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SYMMETRIES AND THE INVERSE PROBLEM
OF LAGRANGIAN DYNAMICS FOR LINEAR SYSTEMS
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Abstract

We discuss general, time-dependent, linear systems of second-order ordinary differential
equations. A study is made of the similarities and discrepancies between the inverse
problem of Lagrangian mechanics on the one hand, and the search for linear dynamical
symmetries on the other hand.

1. Introduction

We intend to discuss certain aspects of the search for dynamical symmetries of
linear systems of second-order ordinary differential equations, particularly in
relation to possible connections and analogies with the so-called inverse problem
of Lagrangian mechanics for such systems.

The motivation for this paper is founded on a previous one, [8], in which we
were able to disentangle a connection between the above mentioned inverse
problem and the construction of quadratic first integrals for linear systems. Both
of these problems can be viewed as a search for a time-dependent multiplier
matrix and the observations made in [8] may roughly be summarized as follows.
First of all, we can identify in a rather natural way some additional restrictions on
the form of quadratic first integrals which automatically bring us to an interesting
special case where a sufficiency criterion for existence of a Lagrangian is satisfied.
Secondly, we can reformulate the general question of constructing quadratic
integrals in such a way that the equations exhibit their deviation from the
previous case. The special feature of this reformulated problem is that all
coefficients appearing in the matrix differential equations now are expressed in

'instituut voor Theoretische Mechanica. Rijksuniversiteit Gent, Krijgslaan 281 S-9, B-9000 Gent,
Belgium.
© Copyright Australian Mathematical Society 1983, Serial-fee code 0334-2700/83.

232

https://doi.org/10.1017/S0334270000004033 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004033


121 Symmetries and the inverse problem 233

terms of the quantities which play a dominant role in the inverse problem of
Lagrangian mechanics. The reformulated equations therefore are believed to be of
particular interest in cases where a Lagrangian exists. More details about these
observations will be recalled below.

It is well known that in the case of Lagrangian systems there is a duality
between symmetries and first integrals which is provided by Noether's theorem. It
is therefore not unreasonable to think that similar features should be observable
with respect to the search for linear symmetries of the differential equations.
Establishing these features is the object of the present paper. Since we do not in
general require that the system be derivable from a variational principle, it is clear
that a separate investigation of the symmetry aspect of the picture is needed, that
is, the present study cannot amount to a mere transfer of the results in [8] with
the aid of Noether's theorem.

In the next section, we recollect some relevant results from previous papers on
the inverse problem for linear systems and we explicitly mention those equations
from [8], which show the relation with the construction of quadratic first integrals.
Section 3 contains the derivation of the similar occurrences in the study of linear
symmetries. In Section 4 we are able to establish some deeper analogies (as well as
discrepancies) by discussing how the "commutativity cases", introduced in the
context of the inverse problem, also play a distinctive role in the context of linear
point symmetries. We finally treat an example, for which we chose the time-de-
pendent n-dimensional oscillator in order to have a further way of relating the
present discussions to [8].

2. The inverse problem for linear systems

We consider linear systems of second-order equations, written in the form

Q + 2A(t)q + B(t)q = 0, (1)

where A and B are n X n matrices.
The inverse problem of Lagrangian mechanics for systems of type (1) has been

thoroughly studied in [4], [10] and [7]. Concerning the inverse problem for general
second-order systems, we can refer the reader to the jecent contributions [2] and
[6]. We here recall some results of [10] concerning the search for quadratic
Lagrangians for (1).

