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O N SUBSPACES OF REPLETE A N D M E A S U R E 
REPLETE SPACES 

BY 

P E T E R G R A S S I 

ABSTRACT. The concepts of repleteness and more generally 
measure repleteness are investigated for set-theoretic lattices on 
specific subspaces of a lattice space. These general results are then 
applied to specific topological spaces, and we obtain as special cases 
some known theorems as well as some new results concerning for 
example, <* -completeness, realcompactness, measure compactness 
and Borel-measure compactness. 

The notion of repleteness, and more generally measure repleteness, are 
investigated in this paper for set-theoretic lattices on certain subspaces of a 
space X to which topologically related properties can be applied. We obtain as 
special cases some known results as well as some new results concerning for 
example, a-completeness, realcompactness, measure-compactness and Borel-
measure compactness. 

1. Introduction. Measure replete spaces have been investigated in special 
topological settings by Varadarajan [14], Moran [11], Gardner [7], and others, 
and in the abstract lattice setting by Bachman and Sultan [4], and Szeto [13]. In 
this paper, we let L be a lattice of subsets of the set X such that L is measure 
replete and we investigate measure repleteness with respect to various lattices 
of subsets of a subset E of X. In particular, we establish in Section 3 two 
general theorems, establishing under suitable conditions, the measure replete
ness of a variety of lattices for certain subsets E of X. Special cases of these 
theorems in topological settings yield results of Kirk [10] and Moran [11] as 
well as new Borel-measure compact results for analytic spaces. 

In Section 4 we turn to the special case of replete lattices and here a further 
improvement of one of the general theorems of Section 3 is possible. We then 
consider some equivalent characterizations of repleteness under suitable condi
tions for the lattice on X. Special cases of these results are given in topological 
spaces leading to theorems of Mrôwka [12], Frolik [6] and Wenjen [16] 
pertaining to realcompactness while new results concerning a -completeness are 
obtained. 
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We begin by introducing the notations that will be used throughout this 
paper; the lattice terminology that will be used is standard and can be found, 
for example, in [1], [2], [13], and [15]. 

2. Notation and definitions. We use the same lattice definitions used in [2] 
and we assume that the reader is familiar with the results of that paper. 
Throughout this paper L will denote a lattice of subsets of an abstract set X 
such that the empty set and X are lattice elements. T L (resp. 6L) is the lattice 
obtained from L by taking arbitrary (resp. countable) intersections of elements 
of L, and s(L) will be the Souslin sets obtained from L. A(L) and a(L) denote 
the algebra and cr-algebra respectively generated by L. If X is a topological 
space, F x or F(X) will be the closed sets of X and z x or z(X), the lattice of 
zero sets of continuous functions on X. MR(L) is the set of all finitely additive 
L-regular measures defined on A(L) while Mg(L) and M R ( L ) are subsets of 
MR(L) consisting of measures which are also a-smooth and r-smooth, respec
tively. IR(L) is the subset of MR(L) consisting of 0-1 valued L-regular 
measures. IR(L) is defined analogously. Without loss of generality, we will 
assume that all measures under consideration are non-negative. Also, if JUL G 
Mg(L), fx can be uniquely extended to a(L) and is ôL-regular there. We will 
assume in this case that /UL is defined on o-(L). 

S(jm) will denote the support of the measure JLL. If S ( / U L ) ^ 0 for each 
JLLGMR(L), fx^O (resp. jmelg(L)) then L is said to be measure replete (resp. 
replete). If X is a Tychonoff space and if z x is measure replete (resp. replete) 
then X is called measure compact (resp. realcompact). If X is a T± topological 
space and if F x is measure replete (resp. replete) then X is called Borel-
measure compact [7] (resp. a-complete [5]). 

We let W(A) = {jULGlR(L)||ui(A) = l , AeA(L)}and W(L) = {W(L) | L e L } . 
The topology on IR(L) will always be rW(L) (i.e., the Wallman topology). 
Similarly, W<T(A)= W(A)nIg(L), Ae<r(L), and W^L) = {W^L) | L e L } . We 
note the well-known result that if L is a separating and disjunctive lattice on X 
then L is replete iff IR(L) = X where X is identified with its homeomorphic 
image under the mapping x —> JLLX on which X is given the TL topology and 
IR (L) the Wallman topology restricted. 

