutes with the action of a Lie group K, i.e., 
is an invariant differential operator, occur throughout harmonic analysis and represen­
tation theory. For these invariant operators the kernel of à is contained in an eigenspace 
of an invariant second order elliptic differential operator, just as any analytic function 
is automatically harmonic. One fundamental question—the K-type analysis of kerô—is 
whether the kernel of d can be distinguished within the associated eigenspace of the sec­
ond order operator, and more generally among all smooth functions, by the occurrence 
or absence of particular A'-types. Such is the case for d, since every function 

CO 

(1.10) f(z) = E an^J* (z = « " e C), 
- c o 

is harmonic, whereas df = 0 if and only if an = 0, n < 0; Thus the various more general 
Taylor series expansions are designed to replace (1.10), and the basic problem then comes 
in deciding which (and how)à arises from the finite order invariant differential operators 
implementing the Taylor series expansions. These applications will be made elsewhere, 
however. 

The author wishes to thank Ray Kunze for introducing him to the fascinating world of 
invariant theory, and to thank also Roger Richardson as well as the referee for comments 
and explanations which significantly determined the final form of this paper. 

2. Invariant operators, general theory. Let V be a finite-dimensional vector space 
over F, F = R or C, that is simultaneously a left //-module and right ZT-module with 
respect to groups //, K (the two module actions being assumed to be associative). Then 
/x(/i, k): v —+ hvk~l is a representation of H x K on V and 

(2.1) gxg2 = ( / Î I , ^ I ; V I ) ( / Ï 2 , ^ 2 ; V 2 ) = (hih2,kik2;h2lvik2 + vi) 

defines group multiplication on the semi-direct product G = (// x K) (s)V. When H x K 
is identified with the subgroup {(h, k\ 0) : h G //, k G K} of G and V with the space 
(H x K)\G of right cosets, the canonical action of G on this coset-space corresponds to 
the action of G as a motion group of transformations 

(2.2) g = (h,k',w): v—• v.g = h~\k + w (g G G, v G V), 
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on V. The example of V — FrXn with H — GLr and K = GLn acting by matrix multipli­
cation will be basic to the present paper. 

If CK,r) is a finite-dimensional representation of H x K, unitary or not, and 
C°°(V, ^T) the space of smooth 1^-valued functions on V, let 

(2.3) (7TT(£)/)(v) = r(A,k)f(v.g) (veV, ge G), 

be the representation of G on C°°(V, VT ) induced from ( 1^, r ) . Given two such represen­
tations, there is a canonical construction of finite-order differential operators 
d\ C°°(V, VT) —• C°°(V, % ) which are invariant in the sense that 

(2.4) doTrr(g) = iru(g)od (g G G), 

(cf. [13], chap. II; [23], §5.4). Such operators will be said to be H x K-invariant to 
emphasize their critical dependence on H x K, the contribution of V being merely to 
guarantee translation-invariance. We recall this construction in the various forms needed 
here and elsewhere, setting notation at the same time. 

Each X in V gives rise by parallel translation to a vector field 3^, 

(2.5) Oxf)(v) = jfiv + ff)L0 (/ G C°°(V, VT)\ 

and X —• dx extends to an isomorphism from the symmetric algebra S( V) onto the alge­
bra (D{C°°{V)) of finite order, constant-coefficient differential operators on C°°(V, Vj). 
Thus A <g) X —•» A o 3X extends to a linear isomorphism À : S —-> &s from Hom( VT, % ) (g) 
5(V) onto the space £>(C°°(V, 1^), C°°(V,%)) of finite-order, translation-invariant 
differential operators taking C°°(V, 1^) into C°°(V, % ) . Those 5 for whichds is H x K 
invariant are easily characterized. 

THEOREM 2.6. The mapping À : S —yds is a linear isomorphism from the H x It-
invariants in H o m C K , ^ ) ® J>(V) wito f/œ H x K-invariants in © ( ^ ( V , 1^), 
C°°(V,a{,)). 

There are useful alternative characterizations in the case of first-order operators. Fix 
a basis {e\,...9en} for V, and let { d\,..., dn} be the corresponding set of vector fields. 
Then À : S —> ds associates to each 5 = £, A7 <g) ej in Hom( ̂ , V^ ) ® V the differential 
operator 

(2.7) ds:f — £(A , ° ̂ 0/ (/ e c°°(v, a*)). 