Multiplying (1) by a non-singular, symmetric matrix V(t) will produce a set of
Euler-Lagrange equations if and only if

VA, (2)
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)7', (3)

where 4>(0) is a known matrix, defined by

$<o) = B - A2 _ j (4)

For V to be symmetric, it is thereby sufficient that we impose the symmetry
condition on its initial value V(t0) = S. Furthermore, the algebraic condition (3)
can be replaced by an infinite set of algebraic conditions on S, namely

S&k\t0)=(S&k\t0))
T, k = 0 ,1 , . ..,oo, (5)

where the matrices <b(k)(t) are recursively defined by

We refer to [10] for a discussion of the relevance of conditions (5). Finally, it is
worth mentioning that the solution of the differential equation (2) with initial
value S is of the form

V=(Q-i)TSSl-\ (7)

where Q(t) satisfies the equation

(l + ASl = 0, B(<0) = / (unit matrix). (8)

The algebraic condition (3) accordingly transforms to

S$<°> = (sW))T (9)

where X for a general matrix X is defined as

X=Q-]Xtt. (10)

Underlying this reformulation of the conditions is the fact that the linear
transformation

* = 0(O.V (11)

takes the given system (1) into its canonical form

y+~$My = 0, (12)

for which a multiplier necessarily has to be constant (see [10]).
In many situations of interest in engineering mechanics the system (1) is

autonomous and the matrices A and B moreover commute. This commutativity
property is sufficient for the existence of a Lagrangian [3]. For time-dependent
systems, it can be generalized to the condition

<D(l>(0 = 0, (13)

which again is sufficient for existence of a solution Kof (2) and (3) (see [10]). Also
of interest are the cases where

= 0, (14)
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for some k > 1, because the infinite set of requirements (5) on 5 then is reduced
to a finite set. In analogy with (13), we referred to (14) as to a /cth-order
commutativity condition. Actually, there is a slightly more general situation in
which (5) reduces to a finite set of conditions, namely when we have an identity of
the form

$(*+1)(0 = 2 M<)*(/)(0 + **(')/. (is)
/=0

as has been shown in the context of general second-order systems in [6].
Let us now briefly talk about the aforementioned connections with the search

for quadratic first integrals of (1). A general quadratic first integral can be written
in the form

F={{qTVq + qTDq + qTZq), (16)

where Kand Z are symmetric matrices. The matrix V(t) thereby need not satisfy
the requirements (2) and (3) of the inverse-problem-multiplier. However, if we
impose on F the supplementary restrictions that V satisfy the differential equation
(2) (and therefore is a candidate for being a multiplier) and that D(l) be of the
form

D = 2ATV, (17)

then the requirement that F be a first integral necessarily implies $ ( l ) (0 = 0, so
that eventually V will be a multiplier for (1) (see [8]). Secondly, if we keep the
general situation, we can always write

V = ATV+ VA + W, (18)

which defines a symmetric matrix W(t). As a result one can show that D in
general must have the form

D = 2ATV- W+ R, (19)

where R(t) is skew-symmetric. The matrices W and R clearly characterize the
deviation from the preceding special case. The interesting thing about them is that
in terms of these matrices, the conditions for F to be a first integral become
equations whose coefficients solely involve the $(0) and <J>(1) which dominate the
inverse problem. If we make use of the reduction embodied in (7) and (8), these
equations become

•= w, w=0^
U=(R-2W) <D(0) - F$<" + transpose, L (20)
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where for a general matrix Y(t) we set

Y(t) = 8r7S2. (21)

For more details about the derivation of (20) and an interesting application, see
[8]. In the next section we now turn to the investigation of linear dynamical
symmetries for (1).

3. Linear dynamical symmetries

Let F denote the second-order vector field governing the given system (1), i.e.

with

Al(t,q,q) = -(2Aq + Bq)'. (22)

A vector field Y is called a symmetry of F if

[r,r]=o, (23)
where [ , ] denotes the Lie-bracket. When one is interested in infinitesimal
transformations leaving the differential equations invariant, one can actually
allow the right-hand side of (23) to be a multiple of F, which amounts to a change
in the parametrization of the integral curves. For many purposes, however, one
can consider symmetries as being equivalent if they differ by a multiple of F, so
that there is no loss of generality in working with the simplest representative of
each class, namely the genuine symmetry generator satisfying (23). For more
details about this, for instance in the context of Noether's theorem, see [9] and [5].
Writing for Y an expression like

y = j i ' — + ' 1 — , (24)
dq' dq1 V '

the symmetry requirement (23) is equivalent to

*' = IV). T{v')=Y{K). (25a, b)