3. Measure replete subspaces. In this section we obtain two theorems which 
generalize results of Moran [11] and Kirk [10] on measure repleteness of 
certain subspaces of particular topological spaces. We are also able to obtain 
some new results concerning measure repleteness on specific subspaces of an 
analytic space (i.e., the continuous image of a complete, separable, metric 
space) (see [9] for details). 

We begin with the following lemmas, the proofs of which may be found in 
Szeto [13]. 
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LEMMA 3.1. If JUL G M R ( L ) where L is a lattice of subsets of the set X and if 
T ( J L L ) - { X G X | ifxeL', |x(L')>0, Let} then S(JUL) = T(JX), 

Remark. The above lemma is true even if JLL is not L-regular. 

LEMMA 3.2. Suppose L is a 8-lattice of subsets of the set X. Then M£(L) = 
MR(L) iffS(ii)^0 for all ^eMR(L) ( ^ 0 ) . 

LEMMA 3.3. Let L be a 8-lattice of subsets of the set X. Then JLL G MR(L) i/f 

jLt*(n« A*) = inf fx(La) whenever L a 1 , L^ G L . 

Using the above results we are now able to state and prove our first theorem. 

THEOREM 3.1. Let L be a 8-lattice of subsets of the set X such that <r(L) <= s(L) 
and /et E G O - ( L ) . 1/ L is measure replete then LE is measure replete where LE is 
any lattice of subsets of E such that L H E c LE <= T(L H E) . 

Proof. Let |uGMg(LE), fx^O. Define i/(A) = JUL(AHE) where AGCT(L) . 

Clearly, v is or-smooth on cr(L). Since L is a ô-lattice and o-(L)<=s(L), 
V G M R ( L ) . Therefore, S(v)^ 0 . From Lemma 3.2 we see that i /eM£(L). 

Suppose S ( i / ) H E = 0 . If S ( i / ) = n a ^ where i / (Lj = v(X) and L a e L , 
then it follows from Lemma 3.3 that v*(S(v)) = v(X), or equivalently, 
v*(S(v)') = 0. Thus i/(E) = |UL(E) = 0 which contradicts our assumption that 
jLt^O. Let xeS(v)HE and let xeE-LE, L E G L E . Then E-LE = {J^L'^HE, 
L 3 G L. Therefore, x G L 'H E C E - LE for some L G L. Thus JUL (E - LE) > 
JUL(L'HE) = v(L'). Since xeS(v ) , it follows from Lemma 3.1 that v(L ' )>0. 
Therefore XGS(JLL). D 

We obtain the following corollary due to Moran [11]. 

COROLLARY 3.1. Suppose X is a Tychonoff space. If X is measure compact 
then any Baire set of X is measure compact 

Proof. Let L = z x and LE = zE where Eea(zx). • 

As an additional corollary we have the following new result. 

COROLLARY 3.2. If X is an analytic space which is Borel-measure compact 
then any Borel set of X is measure compact. 

Proof. Let L = F x and let LE = T(L n E) = FE where E G CT(FX). • 

The following lemma is a direct consequence of a general extension theorem 
due to Bachman and Sultan (see [3]). 

LEMMA 3.4. Suppose L is a separating and disjunctive lattice of subsets of the 
set X. Then any V G M R ( L ) can be extended to P G M R ( T L ) and p(r\aLa) = 
inf p ( L j , L a e L , La [ . 
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Using this lemma and our previous results we obtain a theorem similar to 
Theorem 3.1. 

THEOREM 3.2. Let EerL, where L is a separating, disjunctive and 8-lattice of 
subsets of the set X such that <r(L) <= s(L). Assume L H E c L E c T(L n E). Then 
L measure replete implies LE is measure replete. 

Proof. Let /xeMg(LE) , JLL^O. Define v(A) = JUL(A HE) where A e a ( L ) . 
Arguing exactly as in the proof of Theorem 3.1 we obtain that i /eMJ(L). 
Using Lemma 3.4, extend */ to p e M ^ ( r L ) . It S(v)nE=0 then p(S(i/)) = 
p(X) and thus p(E) = 0. Since E = (\ La, La e L, p(E) = inf p ( L j = inf v(Lj = 
(JL(E) which implies that /x = 0, a contradiction. Proceeding as in the proof of 
Theorem 3.1 completes the proof. • 

COROLLARY 3.3 (Kirk [10]). Suppose X is a Tychonoff space. If X is measure 
compact then any closed subspace of X is measure compact. 