Such an S is an / / x A'-in variant precisely when the { Aj}-Lx Ç Hom(1^, 1^) satisfy 

(2.8) E M / = JlhtMKk)AtT{Kkyl (h£H, kEK), 
i t 

for each 7, 1 <j<n, [hy] and [fcy] being the matrix representations 

hei = E ^ y » ^ = E ^ > ^ (h E H, k e K) 
j j 
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in F nxn. Thus the first-order H x Â'-invariant differential operators are all given by (2.7) 
for any choice of A\,...,An satisfying (2.8). In fact, if {e\,...,e'n} is the dual basis in 
V, every A in Hom(l4 <g> V, %) arises as Ts with 5 = E/(A o If) ® ̂  and 

/,-: ̂ r - ^ r <g> V, /,: $ — Ï® e'j. 

Combining isomorphisms we thus obtain a linear isomorphism 

(2.9) A : A — » 3 ^ = (A o V )/ = £ (A o 7,-)3/ (/ € C°°(V, 1> )). 
y 

To characterize the invariants, let (V\ /i') be the representation ofHxK contragredient 
to(V,/i). 

THEOREM 2.10. The mapping X:A —> â^ = A o V is a linear isomorphism from 
the H x K-invariants in Hom(1^ Cg> V, 1^) owto the first-order H x K-invariants in 

^{c^{vM\c°°(yyj). 
When //, ^ are completely reducible and % = 1/T ® V, say, these invariants are 

easily described by applying Schur's lemma. 

THEOREM 2.11. IfH,K are completely reducible, the equivariant projections from 
Vr®V' onto its irreducible HxK-submodulesform a linear basis for the Hx K-invariants 
mHomCK 0 V'). 

Clearly there will be an analogous result for the case Vœ ^ VT ® V. All of the 
previous discussion is independent of the choice of basis { e\,..., en} for V, as will be 
subsequent discussion also. 

NowletfP(V /,Hom(^, ^ ) ) be the space of Hom(^ , V^)-valued polynomial func­
tions on V. With respect to the coordinate system v1 = (£i , . . . , £n) for V determined 
by {e\,... ,e'n}, each P in &(V', Hom(^ , %)) can be regarded as a polynomial P = 
P(£i , . . . , £n) in £ i , . . . , £„ with coefficients from Hom(^i, % ) . Consequently, 

(2.12) A:P->9p = P(3i,...,3w) 

defines a linear isomorphism from l?(v /,Hom(^ r, 0^)) onto D(C°°(V, 1<), 

C°°(V, 1^,)); in addition, dp — $s when P corresponds to S under the standard identi­

fication of 2>( V, HomCK, % ) ) with Hom(^T, l £ ) ® 5(V). 

THEOREM 2.13. 77ie mapping À : P —• #/> = P(3i, . . . , dn) is a linear isomorphism 
from the H x K-invariants in fP(y/,Hom(rK, % ) ) orcto f/ie / / x K-invariants in 

Roughly speaking, therefore, invariant polynomials arise here as the symbol of in­
variant differential operators. The invariance property ensures that both the null-space 
and range-space of these operators are H x A'-modules when the operators act onHxK-
modules. 
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To incorporate ideas from classical invariant theory, let P be an H x K-'mvariant in 
tP(V x V). Then by (2.13), A : P —> #p associates to each such P an H x K invariant 
differential operator 

(2.14) /(C) —-&>/)(*, O = K | ~ ' Z ) / ( C ) (C,Z G n 

from C°°(V0 into C°°(V,!P(VJ). One can think of thesedP = P(|- ,z) as finite-order 
differential operators in £ having polynomial functions of z as coefficients. When £' 
denotes the transpose of any matrix Ç, the pull-back P o 7, 

(2.15) 1:¥rxnx¥rxn >frxr^ 7 : ( £ > z ) _ > ^ 

of any P in 2>(Frxr) clearly defines a GL„-invariant in 2>(Frxn x F r x n) , while P o 7 is a 
GLr x GLn-invariant if and only if P is Ad GLr-invariant, i.e., 

(2.16) (Ad(h)P)(x) = P(hTxxh) = P(x) (h <G GLr, A G F r x r) . 

The First Fundamental Theorem of Invariant Theory (FFT) (cf. [19]; [21], chap. XI; [24], 
chap. 1 A) together with Theorem 2.13 thus gives 

THEOREM 2.17. The mapping 

is a linear isomorphism from (P(¥rxr) onto the GLn-invariants in 2)(C°°(Frxn), 
C°°(Frxn xF rXfl)). 