Because of the linearity of our actual system (1), we intend to look now only at
linear symmetries. To be specific, we assume that the components n' form a vector
of the form

fi = -(P(t)q+Q(t)q). (26)

The v', in view of (25a), then necessarily must be of the form

v = (2QA -Q-P)q+ {QB - P)q, (27)
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while (25b) requires P and Q to satisfy the following equations:

Q = 4(QA + AQA - QA2) + 2(QA - AQ)

+ QB- BQ + 2(PA-AP- P), (28)

P = 2(QB + AQB - QAB) + QB - 2AP + PB - BP. (29)

At this point, we may simplify the equations a bit by making transitions of the
type (10) which are related to the reduction of (1) to its canonical form (12). After
some straightforward calculations, it is seen that (28) and (29) are equivalent to
the following equations:

QA~- P) + Q'QW -~$™Q, (30)

P= -2PA + 2QB + Q£+ ?$™ - &®P, (31)

where in passing we note that

A=A, (32)

whereas, in general,

X=k+[A, X]. (33)

In looking for particular solutions of (30) and (31), it is quite natural to start
with the choice Q = I (<=* Q = I), because this means that to within a rescaling of
the time-variable we are restricting ourselves to a class of point-symmetries. With
that choice, (28) or (30) reveal a simple particular solution for P, namely P = A.
The second equation to be satisfied, i.e. (29) or (31), then necessarily implies (13),
so that we are in a situation where a multiplier V for the inverse problem exists.
This is of course the complete analogue of the observation made around equation
(17), concerning the construction of quadratic first integrals. We may summarize
the statement as follows.

PROPOSITION 1. Equation (1) will have a linear point symmetry Y, governed by
the choice

p= -Aq- q

if and only / / $ ( l ) = 0. We then have a Lagrangian for the system, with respect to
which Y is a Noether-symmetry and as such produces a quadratic first integral,
described in [8] and [10].

The reader will have no trouble verifying the last part of this statement after
going through the example at the end of the paper.
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Next, we turn back to the general equations (30), (31) and make the following
substitution,

P=QA + f, (34)

which defines the matrix T. This substitution should be viewed as characterizing
the deviation from the preceding special case, in analogy with the substitution (18),
(19) concerning quadratic integrals. It is straightforward to compute that (30),
(3!), in view of (34) and making use of the properties (32), (33), reduce to

Q = Q $(0) _ $(0) Q _ 2T, (35)

T + $ ( 0 ) T-T <D(0> = 2Q $<0) + Q 4>(1). (36)

Note the appearance of the quantities <&(0) and <I>(1) in this reduced general system.
The analogy with the study of quadratic integrals could even be made more
transparent by replacing the two second-order equations (35), (36) by four
first-order equations and comparing these with equations (20). Summarizing
again, we come to the following

PROPOSITION 2. In order to find a linear dynamical symmetry of (I), one must find
a solution (Q,T) of equations (35), (36). With the help of such a solution, the
symmetry is determined by

where the barred matrices are related to the unbarred ones by the similarity
transformation (10).