Proof. Take L = zx . If we let E e TZX = F x and LE = zE the result follows 
from the above theorem. • 

We have another new result concerning Borel-measure compactness of a 
closed subspace of a Borel-measure compact analytic space. 

COROLLARY 3.4. Any closed subspace of a Borel-measure compact and 
analytic space is Borel-measure compact. 

Proof. Let L = F x and LE = FE where E e Fx . • 

4. Repleteness. We now consider the concept of repleteness and are able to 
obtain a theorem stronger than Theorem 3.2 of the last section for this specific 
case. We will then consider and show some equivalent characterizations of 
repleteness for specific types of lattices. 

The following theorem improves Theorem 3.2 with respect to repleteness. 

THEOREM 4.1. Suppose L is a 8- and disjunctive lattice of subsets of X such 
that cr(L) <= s(L) and L D E a LE <= T(L H E) where E is G8-closed with respect to 
rL. If L is replete then LE is replete. 

Proof. Let JULG!5(LE) . If v(A) = (JL(A HE), Ae<r(L), then ve lg (L) and 
v = JULX on L since L is disjunctive. Suppose x<£E where E is G s -closed. Then 
there exists a set G = fX=i On, Of

ne T L such that x e G and GHE = 0 . Since 
L is disjunctive, x^Ln^L'nc:On for all n, where î^, I ^ e L . Therefore, if 
L = Hn=i Ln, then v(L) = 0. Since v is L-regular, v(L) = 1 for some L G L and 
L c L'. Thus X G L ' which is a contradiction. Therefore, x G S(V) H E. Continu
ing as in the proof of Theorem 3.1 we see that S(JLL)^ 0 . • 

The following two lemmas can be easily proved and hence their proofs are 
omitted. 
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LEMMA 4.1. Suppose h is a separating and disjunctive lattice of subsets of X. 
Then | X = i An = 0 iff fl"=i W ( A J c I R ( L ) - X where A„eA(L) . 

LEMMA 4.2. W „ ( n : = i A . ) = I X - i WCT(An), A„e<r(L). 

LEMMA 4.3. If L, is a normal, separating, disjunctive, and countably paracom-
pact lattice of subsets of X and if f |n=i WQLjc: I R (L ) -X , I ^ G L , then there 
exists K 0 G Z ( I R ( L ) ) such that fln=i W(Ln)c=K0c=IR(L)-X. 

Proof. Let fln=i W(L r i)c=IR(L)-X where L H G L . From Lemma 4.1, 
r in=i£n = 0 - Since L is countably paracompact, Hn=i W(Ln)c: 
n : - i W ( 4 ) ' c l R ( L ) - X where Lnc=Ln, n : = i ^ = 0 and L n ^ L for 
all n. But Hn=i W(L„) is compact, since L is normal and hence IR(L) is 
compact Hausdorrf. Therefore, there exists a compact G8 set Kn such that 
( T = i WiL») c *Tn c W O J ' for any n. (See Halmos [8], p. 218 for details.) Let 

LEMMA 4.4. If h is a lattice of subsets of X and if Z G Z ( I R ( L ) ) then 
Z=nZ=iW(Ln)',Lnel. 

Proof. Follows immediately from the fact that Z is a compact, G s set in 
I R ( L ) . • 

In what follows, X s denotes the Gs-closure of X in IR(L). 

LEMMA 4.5. If L is a separating and disjunctive lattice of subsets of X then 
Ig(L)c=Xô. 

Proof. Suppose JU, e I R (L) and IJL£X8. Then there exists a set G = Hn=i On» 
O n e rW(L) , such that JX G G and G H X = 0 . Let O n = U« W(Lin))\ Lin)GL. 
Then JULG H" = 1 W(Lln))'<= G c = I R ( L ) - X and so by Lemma 4.1, f l n= iU n ) ' = 
0 . Since IL(L(£)') = 1 for all n we have a contradiction. D 

LEMMA 4.6. J/ L is a lattice of subsets of X which is separating, disjunctive, 
normal, and countably paracompact, then Ig (L) = X s . 