A p—^dp = p(z?-) (zX errxn), 

The expression z4- is to be interpreted as the r x r-product obtained from the r x n 
matrices 

z = [ZrA • ac = fel-(2.18) 

Equivalent formulations of z& will be useful. Let 

(2.19) 

be the rows of z and 4- respectively, and set 

(2.20) 

,y 

-i ^ JL-(JL 
Zj-(Zji,...,zjn) , dCk-{d^> dkn' 

( ^ S Ï K Ç , ^
 (,iltSry 

Then z4- can be interpreted as the r x r matrix 

a 
(2.21) D = [Djk] (« ' £) d<j,k<r), 

of GL„-invariants Dyt = A (/*,*) associated with the coordinate functions P^: r\ —•» 77̂  
on F r x r ; classically, theDy* are known as Polarization operators (cf. [21], pp. 110, 207; 
[24], p. 5). 
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COROLLARY 2.22. The mapping P-^dP = P(D), D = z | - is GLr-equivariant, i.e., 

(2.23) dAd{h)P = (A 0 A )(h) odpoX (h)'1 (h e GLr)\ 

in particular, dp is GLr x GLn-invariant if and only ifP is an Ad GLr-invariant in (P(¥rx r). 

To describe Ad GLr-invariants in (P(¥rxr), define { cf}j=x by 

(2.24) det(A - XT) = £(-!)> XjcM(A) (A G F r x r) . 

It is well-known that 

(2.25) c7-(A) = tr(A0---0A)|A/.(Fn), 

and so 

(2.26) c0(A) = /, ci (A) = tr(A),..., cr(A) = det A. 

These Cj are certainly A J GLr-invariant. More generally (cf. [12], §2.1), 

THEOREM 2.27. The polynomials in the subalgebra of &(Frxr) generated by 
c\,..., cr are Ad GLr-invariants, and, when F = C, { Cj}J=l generates freely the algebra 
of all Ad GLr-invariants. 

COROLLARY 2.28. The mapping A : Q —>#g, 

^)fcC) = Ô^i(^|:),...^r(z|-)j/(C), zX ev, 

is a linear isomorphism from ^P(Fr) into the GLr x GLn-invariants in *D(C°°(Frxn), 

C°°(¥rxn x F rxn)), which is surjective when F - C. 

It is instructive to see the connection with classical Cayley determinantal operators 
(cf. [21], p. 113). Denote by A^"^ (•) the minor 

(2.29) K:l& = det 
Zjiki Zjiks 

Zjsh ' ' ' Zjsks 

formed from they'i,... ,js rows and k\,...,ks columns of z G FrXn. The Cayley operators 
^'"Js

k are just the differential operators 

On the other hand, if { e\,..., en} is the usual basis for F", 

Z\ 

> z/, A • • • A zjs = £ Ai ,;. ' l^)^i A • • • A ^ 
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maps FrXn onto AJ(F n), and the Cauchy-Binet theorem exhibits a dual pairing 

( ^ A - A z / . K / . A - ^ ^ ^ X ) 
(2-31) = £ Ki^Kiso 

ki<-<ks 

for A'(Fn) x Aj(¥n) ([21], pp. 79,82). Regarding AJ|;;;£ as a polynomial on F r X r , we thus 
obtain a GL„-invariant differential operator 

(2.32, A;;: ; i(4)= ( eE t<ife,Q;vt( |) 

In view of (2.23), therefore, 

,233) 4lKiM:^4)-
is the GLr x GLrt -invariant differential operator arising from all possible choices of s 
rows fromFrXn. 

3. Group-invariant Taylor series. For the moment, let V be an H x /^-module as in 
the previous section. By a group-invariant Taylor series we shall mean the representation 
of every/ in C°°(V), or a particular H x K submodule of C°°(V), as a sum of polynomi­
als each of which lies in an H x K isotypic component, together with H x A^-invariant 
differential operators exhibiting this decomposition off. The general relation between 
polynomial invariants and the present notion of Taylor series is easily seen, however. For 
if dp is the invariant operator associated in (2.14) with an H x A'-invariant P in P{ V' x V), 

is an equivariant mapping whose range is an H x K-submodule of P̂( V). For suitable V, 
H and K we might hope to recover/, formally at least, as 

/(C) ->»4-o<z> = p(A, 2 ) / (o |< = 0 (/ e r»<v)), 

(3-D / = E ^ ^ / L o (f£C°°(V)), 

where the sum is taken over a linear basis for the space of H x A'-polynomial invariants, 
characters,... in (P(Y x V) and each |P| is a constant. By restricting to polynomial/ in 
(3.1), convergence questions are avoided. 