4. Some further analogies with the inverse problem

Let us return to the class of point symmetries, for which we have Q = I. The
general equations (35), (36) then reduce to

r = o, (37)

Equation (37) implies that 7* is constant, say

f=T0. (39)

Assuming the given matrices A and B to be real analytic in the neighborhood of
tQ, (38) can be replaced by an infinite set of algebraic conditions / = t0, coming
from the coefficients of its Taylor expansion. Recalling the definition (6) of the
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matrices $ w ( f ) one readily finds that these conditions read (remember that

r0*<*>(/0) - &k)(<o)T0 + *(k+i)(t0) = o, v/c. (40)

A further analogy now emerges with the necessary and sufficient conditions (5)
arising in the study of the inverse problem. Assume for instance that one of the
" higher order commutativity conditions" is satisfied, say

</><*+•>(/) = 0 . (41)

Since this implies $(*+m>(/) = 0(m 3s 1), the system (40) reduces to a finite
number of equations, the last of which reads

ro*<*>(f0)-*<*>(/o)r0 = 0. (42)

It is then, in principle, a very straightforward matter to find out whether the given
system has linear point symmetries. Let us further look for an analogue of the
more general situation (15). Assuming (15) to hold true for certain functions A,(0
and fi(t), we can first of all easily check that a similar linear dependence will
occur for all further <$>(k+m\ For example, we have

k k

M/- (43)
1=0 1=0

Suppose then that we have

r0*<'>(/0) - &'\to)To + <*><'+»(r0) = 0 (44)

for / = 0 , 1 , . . . ,k. Multiplying (44) by \,(t0) and summing for / ranging from 0 to
k, we obtain (using (15))

ro*<*+»(ro) - &k+i\t0)T0 + I \ , ( ' o ) * < / + l ) ( ' o ) = 0. (45)
/=o

If we want this to imply (44) for / = k + 1, we should have

( ' O ) - (46)

Comparing (46) with (43) and keeping in mind that the same result should apply
for all further <p^k+m\ we necessarily must require X, and n to be constant.
Summarizing, we have shown:

PROPOSITION 3. Assume that the given matrices A and B satisfy the relation

/=0
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where X, and n are constants. Then equation (1) will have a linear point symmetry
{of type Q = I) iff a solution To exists of he algebraic equations (44), for
I — 0, 1,..., k. Such a point symmetry is given by a vector field Y of type (24), with /i
determined by

H=-(A +QT0Q-l)q-q,

being the solution 0/(8).

The cases of higher-order commutativity are of course recovered in this
statement for X, = ju = 0. If in addition we take k = 0, we get back to the
situation described in Proposition 1.

We have of course, despite the analogy, also discovered a discrepancy here
between the study of the inverse problem and the study of linear point symme-
tries, since the X, and ft here have to be constant. A much more fundamental
discrepancy, however, is the following one. In looking for a multiplier matrix in
the inverse problem, we generally have to deal with symmetry requirements of the
product of two matrices. In the search for linear point symmetries we encounter
commutativity conditions instead. This is for instance very striking when one
compares equations (5) with (40) and (42). There is one particularly interesting
exception in this respect, namely the case that (1) in its given form is already a set
of Euler-Lagrange equations (i.e. has / as a multiplier). Indeed, in that case<A is
skew-symmetric and all O(Ar) accordingly become symmetric, so that symmetry
requirements of the type (5) reduce to commutativity requirements (see also [6]).

As a final remark for this section, in case Proposition 3 cannot be applied, note
that there is still some interest in the infinite set of conditions (40) (similar to the
interest of (5) in the inverse problem). Indeed, (40) produces an infinite set of
linear algebraic equations for the finite number of elements of the unknown
matrix To. So, it is in principle possible to derive from these equations some
further consistency conditions for existence of a solution which would then be
expressed in terms of known elements only and this would allow the verification
of certain necessary conditions for existence of a linear point symmetry, prior to
its actual construction.