Proof. We shall prove that X s c I £ ( L ) . Suppose JLLGX8 and JLL G 

I R (L) - I R (L) . Then there exists I^eL, L» I 0 such that ^(1^) = 1 for all n. 
Therefore /UL G f|n=i W(L n )c=I R (L) -X From Lemma 4.3 ILL G fln=i W ( L J c : 
^ O ^ ^ R C L ) —X for some K0ez(IR(V)). But K0 is a G§ set in IR(L) which 
contradicts the assumption that JUL G X S . D 

We relate the concepts of repleteness and the G8 -closure of a set X through 
the following theorem. 

THEOREM 4.2. Suppose L is a separating, disjunctive, normal, and countably 
paracompact lattice of subsets of X. Then L is replete iff X is Gs-closed in IR(L). 
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Proof. L is a replete iff Ig(L) = X The result follows immediately from 
Lemma 4.6. • 

COROLLARY 4.1 (Mrôwka [12]). Suppose X is a Tychonoff space. Then X is 
realcompact iff X is G8-closed in 0X, the Stone-Cech compactification of X. 

Proof. Take L = zx . Then IR(L) = /3X • 

Theorem 4.2 gives us the following additional new application. 

COROLLARY 4.2. Suppose X is a Tx topological space which is normal and 
countably paracompact. Then X is a-complete iff X is Gô-closed in wX, the 
Wallman compactification of X. 

Proof. Take L = F x . Then wX = IR (L). • 

We now show that under the hypotheses of Theorem 4.2 repleteness is 
equivalent to expressing X as an arbitrary intersection of complements of zero 
sets or as an arbitrary intersection of F,,, sets in IR(L). We begin with the 
following lemma. 

LEMMA 4.7. Suppose L is a separating and disjunctive lattice of subsets of a set 
X. If X= n « ^ « where each Fa is an F^ set in IR(L) then L is replete. 

Proof. If X= Hoc Fee where each F a is an FCT set, then I R ( L ) - X = \JuK-
Arguing as in the proof of Lemma 4.5, we see that if (JL G I R ( L ) - X and hence 
lxeF'a for some a, then JUL G fln=i W(L^)czF' a cI R (L)-X where L^eJL from 
which it follows that I£(L) = X D 

THEOREM 4.3. Suppose L is a separating, disjunctive, normal, and countably 
paracompact lattice of subsets of X. Then L is replete iff X= f l a Z « where 
ZaGz(IR(L)). 

Proof. Since each Z^ is an F^ set it follows from Lemma 4.7 that L is 
replete. Conversely, suppose L is replete. Let JLL e I R ( L ) - X and let L„ e L be 
such that Ln I 0 and ix(Ln) = l for all n. Then ^e f|n=i W ( L n ) c : I R ( L ) - X 
From Lemma 4.3 there exists Z^ G Z ( I R ( L ) ) such that JUL G Hn=i W(Ln)c:ZfJL <= 
I R ( L ) - X Thus X c Ç\^Z^ where JLL runs over I R ( L ) - X But clearly J R (L ) -
X c U . Z ^ and hence X= f l ^ Z ; . • 

COROLLARY 4.3 (Frolik [6]). Suppose X is a Tychonoff space. Then X is 
realcompact iff X= n « Z « where each Z a is a zero set in ($X. 

Proof. Again take L = zx. • 

COROLLARY 4.4. Suppose X is a Ti topological space which is normal and 
countably paracompact. Then X is a-complete iff X= f l a ^ Z a GZWX. 

Proof. Again let L = F x . • 
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THEOREM 4.4. Suppose h is a separating, disjunctive, normal, and countably 
paracompact lattice of subsets of X. Then L is replete iff X= fla^W where each 
F a is an F^ set in IR(L). 

Proof. Follows immediately from Lemma 4.7 and Theorem 4.3. • 

COROLLARY 4.5 (Wenjen [16]). Suppose X is Tychonoff space. Then X is 
realcompact iff X=Ç\OLFOL where each F a is an F^ set in 0X. 

Proof. Let L = z x in Theorem 4.4. • 

If we take L = F x in Theorem 4.4, we obtain our final new result. 

COROLLARY 4.6. Suppose X is a Tx topological space which is normal and 
countably paracompact. Then X is a-complete iffX= Ha-fa where each F a is an 
FCT set in wX. 
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