To exhibit one such basis, let r = (rai,ra2,...) be a partition with £(r) = k, and 
denote by 

(3.2) r ' = (/zi,fx2,...) = (* , . . . ,* ,*- 1 , . . . , * - 1 I , . . - , 1,0,...) 

its conjugate partition (cf. [17], p. 60; [18], p. 2). Now define XT G (P(Frxr) by 

(3 .3 ) X r = detlc^-i+j], T = ( / x i , / i 2 , . . . ) , 
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with the convention that c^-t+j = 0 whenever p,t — / +y" < 0 or \ix• — i +j > £(T). For 
instance, if r = ps — ( 1 , . . . , 1,0,...), then 

s 

(3.4) p5' = (s,0,...), XPa = cs (l<s<r\ 

and so (2.25) ensures that XPs is the character of the fundamental representation of GLr 

on A5(Fr). More generally, XT is the character of the polynomial representation 1^(Fr) 
of GLr\ on the other hand, an inspection of (3.3) shows that 

(3.5) Xr(A) = cr{A)m'Xa(A) = Ar(AfXa(A) (A G F r x r) , 

when £(T) = r and cr = r — mrpr = (mi — W2,..., mr-\ — rar, 0,...). 

THEOREM 3.6. F/x r, I < r < n. Then eachf in fP(Frxn) can be written uniquely as 

(3.7) /^ = Ç/^)^(4K-o ^ ^ 
r/ie swra fte/ng ta&ew over all partitions r y t{r) < r, where h{r) is the Hook-Length 

KT) = n (^+1 (r ) -7) ! / n ( ^ - w; +7 - 0 
7=1 / K; 

of the partition r. 

COROLLARY 3.8. The set 

(3.9) {^(^K = o : ^ G f P ( F r X n ) 

w //ze unique irreducible GLr x GLn-submodule o/^P(Frxn) isomorphic to 1^(Fn) 0 

To identify (3.9), denote by Z?5 the triangular subgroup of GLS having zero entries 
below the diagonal, and by Ns its subgroup whose diagonal entries are all 1. Let A7, IT be 
the representation 

(A W ) ( z ) = fth'z), (7r(*y)(z) = f(zk) 

of GLr and GLn respectively on C°°(Frxn). Then the algebra 

2i(F rx") ={fe <P(Frxn) : A'(ft)/ = / , ft G tfr} 

of all ^-invariants is a GL„-module with respect to 7r ; similarly, the algebra 

2WFrx") = {/ G Wrxn) : T T W = / , ft G #„} 

is a GLr-module with respect to either of A and A'. But the only ^-invariants in 1^(Fr) 
are F <j>T with <j>T a highest weight vector, so 

(3.10) 2L(Frxn) = ©E^(F") (l(r) < r), 
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as a GL„-module, while 

(3.11) (Pu<frr*tt)^®'E'K(rr) {l(T)<r), 
T 

is a GLr-module. Now set 

(3.12) <DT(jc) = A!(;c)m,~m2 • • • Ar_i(jt)m-'-m'Arto
mr (x G F r x r) , 

where r = (m\9m2,...) and Ay is the principal minor A};;;*. Thus we can and shall regard 
O r as a polynomial on F rx r and F r x n , r < n. In fact, O r is a character of #r, just as XT 

was a character of GLr, since 

(3.13) A'(Z?)Or = Or(/7)Or, TT(£)OT - Or(fc)Or. 

On the other hand, the pull-back O r o 7 is a GL„-invariant P in !P(Frxn xF r X") having 
the additional semi-invariance property 

(3.14) P{b\z,b'20 = <*>r(bib2)P(zA) (bub2 G Br); 

in fact, by the bitriangular decomposition for FrXr ([21], p. 369), the O r are a linear basis 
for such invariants. This leads us to the second Taylor series expansion. 

THEOREM 3.15. Fix r, 1 < r < n. Then eachf in ^PL(Frx") can be written uniquely 
as 

(3.16) / ^ Ç / ^ ^ f H - fe<€F"«), 
the sum being taken over all partitions r, t (r) < r. 

COROLLARY 3.17. 77z£ unique irreducible GLn-submodule ofPtiFrxn) isomorphic 
to 1^(F n) is characterized by either of 

(a) {^(z|yu:/e^Frx")}' 
(3.18) l S ' 

(b) TT{Frxn) = {/ 6 Wxn) : A'(£)/ = <&T(W, b G Br). 

Both (3.6) and (3.15) reduce to the classical Taylor series (1.3) when r = 1 since 

and O r (£) = Cjm for z, £ in Fn . In particular, by Euler's theorem or direct calculation, 

when £ = m, while 

when £ ^ m. The extension of these last results to arbitrary r, 1 < r < n, will play a 
key role in establishing the generalization of (1.3) to (3.6) and (3.15) and of (1.5) to the 
corollaries (3.8) and (3.17). 
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THEOREM 3.19. Fix r and letl, r be arbitrary partitions of length at most r. Then, 
for any z, £ in F r x n , n > r, 

(3.20) X7 [z | ) < D T | c = o = 4>7 (z | ) 0 > r | c = 0 = h{r)^(z) 

when 7 = r, w/w/e 

<3-2i> ^ ( z | K - o = o = ^ ( z | h u 
w/zerc 7 / T . 