5. An example

For the example, we go back to Proposition 2, i.e., to the general equations
(35), (36) for the determination of a linear symmetry. Because of the appearance
of the quantities $(0) and 4>(l) in these equations, it is conceivable that they are
easier to tackle than the original equations (28), (29) in cases where a Lagrangian
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is known to exist. To illustrate their elegance in certain applications and to allow
a further comparison with the results of [8], we choose the same simple example
of an ^-dimensional, time-dependent, isotropic oscillator. The equations of mo-
tion are

q, + a=2(t)q, = 0. (47)

We have $(0) = u2(t)I, A = 0, B = /, so that the general equations (35), (36)
simplify to

Q = -2t,

f = 2u2Q + 2uu>Q. (48)

Elimination of T between these equations leads to the third-order equation

Q + 4u2Q + 4w« = 0. (49)

In order to find particular solutions of (49), we try Q(t) = y(t)Q0, where y is a
scalar function and QQ is constant. The function y then must satisfy a similar
third-order equation, which by the substitution y — p2 can be integrated to

p + w2p = cp-3. (50)

The first of equations (48) integrates to

Q = -2T+2TO.

Hence, with

Q = P
2Q and T = To - PPQ0, (51)

we get a set of solutions of (48), Qo and To being arbitrary constant n X n
matrices and p satisfying the scalar equation (50). A class of linear dynamical
symmetries therefore is determined by

li = -(T0-PPQ0)q-P
2Q0q. (52)

Because of the arbitrariness of Qo and To, (52) actually gives a 2«2-parameter
family of linear symmetries. It is known that such symmetries in general do not
produce a corresponding first integral by simple algebraic means. In order to do
so, they must be of Noether-type. So let us investigate under which supplemen-
tary restrictions on To and Qo (52) will produce a Noether-symmetry with respect
to the Lagrangian

L = Wq ~ WqTq
for the present problem. The criterion for the vector field Y to be a Noether-sym-
metry with respect to L is that the one-form iYd6(L) be exact, where 0(L) is the
so-called Cartan-form and iY stands for the inner product of the vector field Y
with differential forms (see [9]). We have

iYd0 = i>'(dq' - q'dt) - n'{dq' - Ndt), (53)
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where A' for the present case is equal to -u>2q, and the components v', in
agreement with (27), are given by

q+(p2 + p-2)Q0. (54)

The one-form (53) will equal dF for some function F if and only if

dF dF ....
v = — and -/t = — . (55)

uc/ oq
Using the explicit forms (52) and (54), the integrability conditions for the validity
of (55) are obtained as

Qo = Go. ~ (To + PpQo) = (To - ppQoV-

They are equivalent to

Q0=Ql and To = -T0
T. (56)

Finally, the corresponding class of first integrals is given by

F = {{p2 + p-2)qTQoq - qT(T0 + ppQ0)q + {p2qTQ0q, (57)

Qo being arbitrary symmetric and To arbitrary skew-symmetric. As already
discussed in [8], (57) contains in one single formula all quadratic first integrals
discussed by Giinther and Leach [1].

6. Some final comments

All results of this paper have been extensively discussed throughout the text.
We therefore limit ourselves here to some additional suggestions for further work.
The close similarities between the inverse problem of Lagrangian mechanics and
the search for symmetries, discussed in Section 4, seem to open the way for a
classification type study. In particular, we are thinking of the cases where a
commutativity condition like (41) is satisfied. Starting with two degrees of
freedom, one could for instance list all second-order systems for which $(l> = 0,
3>(2) = 0, etc. For each of these cases, one could then separately investigate the
existence of a multiplier on the one hand (a finite set of conditions of type (5))
and the existence of linear point symmetries on the other hand (a finite set of
conditions of type (40)) in the hope of coming to a better understanding of the
interconnections and discrepancies between both problems and the significance of
the quantities <J>(M(O-

As a final comment, it is worthwhile indicating that the restriction to linear
systems in this paper should not be regarded as oversimplification. First of all,
there still is a lot of interest in linear systems on their own in various branches of
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applied mathematics. Secondly, it has been experienced by us that the study of
the inverse problem of Lagrangian mechanics for linear systems [10], provides
valuable insight for tackling the case of general second-order equations [6]. It is
for instance well known that a general second-order system is of Lagrangian type
if and only if the same is true for its linear variational equations.
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