Perhaps not surprisingly in view of the earlier comments on the classical case, the 
proof of (3.19) hinges on the extension of Euler's operator E — E / O ^ t 0 ^bitrary r-
This role will be played by the Capelli operator Hr to which we turn next before beginning 
the proofs of the series expansions and their corollaries. 

4. The Capelli Identities. Although the Capelli operator Hr and Capelli identities 
([1]; [2]; [3]) have long been known to be a cornerstone of polynomial invariant theory 
(cf., for instance, [19]; [21]; [24]), their group-theoretic meaning has emerged only re­
cently ([5]; [11]; [15]). It was Howe's work that made clear the role of Capelli operators 
as generalized Euler operators on polynomials of matrix argument. 

Let E — [Ejk] = C |f by the r x r-matrix of operators on C°°(Frxn) defined by 

(4.1) £ * / = ( d | - ) / ( 0 ( i<M<r) . 

Then 

(4.2) dX': A = [ajk] —+ tr(AEf) = £ ajkEjk (A G F rXr\ 

is a faithful representation of the Lie algebra of GLr, and 

(4.3) { / > ( c | | - ) : P € ! P ( F " " ) ) 

is a faithful realization of the universal enveloping algebra U(GLr) of GLr as the algebra 
of differential operators on C°°(Frx"). In addition, since 

(4.5) P(C | r ) / = &>/)(C,z)|z=c fcC G Frxn), 

contact with Howe's theory is made through the following result. 
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THEOREM 4.6 (À LA HARISH-CHANDRA). The mapping P —• P(E) is a linear bijec-
tionfrom ^P(Frxr) onto a realization ofU(GLr) as differential operators that satisfy 

(i) Ad(h): P(E)—y A (h)'1 o P(E) o A (h) (h G GLr), 

(if) 7T(k) o P(E) = P(E) o Tr(ifc) (it G GLn), 

on the GLr x GLn-module C°°(¥rxn\ 

PROOF. Property (i) follows from Corollary 2.22 while property (ii) is an immediate 
consequence of Theorem 2.13 and 4.5. • 

The center of this realization of U(GLr) consists precisely of all operators 

P(E) = P([Ejk]), Ejk = (0 
da) 

with P an Ad GLr-invariant in !P(Frxr), just as the GLr x GL„-invariant differential op­
erators were given by 

P(D) = P([Djk\), Djk = (zj - ) 

for such P, the crucial difference being that the Djk all commute whereas the Ejk do not. 
Ingenious modifications introducted by Capelli enabled him to derive the analogue of 
corollary of (2.28) for the non-commuting Ejk (cf. [2], p. 19; [4]; [21], p. 116). With the 
convention that the determinant det[Ap^] of an I x I -matrix of (possibly) non-commuting 
variables is given by 

det[AM] = J2 sgnaAa (i )1 . . .Aa ( r ) r , 
a ESi 

define operators Hr on C°°(frxn) by 

-En+r-l 

(4.7) Hr = det 
E21 

ErX 

En 
E22 + r — 2 

Erl 

EXr 

E2r 

(cf. [19]; [21], p. 117; [24], chap. II, §4). The GLr x GLn-invariance of 

( z\ A • • • A zr 

(cf. (2.32)) ensures that 

Hr = (Cl A • • • A Cr 

% 
A ••• A 

\<k,<-<kr<n VOÇ, / 

d d \ 
— A - - - A — » aci dçJ x^KMiic) l<ki<-<kr<n 

These operators Ejk and Hr are particularly well-adapted to use on Œ*L(Frxn) since 
{Ejk : 1 < j < k < r} and {Ejk : 1 <j<k<r} are bases of faithful realizations of 
Nr and Br respectively. For by (4.2) 

(4.8)(i) 2KF r x n) = {/ G tP(Trxn) : Ejkf = 0, 1 <j < k < r }, 
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and, ifr = (mi,m2,...), 

(4.8)(ii) <PT<rrxn) = {/ G VL(¥rxn) : Erf = mj, \<j<r }. 

F o r / in (Pi(¥rxn), therefore, the only non-zero term in Hrf is the diagonal term 
( n j = 1 ( ^ + r - lj)f. This proves (cf. also [21], p. 256): 

(4. 8)(HI) Hrf = (flimj + r -j)]f (f G %\ 

which is a complete analogue of Euler's result (the case r = 1). 
As a first application of these ideas we give 

PROOF OF THEOREM 3.19. It is convenient to begin with the second equality in (3.20). 
As 

^(z) = O r ( z | - ) o r | c = o (z€F™) 

is an Nr x ^«-invariant such that \'{fjf¥ — Or(Z?)xF, b G Br, there is a constant 6 in 
F such that *F = 0 <DT. To calculate 0, assume first that mr ^ 0. Now, given any / in 
¥{Yrxn\ 

A r ( Z | ) / = ( Z l A . . . A 2 r | | - A - A | ) / ( C ) 

(4-9) = E ài7:kr(z)ni;:J^-)f(o 
l<k,<-<kr<n V°S ' 

l < * i < - < * r < n 

Consequently, when/ = O r , 

(zi A . - -Az r | — A -.-A — JOT =Ar(z)F(0> say. 

But then by (4.8)(iii), 

where r — pr — {m\ — 1, . . . , mr — 1,0,...). This identifies F, and so after mr such 
differentiations, 

f ( 'à'\\mr ( A (m7 + r - / ) ! ] 
(4.io) MZ57) ° ^ > = n, ^ -J Ar(zro>a(o 
with a = T — mrpr and Oa in ^(F(A* 1 ) x n). Repeating this proof successively in 
2>(F ( r-1)xn),..., <P(Fn), we finally obtain 

0T (z^-)0T (C) = /z(r)0T(z). 
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Had mr been 0, the proof would have started at one of these later stages. 
The proof of the equality 

(4.11) Xr (z ^ ) o T = h(r)9Az) (z E Frxn\ 

is much the same. Assume first that mr ^ 0. Then in view of (3.5) and (4.10) 

d' 

J=l (mj-mr + r~j)\) V 3£ / 

Since Oa can be regarded equally as a polynomial on f(r~l">xn^ 0r one on ¥rxn that is 
independent of the last row of variables, the value of Xa (Z))OCT will be the same whether 
Xa, a = (m\ — rar,... ,mr_i — m r ,0,...), is constructed via 3.3 as a polynomial on 
F (r-Dx^-D or on F r x r . But in the first of these cases, 

Xa(x) = Ar^(x)mr-'-mrXè(x) (JC e¥{r-l)x(r-l)l 

where 6 — (m\ — mr-\,...,rar_2 — rar_i, 0,...). Thus the same induction argument 
proceeds as before, yielding (4.11). Had mr been 0, the proof would again have started 
at one of the later stages of the induction proof. • 

PROOF OF COROLLARY 3.8. By Nr x £„-invariance, each of 

is of the form 07C»T(z) for some 91 in F. Thus for any b — diag(fi,..., tr) in Br, 

(4-i2) (^r-"(|;rMW)*r^0=»1!...«r!ft,«r(z),D=z|. 
and 

(4 
3 \mi / 3 

•13) ( ^ r ) • • • ( ^ ) O7(feD)OT|c=0 = mi!...mr!Ô7OT(z). 

Now suppose 7 / T . Then by (3.13), 

y - y ^ ( M )u_o=° (AeFrxr)' 
while by 3.3 and 2.33, 

y - y x^M)u....o=° ^ ^ 
Hence the term 07 in both of 4.12 and 4.13 must be zero when 7 ^ r. This establishes 
the corollary. • 
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We now have everything needed to establish Theorem 3.6 and its corollary. 

PROOF OF 3.6 AND 3.8. Set 

(4.14) QT= ( x r ( z | - ) / | ^ o : / G ^ ( F ^ ) } . 

By (3.20) and the invariance of XT(z&), this is a GLr x GL„-module containing O r . 
Now with respect to Br x Bn, O r is a GLr x GLn-highest weight vector of weight r , 
and so the unique irreducible GLr x GL„-module in &(Frxn) of weight r , i.e., the one 
isomorphic to cUr(¥

r) ® 1^(Fn), has O r as a highest weight vector. Hence, QT contains 
this copy of ^ ( F r ) <g) 1^(Fn). But then by Corollary 3.11, QT contains no copy of any 
other 1^(Fr) ® 0^(Fn), and so QT is the irreducible GLr x GL„-sub-module of 4>(Frx") 
isomorphic to 1^(Fr) (g> 1^-(Fn). This proves Corollary 3.8. But by invariance, 

(4.15) Xr(^)\ =Kr)f(z) 

for any/ in <2T • Hence 

m = E ir^xr (z^VI (/ e <P(Frxnj)9 
r HT) V dC/ k=o v 7 

completing the proof of 3.6. • 
One further result, the analogue of 3.19 and 4.15, is needed before Theorem 3.15 and 

its corollary can be established. 

THEOREM 4.16. For partitions r, 7 of length at most r 

& (7
 d'\f\ _ jh(T)f(z), T=l 

*H zàcA=o-(o, TÏI 
whenever f is in jP7(F

rx"). 

PROOF. By the same equivariance argument as in the Proof of Corollary 3.6 the left-
hand side of 4.16 will be zero for a l l / in îP7(F

rxn) unless r — 1. Thus from the outset 
we consider only/ in ^PT(Frxn), I (r) = r. Now by 4.9, 

(4.17) Ar(z | - W ) = E ^kM)Fkl...kr(C) 
V "S ' \<ki<-<kr<n 

and 

(4.18) E A^;:,r(C)^,..^(C) = (Hrf)(0 
\<ki<-<kr<n 

where 

(4.i9) Fk,..kr(o = ^k:kr(^)f(o-
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But each polynomial Fkx...kr is in fPT_pr(F
rxn). Indeed 

for any/ in !P(Frx") and all 1 < j < k < s; on the other hand, 

«4i(£)w-«4i(£)(«i£)/w> 
"!,i(i)/+E»"i;:'«, ( | y 

Thus by 4.8, the Fku...kr in 4.19 belong to !PT_pr(F
rX"). The theorem now follows imme­

diately from 4.10 using virtually the same induction argument as in the proof of 3.19. • 

PROOF OF 3.15 AND 3.17. Set 

^HfM l<=0 
:fe(PL(Frxn) . 

By 3.20 and the invariance of Or(z^-), this ^ is a GLn-module containing O r . Now with 
respect toBn, O r is a GLn-highest weight vector of weight r , and so both % and % must 
contain the only copy of 1/T(JFrxn) in 2>L(Frxn). Theorem 4.16 thus ensures that both % 
and % must coincide with this copy, since fP/,(Frxn) = £T 'Kfl7rxn)- This completes the 
proof of the Corollary 3.17. But then by 4.16 again, 

completing the Proof of 3.15. • 
To complete this section we note a generalization of the Capelli Identity for Hr posed 

by Turnbull ([21], p. 119) as an exercise: if the term £7- in £i A • • • A £r is replaced by r/, 
then the constant (r — j — 1) is omitted from the/A diagonal entry in Hr, i.e., 

( C i A - - - A 7 7 A - - - A C r 
a d 

— A - - - A — A 

r £ n + r - l 

(4.20) 

= det 

Aw) 

(̂  ! air) ••• (^w) ••• H è ) 
Eri Erj 

This result follows easily from Theorem 4.9 by differentiating the Capelli identity for Hr 

with respect to (77 4-). Such generalizations as 4.20 are very useful in practice. 
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5. Clebsch-Gordan decompostions and Taylor series. With the specific realiza­
tion of VT (F n) as the space % of polynomial functions on F r x n , the Taylor series 3.6 pro­
vides a series implementing the GLn-isotypic decomposition of the space fP(F n, VT (F ")). 
Indeed, by 3.18, fP(Fn, %) can be identified first with the GL„-submodule of <P(Fn x 
Frxn) of all F = F(x, £ ) satisfying the Homogeneity condition 

(5.1) F(x, b'Z ) = O r (b)F(x, O (be Br), 

and thence with a GL„-submodule of 2>(F(r+1)xn), after identifying Fn x ¥rxn with 
F (r+1)Xw. The Taylor series 3.6 will be applied to this last sub-module. Independently of 
these identifications, however, the usual Taylor series expansion applied to fP(Fn, (PT) ~ 
&(Fn)®fPT gives 

0 0 1 / i d \ m i 

where 

{ H r ) W / U :/^ C°°(F",^)[ ^ 2>m(F")® 2>r. 

From this the GLn-isotypic decomposition of (P(¥n, %) follows. For there is a Clebsch-
Gordan type decomposition 

(5.2) <pm(vn) ® W ) ~ eE^C7"). 

with sum taken over all partitions p = (/xi, /X2,...)» ^ (M) = ^ (T) + 1, satisfying 

(i) Pi >/«i >M2 > •'• > mr >/xr+i, r = £ ( r ) , 
^ ' / " \ i i i i 

(n) | / i | = | T | + m 

(cf. [25]); and so in general, 

(5.4) ¥<Fn,2T) = ®Y,Wi)> 

summing over all /x, £(/i) < £(r) + 1, satisfying just 5.3(i). Hence, on restricting the 
Taylor series 3.7 we obtain 

THEOREM 5.5. Fix a partition r = (rai,m2,...)> £(r) = r. Then each f = f(z) in 
fP(Fn, 1PT) caw &£ written uniquely as 

(5.6) /W = Ç ^ M 4 K = o ' ^F<->*«, 

£/ie sum being taken over all partitions p, = (/xi, /i2» • • •)» ^ (AO < r + 1» satisfying 

(5.7) /ii > mi > /i2 > • • • > mr > / i r + 1 . 
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COROLLARY 5.8. The set 

(5-9) [x^z^yi^-.fenFW) 

is the unique irreducible GLn-module in îP(Fn, (Pr) isomorphic to 1^(FW). 

The GLn-module 5.12 can be specifically identified within ^p(F(r+1)xn) using 'Stan­
dard Monomial' Theory (cf. [10]; [14],...). 

Let 7 = (l\, li,...) be a partition of length a. A Young Tableau of shape 7 con­
sists of 171 positive integers, not necessarily all distinct, arranged in a flush-left rows of 
successive length t\, I2,..., £a, so that, for example, 

(5.10) 

are all Young Tableaux of shape (3,2,0,...) ([10]). Any such tableau is said to be a 
Standard Young tableau when the entries in each row are non-decreasing, but the entries 
in each column are strictly increasing as one proceeds from the upper left hand corner; 
in 5.10, for instance, the first and third tableaux are standard, whereas the second is not. 
To each pair [a \ (5 ] of standard Young tableaux 

"1 1 1 '3 2 1" 1 1 4" 
2 2 ? 4 3 ' 3 2 

(5.11) [oc | / 3 ] 

J\ 

Ua 
h 

Vl 

n 

- (£i,^2>---)> ^(7) = o, there corresponds the 'Standard 
n) defined as the product 

having the same shape 7 
MonomiaV 0 ( a ^ } in 2>(F5 

(5. i2) o(a^)(Z) = < : i ( ^ ; : ^ ( z ) . . . (ze vsxn), 
of minors specified by the t\ successive pairs of columns of a, ^ . To be well-defined 
the entries of a must all be taken from { 1, . . . , s), while those of 0 must be taken from 
{ 1, . . . , n} ; all such standard Young tableaux of shape 7 will be denoted by K̂ 5) and Y^\ 
respectively. Thus, if a G Y^]', (3 G Y^\ and 

then 

otj = card{y G a }, (5k = card{ k G /3 } , 

A'(*)<*W) = (*îï • • - W W ) , ^)<*W) = (4; • • -t±)<t>(a,p 

for all diagonal matrices b G Bs,c G Bn. The pair [(oc\, ...,ocs) \ ((5\,..., (3n)] is known 
as the Content of [a \ (3] and the Weight of 0 ( a ^) . The O r defined earlier in 3.12 
corresponds to 0 ( a ^) with a, f5 both being the Canonical standard Young tableau 

(5.13) 

1 
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of shape r = (mi, W2,...), I (r) = r, and content [(mi,..., mr) | (mi, . . . , m^)] (cf. [9]). 
The canonical standard Young tableau 5.13 of shape r will be denoted by r . For such r , 

(5.14) {®(ffïT) : a G î f } Ç 2WFrxn) , { O ^ ) : f3 G if }} Ç (PL(¥rxn). 

We can now begin the identification of 5.9. A standard Young tableau a with entries 
taken from { l , . . . , r + l } , 1 < r < n, is said to Augment the canonical standard Young 
tableau r , l(r) — r, when a consists of r together with additional entries all having the 
value r + 1. For instance, 

• 1 1 1 3 ] 
2 3 

. 3 J 

both augment the canonical standard Young tableau corresponding to (3,1,0,...); their 
respective shapes (5,2,0,...), (4,2,1,0,...) satisfy 5.3 with m = 3. More generally, 
there is a 1-1 correspondence between the standard Young tableaux of shape \i — 
(/ii, /i2» • • •) augmenting the canonical standard Young tableau of shape r = (mi, m2,...) 
and the partitions \i satisfying 5.3(i). Given such r and /x, let a be the corresponding 
standard Young tableau, and set m = card{ (r + 1) G a } . Then by writing z = (x, £ ) for 
an element of F " x F r x " , regarding x as the (r + l)r/l-row, we deduce that 

o(a, / i)(Ax,^ ,o = AwoT(t)0(a,M)(jf,o (Xef.be Br\ 

since 0(a>/i) has weight [(mi,... ,mr,m) | 0*i,/X2,...)L Hence <E>(â ) G ^ ( F " ) ® fPr; 
in fact, since 0 ( a / i ) is a highest weight vector having weight [i (cf. 5.14), 0(a>/i) must 
be the essentially unique highest weight vector in the single irreducible GLn-submodule 
of 2>m(F n) ® % isomorphic to % (F n). On the other hand, as an element of !P(F (r+1)xw), 
0(a>M) satisfies 

Together these specify (5.19). 
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